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Abstract

Boosting is a widely used machine learning approach based on the idea of aggregat-
ing weak learning rules. While in statistical learning numerous boosting methods
exist both in the realizable and agnostic settings, in online learning they exist only
in the realizable case. In this work we provide the first agnostic online boosting
algorithm; that is, given a weak learner with only marginally-better-than-trivial
regret guarantees, our algorithm boosts it to a strong learner with sublinear regret.
Our algorithm is based on an abstract (and simple) reduction to online convex
optimization, which efficiently converts an arbitrary online convex optimizer to
a boosting algorithm. Moreover, this reduction extends to the statistical as well
as the online realizable settings, thus unifying the 4 cases of statistical/online and
agnostic/realizable boosting.

1 Introduction

Boosting is a fundamental methodology in machine learning that can boost the accuracy of weak
learning rules into a strong one. Boosting was first studied in the context of (realizable) PAC learning
in a line of seminal works which include the celebrated Adaboost algorithm, as well an many other
algorithms with various applications (see e.g. [29, 33, 17, 19]). It was later adapted to the agnostic
PAC setting and was extensively studied in this context as well [7, 31, 21, 27, 30, 26, 28, 16, 13, 18].
More recently, [14] and [9] studied boosting in the context of online prediction and derived boosting
algorithms in the realizable setting (a.k.a. mistake-bound model).

In this work we study agnostic boosting in the online setting: letH be a class of experts and assume
we have oracle access to a weak online learner forH with a non-trivial (yet far from desired) regret
guarantee. The goal is to convert it into a strong online learner forH that exhibits vanishing regret.

Why online agnostic boosting? The setting of online realizable boosting poses a restriction on the
possible input sequences: there must be an expert that attains near-zero mistake-bound on the input
sequence. This is a non-standard assumption in online learning. In contrast, in the online agnostic
setting we consider, there is no restriction on the input sequence and it can be chosen adversarially.

∗The research was done while author was co-affiliated with Google AI Princeton.
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Applications of online agnostic boosting. Apart from being a fundamental question in a well-
studied learning setting, let us mention a few concrete incentives to study online agnostic boosting:

• Differential privacy and online learning: A recent line of work revealed deep connections
between online learning and differentially private learning [5, 1, 6, 10, 32, 25, 22, 11]. In
fact, these two notions are equivalent in the sense that a class H can be PAC learned by
a differentially private algorithm if and only if it can be learned in the online setting with
vanishing regret [6, 11]. However, the above equivalence is only known to hold from an
information theoretic perspective, and deriving efficient reductions between online and
private learning is an open problem [32]. The only case where an efficient reduction is
known to exist is in converting a pure private learner to an online learner in the realizable
setting [22]. This reduction relies heavily on the realizable online boosting algorithm by [9].
Moreover, the derivation of an agnostic online boosting algorithm is posed by [22] as an
open problem towards extending their reduction to the agnostic setting.

• Time series prediction and online control: Recent machine learning literature considered
the problem of controlling a dynamical system from the lens of online learning and regret
minimization, see e.g. [3, 4, 24] and referenced work therein. The online learning approach
also gave rise to the first boosting methods in this context [2], and demonstrates the potential
impact of boosting in the online setting. Thus, the current work aims at continuing the
development of the boosting methodology in online learning, starting from the basic setting
of learning from expert advice.

1.1 Main results

The weak learning assumption. In this paper we follow the same formulation as [28] used
for boosting in the agnostic statistical setting. Towards this end, it is convenient to measure the
performance of online learners using gain rather than loss: let (x1, y1) . . . (xT , yT ) ∈ X × {±1} be
an (adversarial and adaptive) input sequence of examples presented to an online learning algorithm
A; that is, in each iteration t = 1 . . . T , the adversary picks an example (xt, yt), then the learner
A first gets to observe xt, and predicts (possibly in a randomized fashion) ŷt ∈ {±1}, and lastly it
observes yt and gains a reward of yt · ŷt. The goal of the learner is to maximize the total gain (or
correlation), given by

∑
t yt · ŷt. Note that this is equivalent to the often-used notion of loss where in

each iteration the learner suffers a loss of 1[yt 6= ŷt] and its goal is to minimize the accumulated loss∑
t 1[yt 6= ŷt]. 2

Definition 1 (Agnostic Weak Online Learning). LetH ⊆ {±1}X be a class of experts, let T denote
the horizon length, and let γ > 0 denote the advantage. An online learning algorithmW is a (γ, T )-
agnostic weak online learner (AWOL) forH if for any sequence (x1, y1), ..., (xT , yT ) ∈ X ×{±1},
at every iteration t ∈ [T ], the algorithm outputsW(xt) ∈ {±1} such that,

E

[
T∑
t=1

W(xt)yt

]
≥ γ max

h∈H
E

[
T∑
t=1

h(xt)yt

]
−RW(T ),

where the expectation is taken w.r.t the randomness of the learnerW and that of the possibly adaptive
adversary, and RW : N→ R+ is the additive regret: a non-decreasing, sublinear function of T .

Note the slight abuse of notation in the last definition: an online learnerW is not an “X → {±1}”
function; rather it is an algorithm with an internal state that is updated as it is fed new examples.
Thus, the predictionW(xt) depends on the internal state ofW , and for notational convenience we
avoid reference to the internal state.

Our agnostic online boosting algorithm has oracle access to N weak learners and predicts each label
by combining their predictions. The number of weak learners N is a meta-parameter which can be
tuned by the user according to the following trade-off: on the one hand, the regret bound improves
as N increases, and on the other hand, a larger number of weak learners is more costly in terms of
computational resources.

2Indeed, ytŷt = 1− 2 · 1[yt 6= ŷt] since yt, ŷt ∈ {±1}. Therefore, the accumulated loss and correlation are
affinely related by

∑
yt · ŷt = T − 2 ·

∑
t 1[yt 6= ŷt].
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Theorem 2 (Agnostic Online Boosting). LetH be a class of experts, let T ∈ N denote the horizon
length, and letW1, . . . ,WN be (γ, T )-AWOL for H with advantage γ and regret RW(T ) = o(T )
(see Definition 1). Then, there exists an online learning algorithm, which has oracle access to each
Wi, and has expected regret of at most

RW(T )

γ
+O

( T

γ
√
N

)
.

To exemplify the interplay between RW(·) and N , imagine a scenario where RW(T ) ≈
√
T (as is

often the case for regret bounds). Then, setting N ≈ T gives that the overall regret remains ≈
√
T .

By setting both T and N to be O( 1
γ2ε2 ) for any ε > 0, an average regret of ε is obtained.

An abstract framework for boosting. Boosting and Regret Minimization algorithms are inti-
mately related. This tight connection is exhibited in statistical boosting (see [20, 19, 34]). For
example, AdaBoost can be interpreted as applying the Hedge algorithm to iteratively update proba-
bility weights associated with the training examples [18]. Our algorithm is inspired by this fruitful
connection and utilizes it. We derive a general framework which reduces boosting to online con-
vex optimization. Moreover, this reduction applies to 4 learning settings: realizable-statistical,
realizable-online, agnostic-statistical, and agnostic-online.

We note that in the agnostic boosting settings, both the assumption and the goal are stronger compared
to the realizable case; an agnostic weak learner is assumed (which is stronger than a realizable weak
learner), but the aim is to learn arbitrary distributions (which is a more challenging task than only
learning realizable distributions). Therefore, a boosting algorithm for the realizable setting does not
trivially follow from an agnostic boosting algorithm. A similar argument holds for the statistical vs.
online boosting settings.

The general framework we derive in this work does apply to all the 4 aforementioned learning settings,
with only slight modification to the algorithm’s update rule. On a high-level, these modification are
based on the following observations:

1. Agnostic/Realizable: in the realizable setting the weights of instances (i.e. the x’s) are
updated (e.g., in Adaboost [34]). In the agnostic setting the weights of labels (i.e. the y’s)
are typically updated instead [16, 28]. Therefore, instances and labels are exchanged.

2. Statistical/Online: in the statistical setting, in each iteration a weak-hypothesis is produced
and the weights of all examples are updated. In the online setting in each iteration a new
example is processed and the weights corresponding to all weak-learners are updated [9].
Therefore, examples and weak learners are exchanged.

Thus, there is an interesting duality which “converts” between the 4 settings by replacing reweighting
(realizable) with relabeling (agnostic), and between updating all learners per example (online) and
updating all examples per learner (statistical). Our main contribution is showing that the fashion in
which reweighting/relabelling is performed, which was previously given by ad hoc update-rules, can
be abstracted to an application of an arbitrary online convex optimization algorithm.

Our general framework result may not come as a surprise given the well known connections between
boosting and online convex optimization. However, we stress that the general reduction established
here does introduce technical challenges. For instance, the final output of the algorithm is not
obtained via a standard weighted majority-vote, but rather a different projected aggregation of the
weak learners’ predictions. Thus, albeit our unified framework being simple and intuitive, the analysis
is not straightforwardly derived.

Paper structure. In the next subsection we discuss related work. The main result of our agnostic
online boosting algorithm, and the proof of Theorem 2, are given in Section 2. In Section 3 we
demonstrate a general reduction, in the statistical setting, from both the agnostic (Subsection 3.1),
and realizable (Subsection 3.2) boosting settings, to online convex optimization. Then, in Section 4,
we give a similar result for the online realizable boosting setting.
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1.2 Related work

Several previous works derived agnostic boosting algorithms in the statistical setting [26, 27, 28, 16].
However, previous works on online boosting have focused only on the realizable (mistake-bound)
setting [14, 9]. The work by [14] provides a boosting algorithm inspired by classical algorithms in the
realizable-statistical setting. Their work was later extended to an optimal and adaptive online boosting
algorithm [9]. Although the work by [9] does not explicitly assume realizability, we remark that
Equation (1) in [9] amounts to realizability: indeed, it assumes that the weak learner makes at most
(0.5− γ)T + o(T ) mistakes on every sequence of input examples (x1, y1)...(xT , yT ). This clearly
cannot apply in an agnostic setting, since for a fixed γ > 0, if the input sequence is drawn randomly
then with high probability the number of mistakes will concentrate around 0.5T and Equation (1)
will fail. Thus, in order for Equation (1) to hold, one must restrict the set of allowable sequences,
which essentially amounts to realizability with respect to some class. In contrast, our work focuses on
the agnostic (regret-bound) setting, where the input sequence is not restricted and can be adversarial.

Another contribution of this work is the above-mentioned general framework which reduces boost-
ing to online convex optimization. We note however that this generality comes with a cost: in
particular, in the 3 settings that were previously studied, the boosting algorithms derived from the
general framework exhibit, in some aspects, inferior guarantees compared to the state-of-the-art
(e.g., Adaboost [34] in the realizable-statistical case, [9] in the realizable-online case, and [28] in the
agnostic-statistical case). We compare them in more detail in the following sections. It is therefore
presumable that our online agnostic boosting algorithm can also be improved, e.g. by improving the
oracle/regret bounds or adding adaptive capabilities. We leave these goals for future work.

Several other works [8, 2] studied online boosting under real-valued loss functions. The main
difference from our work is in the weak learning assumption: they consider weak learners that are in
fact strong online learners for a base class of regression functions. The boosting procedure produces
an online learner for a bigger class which consists of the linear span of the base class. This is different
from the setting considered here where the class is fixed, but the regret bound is being boosted.

A main motivation of this work is the connection between boosting and regret minimization. This
builds on and is inspired by previous works demonstrating this relationship. We refer the reader to the
book by [34] (Chapter 6) for an excellent presentation of this relationship in the context of Adaboost.

2 Online agnostic boosting

In this section, we formally present our main result which enables converting an online convex
optimizer to an online agnostic booster. We begin by providing an overview of online convex
optimization, and then proceed to describe our main algorithm.

Online Convex Optimization. (see e.g. [23]). In the Online Convex Optimization (OCO) framework,
an online player iteratively makes decisions from a compact convex set K ⊂ Rd. At iteration
i = 1, ..., N , the online player chooses an action pi in the decision set K, and at the same time the
adversary reveals a cost function `i : K → R, chosen from a family F of bounded convex functions
over K. We denote an algorithm A in this setting as a (K, N)-Online Convex Optimizer (OCO), if
the regret RA(N) is a non-decreasing, sublinear function of N , where the regret is defined as the
excess loss over the best single action in hindsight over the decision set K:

RA(N) =

N∑
i=1

`i(pi)−min
p∈K

N∑
i=1

`i(p). (1)

The OCO framework generalizes the statistical learning framework as it permits the adversary to
adapt to the actions of the player. Under this setting, the best action in hindsight is a competitive
benchmark, and a sublinear regret guarantees vanishing average excess loss over time.

Main Algorithm. Our main algorithm is formally described in Algorithm 1. The booster has
black-box oracle access to two types of auxiliary algorithms: N instances of an online weak learning
algorithm, denoted W1, . . . ,WN , and an online-convex optimizer, denoted by A. The algorithm
proceeds in rounds, where in each round t it observes an example (xt, yt) and sequentially updates
each weak learnerWi by feeding it with (xt, y

i
t), where yit is a re-labeling. The role of the OCO is to
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determine the yit’s (via the parameters pit’s, see Line 4). Intuitively, it guides each weak learnerWi to
correct for mistakes of the preceding learners. We stress that the OCO is restarted in each round.

Randomized Majority-Vote/Projection. At the beginning of each iteration, the boosting algorithm
aggregates the weak learners’ predictions using a randomized projection “Π”. For any z ∈ R, denote
by Π(z) the following random label:

Π(z) =


sign(z) if |z| ≥ 1

+1 w.p. 1+z
2

−1 w.p. 1−z
2

(2)

Algorithm 1 Online Agnostic Boosting with OCO

1: for t = 1, . . . , T do
2: Get xt, predict: ŷt = Π

(
1
γN

∑N
i=1Wi(xt)

)
.

3: for i = 1, . . . , N do
4: If i > 1, set pit = A(`1t , ..., `

i−1
t ). \\Note that A is restarted at each time step t.

5: Else, set p1t = 0
6: Set next loss: `it(p) = p( 1

γWi(xt)yt − 1).

7: Pass (xt, y
i
t) toWi, where yit is a random label s.t. P[yit = yt] =

1+pit
2 .

8: end for
9: end for

Figure 1: The algorithm is given oracle access to N instances of a (γ, T )-AOWL algorithm,
W1, ...,WN (see Definition 1), and to a ([−1, 1], N)-OCO algorithmA (see Equation 1). The
prediction “Π( 1

γN

∑N
i=1Wi(xt))” in line 2 is a projected majority-vote (see Equation 2).

We now state and prove the regret bound for Algorithm 1.
Proposition 3 (Regret Bound). The accumulated gain of Algorithm 1 satisfies:

1

T
E

[
max
h∗∈H

T∑
t=1

h∗(xt)yt −
T∑
t=1

ŷtyt

]
≤ RW(T )

γT
+
RA(N)

N
,

where (xt, yt)’s are the observed examples, ŷt’s are the predictions, the expectation is with respect to
the algorithm and learners’ randomness, andRW , RA are the AWOL, OCO regret terms, respectively.

Proof. The proof follows by combining upper and lower bounds on the expected sum of losses
incurred by the OCO algorithm. The bounds follow directly from the weak learning assumption
(lower bound) and the OCO guarantee (upper bound). These bounds involve some simple algebraic
manipulations. It is convenient to abstract out some of these calculations into lemmas, which are
described later in this section.

Before delving into the analysis, we first clarify several assumptions used below. For simplicity of
presentation we assume an oblivious adversary, however, using a standard reduction, our results can
be generalized to an adaptive one 3. Let (x1, y1), ..., (xT , yT ) be any sequence of observed examples.
Observe that there are several sources of randomness at play; the weak learning algorithm Wi’s
internal randomness, the random re-labeling (line 6, Algorithm 1), and the randomized prediction
(line 7, Algorithm 1). The analysis below is given in expectation w.r.t. all these random variables.

Note the following fact used in the analysis; for all i ∈ [N ], t ∈ [T ], the random variablesWi(xt) and
yit are conditionally independent given pit and yt. Since E[yit|pit, yt] = pit · yt, using the conditional
independence, it follows that E[Wi(xt)y

i
t] = E[Wi(xt)p

i
tyt] (see Lemma 13 in the Appendix). We

can now begin the analysis, starting with lower bounding the expected sum of losses, using the weak
learning guarantee,

1

γ
E
[ N∑
i=1

T∑
t=1

Wi(xt) · ytpit
]

=
1

γ

N∑
i=1

E
[ T∑
t=1

Wi(xt) · ytpit
]

=
1

γ

N∑
i=1

E
[ T∑
t=1

Wi(xt)y
i
t

]
(See Lemma 13)

3See discussion in [12], Pg. 69, as well as Exercise 4.1 formulating the reduction.
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≥ 1

γ

N∑
i=1

(
γ max
h∈H

E
[ T∑
t=1

h(xt)y
i
t

]
−RW(T )

)
(Weak Learning (1))

≥
N∑
i=1

(
max
h∈H

T∑
t=1

h(xt) · E[yit]−
1

γ
RW(T )

)
≥

N∑
i=1

T∑
t=1

h∗(xt) · E[ytp
i
t]−

N

γ
RW(T )

=

N∑
i=1

T∑
t=1

E
[
h∗(xt) · ytpit

]
− N

γ
RW(T ),

where h∗ is an optimal expert in hindsight for the observed sequence of examples (xt, yt)’s. Thus,
we obtain the lower bound on the expected sum of losses

∑
t

∑
i `
i
t(p

i
t) (see Line 6 in Algorithm 1

for the definition of the `it’s), given by,

E[

T∑
t=1

N∑
i=1

`it(p
i
t)] ≥

N∑
i=1

T∑
t=1

E
[
pit(h

∗(xt)yt − 1)
]
− N

γ
RW(T )

≥ N
T∑
t=1

(h∗(xt)yt − 1)− N

γ
RW(T ). (See Lemma 4 below)

For the upper bound, observe that the OCO regret guarantee implies that for any t ∈ [T ], and any
p∗t ∈ [−1, 1],

E
[ 1

N

N∑
i=1

`it(p
i
t)
]
≤ p∗t

((
1

γN

N∑
i=1

E
[
Wi(xt)

])
yt − 1

)
+

1

N
RA(N),

Thus, by setting p∗t according to Lemma 5 (see below, with ĥ(x) := 1
γN

∑N
i=1 E

[
Wi(x)

]
), and

summing over t ∈ [T ], we get,

E
[ 1

N

T∑
t=1

N∑
i=1

`it(p
i
t)
]
≤

T∑
t=1

(E[ŷt]yt − 1) +
T

N
RA(N).

By combining the lower and upper bounds for E
[

1
NT

∑
t

∑
i `
i
t(p

i
t)
]
, we get,

1

T

T∑
t=1

E[ŷt]yt ≥
1

T

T∑
t=1

h∗(xt)yt −
RW(T )

γT
− RA(N)

N
.

It remains to prove two short Lemmas that are used in the proof of the theorem above, as well as in
the more general settings in the following sections.
Lemma 4. For any p ∈ [−1, 1], an example pair (x, y), and h : X → {−1, 1}, we have:

p(h(x)y − 1) ≥ h(x)y − 1.

Proof. Let z = h(x)y − 1. Observe that z ∈ {−2, 0}. Thus, since p ∈ [−1, 1], pz ≥ z.

Lemma 5. Given an example pair (x, y), and ĥ : X → R, there exists p∗ ∈ {0, 1}, such that,

p∗(ĥ(x)y − 1) ≤ ŷy − 1,

where ŷt = E[Π(ĥ(x))], with expectation taken only w.r.t. the randomness of Π (see Definition (2)).

Proof. If |ĥ(x)| ≤ 1, ŷ = ĥ(x) and by setting p∗ = 1, the equality follows. Thus, assume |ĥ(x)| > 1,
and consider the following cases:

• If ĥ(x)y − 1 > 0, then ŷy − 1 = 0. Hence, by setting p∗ = 0, the equality follows.
• If ĥ(x)y−1 < 0, then since |ĥ(x)| > 1 it must be that sign(ĥ(x))y = −1, and ŷy−1 = −2.

Since |ĥ(x)| > 1, we have ĥ(x)y − 1 ≤ −2. Hence, by setting p∗ = 1 the inequality holds.
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2.1 Proof of Theorem 2
The proof of Theorem 2 is a direct corollary of Proposition 3, by plugging Online Gradient Descent
(OGD) to be the OCO algorithm A (e.g., see [23] Chapter 3.1): the OGD regret is O(GD

√
N),

where N is the number of iterations, G is an upper bound on the gradient of the losses, and D is the
diameter of the set K = [−1, 1]. In our setting, G ≤ 2

γ , and D = 2. Hence, RA = O(
√
N/γ), and

the overall bound on the regret follows.

3 Statistical realizable and agnostic boosting
In this section we give an overview of our results in the statistical setting. The formal defini-
tions and results are stated below, in sections 3.1 ans 3.2. The full analysis is deferred to the Appendix.

The algorithms and analysis in the statistical-setting follow the same structure as in the online
setting (see the discussion of the abstract framework for boosting in Section 1). To allow the reader
to assess the simplicity of the abstraction, we include the pseudo-code for our algorithms in the
statistical setting below in Algorithm 2. Notice that, as in the online setting, the difference between
the agnostic- and realizable-case boosting algorithms below boils down to a single line.

Note that a caveat of this unified framework is that the oracle and sample complexity bounds we
obtain in the realizable setting are inferior compared to the state-of-the-art bounds (see e.g., [34]); in
the agnostic setting our bounds match the state-of-the-art bounds [28, 16], however our algorithm
lacks adaptivity (whereas, the algorithms by [28, 16] are adaptive). Albeit not achieving quantitative
improvement, the applications given below demonstrate the generality of the proposed framework.
Finally, let us remark a curious connection between our boosting algorithms in the statistical setting
with repeated zero-sum game-play with access to an approximately-best-response oracle. Given an
input strategy of the opponent, such an oracle returns a strategy whose payoff competes with the
best response up to a multiplicative factor. Interestingly, our algorithm can be seen as an “improper”
policy in this repeated-game setting. We refer the reader to the appendix for the formal details.

Algorithm 2 Boosting with OCO

1: for t = 1, . . . , T do
2: Pass m0 examples toW drawn from the following distribution:
3: Realizable: Draw (xi, yi) w.p. ∝ pt(i).
4: Agnostic: Draw xi w.p. 1

m , and re-label according to yipt(i).
5: Let ht be the weak hypothesis returned byW .
6: Set loss: `t(p) =

∑m
i=1 p(i)(

1
γht(xi)yi − 1).

7: Update: pt+1 = A(`1, ..., `t).
8: end for
9: return h̄(x) = Π

(
1
γT

∑T
t=1 ht(x)

)
.

Figure 2: The booster has oracle access to either a (γ, ε0,m0)-AWL (see Definition 6) or a
(γ,m0)-WL (see Definition 8), both denoted asW . The optimizer is a (γ,K, T )-OCO A (see
Definition 1), K = [0, 1]m in the realizable case and K = [−1, 1]m in the agnostic case. The
final predictor (Line 9) applies a projected majority-vote (see Equation 2).

3.1 Statistical agnostic boosting
LetH ⊆ {±1}X be a hypothesis class, and let D be any a distribution over X × {±1}. Define the
correlation of any h ∈ H with respect to D by corD(h) = E(x,y)∼D[h(x) · y].
Definition 6 (Empirical Agnostic Weak Learning Assumption). Let x = (x1 . . . xm) ∈ X denote
an unlabeled sample. A learning algorithmW is a (γ, ε0,m0)-agnostic weak learner (AWL) forH
with respect to x if for any labels y = (y1, . . . , ym),

ES′ [ corµ×y(W(S′))] ≥ γmax
h∗∈H

corµ×y(h∗)− ε0,

where µ× y is the distribution which uniformly assigns to each example (xi, yi) probability 1/m,
and S′ is an independent sample of size m0 drawn from µ× y.
In accordance with previous works, we focus on the setting where γ is a small constant (say γ = 0.1)
and ε0 ≈ d/

√
m, where d is the VC-dimension ofH (see [28] for a detailed discussion). We stress
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however that our results apply for any setting of γ, ε0 ∈ [0, 1]. The above weak learning assumption
can be seen as an empirical variant of the assumption in [28], where µ is replaced with the population
distribution over X and the labels yi’s are replaced with an arbitrary classifier c : X → {±1}. Both
of these assumptions are weaker than the standard agnostic weak learning assumption, for which
the guarantee holds with respect to every distribution D over X × {±1}. It will be interesting to
investigate the relationship between the assumption of [28] and our empirical variant, however this is
beyond the scope of this work. We now state the empirical error bound for Algorithm 2.
Theorem 7 (Empirical Agnostic Boosting). The correlation of h̄, output of Algorithm 2, satisfies:

E
[

corS(h̄)
]
≥ max
h∗∈H

E
[

corS(h∗)
]
−

(
ε0
γ

+O

(
1

γ
√
T

))
. (3)

Observe that by setting T = O( 1
γ2ε2 ) for any ε > 0, an error of ε is obtained. Note that this in fact

matches bound on T in the state-of-the-art agnostic boosting method [28]. However, we remark that
the method given in [28] is adaptive.

3.2 Statistical realizable boosting
Definition 8 (Empirical Weak Learning Assumption [34]). LetH ⊆ {±1}X be a hypothesis class,
and let S = {(x1, y1), . . . , (xm, ym)} ∈ X × {±1} be a sample. A learning algorithm W is a
(γ,m0)-weak learner (WL) forH with respect to S if for any distribution p = (p1, . . . , pm) which
assigns each example (xi, yi) with probability pi,

ES′ [ corp(W(S′))] ≥ γ,

where S′ is an independent sample of size m0 drawn from p.

Theorem 9 (Empirical Realizable Boosting). The correlation of h̄, output of Algorithm 2, satisfies:

E[ corS(h̄)] ≥ 1−O
( 1

γ
√
T

)
.

Observe that by setting T = O( 1
γ2ε2 ) for any ε > 0, at most ε error is obtained. We remark that

classical boosting results are able to achieve ε error, by setting T = O
(

1
γ2 log( 1

ε )
)

[34].

3.3 Generalization
Theorems 7 and 9 imply that the correlation of the output hypothesis is competitive with the best
hypothesis in H with respect to the empirical distribution. A similar guarantee with respect to
the population distribution can be obtained using a standard sample compression argument (see,
e.g. [34, 15]): indeed, the final hypothesis h̄ is obtained by aggregating the T weak hypotheses ht’s,
each of which is determined by the m0 examples fed to the weak learner. Thus, h̄ can be encoded by
T ·m0 input examples and hence the entire algorithm forms a sample compression scheme of this
size. Consequently, setting the input sample size m = Õ(T ·m0/ε

2) yields the same guarantees of
Theorems 7, 9 up to an additive error of ε.

4 Online realizable boosting
In this section, we give an online realizable boosting algorithm, and state its regret bound. The result
follows along similar lines as our main result given in Section 2. We first state the weak learning
assumption for the online realizable setting.
Definition 10 (Online Weak Learning). Let H ⊆ {±1}X be a class of experts, let T denote the
horizon length, and let γ > 0 denote the advantage. An online learning algorithmW is a (γ, T )-weak
online learner (WOL) forH if for any sequence (x1, y1), ..., (xT , yT ) ∈ X ×{±1} that is realizable
byH, at every iteration t ∈ [T ], the algorithm outputsW(xt) ∈ {±1} such that,

E

[
T∑
t=1

W(xt)yt

]
≥ γT −RW(T ),

where the expectation is taken over the randomness of the weak learnerW and RW : N→ R+ is the
additive regret: a non-decreasing, sub-linear function of T .
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Recall that the restriction of the sequence {(xt, yt)}Tt=1 to being realizable by H corresponds to:
maxh∈H

1
T

∑T
t=1 h(xt)yt = 1. Similar to the online agnostic case, the booster maintainsN instances

W1, . . . ,WN of an online weak learning algorithm, and a single instance of the OCO algorithm
A. However, in the previous section, the OCO’s decision set is [−1, 1], corresponding to its role of
relabeling examples in ±1. In this setting, the decision set of the OCO is [0, 1], corresponding to
its role of choosing probability weights for each example. Indeed, observe that Algorithm 1 and
Algorithm 3 differ on Line 7.

Algorithm 3 Online boosting with OCO

1: for t = 1, . . . , T do
2: Get xt, predict: ŷt = Π

(
1
γN

∑N
i=1Wi(xt)

)
.

3: for i = 1, . . . , N do
4: If i > 1, set pit = A(`1t , ..., `

i−1
t ). \\Note that A is restarted at each time step t.

5: Else, set p1t = 1/2.
6: Set next loss: `it(p) = p( 1

γWi(xt)yt − 1).
7: Pass (xt, yt) toWi w.p. pit.
8: end for
9: end for

Figure 3: The algorithm is given oracle access to N instances of a (γ, T )-WOL algorithm,
W1, ...,WN (see Definition 10), and to a ([0, 1], N)-OCO algorithm A (see Equation 1). The
prediction “Π( 1

γN

∑N
i=1Wi(xt))” in line 2 is a projected majority-vote (see Equation 2).

The following theorem formally states the guarantees of the online realizable boosting algorithm:

Theorem 11. The accumulated gain of Algorithm 3 satisfies:

E

[
1

T

T∑
t=1

ŷtyt

]
≥ 1−

(
R̃W(T )

γT
+
RA(N)

N

)
.

where (xt, yt)’s are the observed examples, ŷt’s are the predictions, the expectation is with respect to
the algorithm and weak learners’ randomness, R̃W(T ) := 2RW(T ) + Õ(

√
T ), and RW and RA

are the regret terms of the weak learner and the OCO, respectively.

The proof follows similarly to that of Proposition 3, and is deferred to the Appendix. By plugging
Online Gradient Descent (OGD) to be the OCO algorithm A, we get that RA(N) = O(

√
N
γ ). Thus,

by Theorem 11, we obtain that the overall error isO( 1
γ
√
T

+ 1
γ
√
N

). Note that by settingN = O( 1
γ2ε2 )

and T = O( 1
γ2ε2 ), the mistake-bound is at most ε · T . This is worse by a factor of 1/ε2 than the

bound given by [9], yielding T = Õ( 1
γ2ε ) and N = O( 1

γ2 ln( 1
ε )), which is optimal.

5 Discussion
We have presented the first boosting algorithm for agnostic online learning. In contrast to the
realizable setting, we do not place any restrictions on the online sequence of examples. It remains
open to prove lower bounds on online agnostic boosting as a function of the natural parameters of the
problem and/or improve our upper bounds.
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