
Appendix for “Causal Intervention for
Weakly-Supervised Semantic Segmentation”

This appendix includes the derivation of backdoor adjustment for the proposed structural causal
model (Section 1), the normalized weighted geometric mean (Section 2), the detailed implementations
for different baseline models (Section 3), the supplementary ablation studies (Section 4), and more
visualization results of segmentation masks (Section 5).

1 Derivation of Backdoor Adjustment for the Proposed Causal Graph

In the main paper, we used backdoor adjustment [16] to perform the causal intervention. In this
section, we show the derivation of backdoor adjustment for the proposed causal graph (in Figure 3(b)
of the main paper), by leveraging the following three do-calculus rules [15].

Given an arbitrary causal directed acyclic graph G, there are four nodes respectively represented by
X , Y , Z, and W . Particularly, GX denotes the intervened causal graph where all incoming arrows
to X are deleted, and GX denotes another intervened causal graph where all outgoing arrows from
X are deleted. We use the lower cases x, y, z, and w to represent the respective values of nodes:
X = x, Y = y, Z = z, and W = w. For any interventional distribution compatible with G, we have the
following three rules:

Rule 1. Insertion/deletion of observations:

P (y∣do(x), z,w) = P (y∣do(x),w), if (Y Z ∣X,W )G
X
. (A1)

Rule 2. Action/observation exchange:

P (y∣do(x), do(z),w) = P (y∣do(x), z,w), if (Y Z ∣X,W )G
XZ
. (A2)

Rule 3. Insertion/deletion of actions:

P (y∣do(x), do(z),w) = P (y∣do(x),w), if (Y Z ∣X,W )G
XZ(W )

, (A3)

where Z(W ) is a subset of Z that are not ancestors of any specific nodes related to W in GX . Based
on these three rules, we can derive the interventional distribution P (Y ∣do(X)) for our proposed
causal graph (in Figure 3(b) of the main paper) by:

P (Y ∣do(X)) = ∑
c

P (Y ∣do(X), c)P (c∣do(X)) (A4)

= ∑
c

P (Y ∣do(X), c)P (c) (A5)

= ∑
c

P (Y ∣X, c)P (c) (A6)

= ∑
c

P (Y ∣X, c,M)P (M ∣X, c)P (c) (A7)

= ∑
c

P (Y ∣X, c,M = f(X, c))P (c) (A8)

= ∑
c

P (Y ∣X,M = f(X, c))P (c), (A9)

where Eq. A4 and Eq. A7 follow the law of total probability. We can obtain Eq. A5 via Rule 3 that
given cX in GX , and Eq. A6 can be obtained via Rule 2 which changes the intervention term into
observation as Y X ∣c in GX . Eq. A8 is because in our causal graph, M is an image-specific context
representation given by the function f(X, c), and Eq. A9 is essentially equal to Eq. A8.
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2 Normalized Weighted Geometric Mean

This is Appendix to Section 3.2 “Step 4. ComputingMt+1”. In Section 3.2 of the main paper, we used
the Normalized Weighted Geometric Mean (NWGM) [21] to move the outer sum ∑c P (⋅) into the
feature level: ∑c P (Y ∣X,M)P (c) ≈ P (Y ∣X,M = ∑c f(X, c)P (c)). Here, we show the detailed
derivation. Formally, our implementation for the positive term (i.e., 1i∈Y in Eq.(2) of the main paper)
can be derived by:

P (Y ∣do(X)) = ∑
c

exp(s1(c))

exp(s1(c)) + exp(s2(c))
P (c) (A10)

= ∑
c

Softmax(s1(c))P (c) (A11)

≈ NWGM(Softmax(s1(c))) (A12)

=
∏c[exp(s1(c)]

P (c)

∏c[exp(s1(c)]
P (c) +∏c[exp(s2(c)]P (c)

(A13)

=
exp(∑c(s1(c)P (c)))

exp(∑c(s1(c)P (c))) + exp(∑c(s2(c)P (c)))
(A14)

=
exp(Ec(s1(c)))

exp(Ec(s1(c))) + exp(Ec(s2(c)))
(A15)

= Softmax(Ec(s1(c)), (A16)

where s1(⋅) denotes the positive predicted score for the class label which is indeed associated with
the input image, and s2(c) = 0 under this condition. We can obtain Eq. A10 via our implementation
of the multi-label image classification model, and obtain Eq. A11 and Eq. A16 via the definition of
the softmax function. Eq. A12 can be obtained via the results in [3]. Eq. A13 to Eq. A15 follow
the derivation in [21]. Since s1(⋅) in our implementation is a linear model, we can use Eq.(3) in the
main paper to compute Mt+1. In addition to the positive term, we can also obtain derivation for the
negative term (i.e., 1i∉Y in Eq.(2) of the main paper) through the similar process as above.

3 More Implementation Details

This is Appendix to Section 4.1 “Settings”. In Section 4.1 of the main paper, we deployed CONTA
on four popular WSSS models including SEAM [19], IRNet [1], DSRG [7], and SEC [10]. In this
section, we show the detailed implementations of these four models.

3.1 Implementation of SEAM+CONTA

Backbone. ResNet-38 [20] was adopted as the backbone network. It was pre-trained on ImageNet [4]
and its convolution layers of the last three blocks were replaced by dilated convolutions [22] with a
common input stride of 1 and their dilation rates were adjusted, such that the backbone network can
return a feature map of stride 8, i.e., the output size of the backbone network was 1/8 of the input.

Setting. The input images were randomly re-scaled in the range of [448,768] by the longest edge
and then cropped into a fix size of 448 × 448 using zero padding if needed.

Training Details. The initial learning rate was set to 0.01, following the poly policy lrinit =
lrinit(1 − itr/max_itr)ρ with ρ = 0.9 for decay. Online hard example mining [17] was employed
on the training loss to preserve only the top 20% pixel losses. The model was trained with batch
size as 8 for 8 epochs using Adam optimizer [9]. We deployed the same data augmentation strategy
(i.e., horizontal flip, random cropping, and color jittering [12]), as in AffinityNet [2], in our training
process.

Hyper-parameters. The hard threshold parameter for CAM was set to 16 by default and changed to
4 and 24 to amplify and weaken background activation, respectively. The fully-connected CRF [11]
was used to refine CAM, pseudo-mask, and segmentation mask with the default parameters in the
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public code. For seed areas expansion, the AffinityNet [2] was used with the search radius as γ = 5,
the hyper-parameter in the Hadamard power of the affinity matrix as β = 8, and the number of
iterations in random walk as t = 256.

3.2 Implementation of IRNet+CONTA

Backbone. ResNet-50 [6] was used as the backbone network (pre-trained on ImageNet [4]). The
adjusted dilated convolutions [22] were used in the last two blocks with a common input stride of
1, such that the backbone network can return a feature map of stride 16, i.e., the output size of the
backbone network was 1/16 of the input.

Setting. The input image was cropped into a fix size of 512 × 512 using zero padding if needed.

Training Details. The stochastic gradient descent was used for optimization with 8,000 iterations.
Learning rate was initially set to 0.1, and decreased using polynomial decay lrinit = lrinit(1 −
itr/max_itr)ρ with ρ = 0.9 at every iteration. The batch size was set to 16 for the image classification
model and 32 for the inter-pixel relation model. The same data augmentation strategy (i.e., horizontal
flip, random cropping, and color jittering [12]) as in AffinityNet [2] was used in the training process.

Hyper-parameters. The fully-connected CRF [11] was used to refine CAM, pseudo-mask, and
segmentation mask with the default parameters given in the original code. The hard threshold
parameter for CAM was set to 16 by default and changed to 4 and 24 to amplify and weaken the
background activation, respectively. The radius γ that limits the search space of pairs was set to 10
when training, and reduced to 5 at inference (conservative propagation in inference). The number
of random walk iterations t was fixed to 256. The hyper-parameter β in the Hadamard power of the
affinity matrix was set to 10.

3.3 Implementation of DSRG+CONTA

Backbone. ResNet-101 [6] was used as the backbone network (pre-trained on ImageNet [4]) where
dilated convolutions [22] were used in the last two blocks, such that the backbone network can return
a feature map of stride 16, i.e., the output size of the backbone network was 1/16 of the input.

Setting. The input image was cropped into a fix size of 321 × 321 using zero padding if needed.

Training Details. The stochastic gradient descent with mini-batch was used for network optimization
with 10,000 iterations. The momentum and the weight decay were set to 0.9 and 0.0005, respectively.
The batch size was set to 20, and the dropout rate was set to 0.5. The initial learning rate was set to
0.0005 and it was decreased by a factor of 10 every 2,000 iterations.

Hyper-parameters. For seed generation, pixels with the top 20% activation values in the CAM
were considered as foreground (objects) as in [23]. For saliency masks, the model in [8] was used to
produce the background localization cues with the normalized saliency value 0.06. For the similarity
criteria, the foreground threshold and the background threshold were set to 0.99 and 0.85, respectively.
The fully-connected CRF [11] was used to refine pseudo-mask and segmentation mask with the
default parameters in the public code.

3.4 Implementation of SEC+CONTA

Backbone. VGG-16 [18] was used as the backbone network (pre-trained on ImageNet [4]), where
the last two fully-connected layers were substituted with randomly initialized convolutional layers,
which have 1024 output channels and kernels of size 3, such that the output size of the backbone
network was 1/8 of the input.

Setting. The input image was cropped into a fix size of 321 × 321 using zero padding if needed.

Training Details. The weights for the last (prediction) layer were randomly initialized from a normal
distribution with mean 0 and variance 0.01. The stochastic gradient descent was used for the network
optimization with 8,000 iterations, the batch size was set to 15, the dropout rate was set to 0.5 and the
weight decay parameter was set to 0.0005. The initial learning rate was 0.001 and it was decreased
by a factor of 10 every 2,000 iterations.
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Setting CAM Pseudo-Mask Seg. Mask
Upperbound [14] – – 72.3

Baseline∗ [1] 48.3 65.9 63.0
(A1) Mt ← Seg. Mask 48.1 65.5 62.1

(A2)

Round = 1 48.5 66.9 64.2
Round = 2 48.7 67.6 65.0
Round = 3 48.8 67.9 65.3
Round = 4 48.6 67.2 64.9

(A3)

Block-2 48.3 66.2 63.4
Block-3 48.4 66.6 63.8
Block-4 48.7 67.3 64.6
Block-5 48.8 67.9 65.3
Dense 48.7 67.6 65.1

(A4)
CPseudo-Mask 48.6 67.4 65.0
CSeg. Mask 48.8 67.9 65.3

Table A1: Ablations of IRNet [1]+CONTA on PASCAL VOC 2012 [5] in mIoU (%). “*” denotes
our re-implemented results. “Seg. Mask” refers to the segmentation mask of the val set. “–” denotes
that the result is N.A. for the fully-supervised model.

Hyper-parameters. For seed generation, pixels with the top 20% activation values in the CAM
were considered as foreground (objects) as in [23]. The fully-connected CRF [11] was used to refine
pseudo-mask and segmentation mask with the spatial distance was multiplied by 12 to reflect the fact
that the original image was down-scaled to match the size of the predicted segmentation mask, and
the other parameters are consistent with the public code.

4 More Ablation Study Results

This is Appendix to Section 4.2 “Ablation Study”. In Section 4.2 of the main paper, we showed the
ablation study results of SEAM [19]+CONTA on PASCAL VOC 2012 [5]. In this section, we show
the results of IRNet [1]+CONTA, DSRG [7]+CONTA, and SEC [10]+CONTA on PASCAL VOC
2012. Besides, we also show the results of SEAM+CONTA, IRNet+CONTA, DSRG+CONTA, and
SEC+CONTA on MS-COCO [13].

4.1 PASCAL VOC 2012

Table A1, Table A2, and Table A3 show ablation results of IRNet+CONTA, DSRG+CONTA, and
SEC+CONTA on PASCAL VOC 2012, respectively. We can observe that IRNet+CONTA and
SEC+CONTA can achieve the best performance at round= 3, and DSRG+CONTA can achieve
the best mIoU score at round= 2. In addition to results of SEAM+CONTA in our main paper, we
can see that IRNet+CONTA can achieve the second best mIoU results: 48.8% on CAM, 67.9% on
pseudo-mask, and 65.3% on segmentation mask.

4.2 MS-COCO

Table A4, Table A5, Table A6, and Table A7 show the respective ablation results of
SEAM+CONTA, IRNet+CONTA, DSRG+CONTA, and SEC+CONTA on MS-COCO. We can
see that SEAM+CONTA, IRNet+CONTA and, SEC+CONTA can achieve the top mIoU at round= 3,
and DSRG+CONTA can achieve the best performance at round= 2. In particular, we see that the
mIoU scores of IRNet+CONTA are the best on MS-COCO as respectively 28.7% on CAM, 35.2%
on pseudo-mask, and 33.4% on segmentation mask.
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Setting CAM Pseudo-Mask Seg. Mask
Upperbound [14] – – 77.7

Baseline∗ [7] 47.3 62.7 61.4
(A1) Mt ← Seg. Mask 47.0 61.9 61.1

(A2)

Round = 1 47.7 63.5 62.2
Round = 2 48.0 64.0 62.8
Round = 3 47.8 63.8 62.5
Round = 4 47.4 63.5 62.1

(A3)

Block-2 47.4 62.9 61.7
Block-3 47.6 63.2 62.1
Block-4 47.9 63.7 62.6
Block-5 48.0 64.0 62.8
Dense 47.8 63.8 62.7

(A4)
CPseudo-Mask 47.8 63.6 62.5
CSeg. Mask 48.0 64.0 62.8

Table A2: Ablations of DSRG [7]+CONTA on PASCAL VOC 2012 [5] in mIoU (%). “*” denotes
our re-implemented results. “Seg. Mask” refers to the segmentation mask of the val set. “–” denotes
that the result is N.A. for the fully-supervised model.

Setting CAM Pseudo-Mask Seg. Mask
Upperbound [14] – – 71.6

Baseline∗ [10] 46.5 53.4 50.7
(A1) Mt ← Seg. Mask 46.4 53.1 50.3

(A2)

Round = 1 47.1 54.3 51.7
Round = 2 47.6 55.1 52.6
Round = 3 47.9 55.7 53.2
Round = 4 47.7 55.6 53.0

(A3)

Block-2 46.8 53.9 51.2
Block-3 47.1 54.5 51.5
Block-4 47.6 55.1 52.4
Block-5 47.9 55.7 53.2
Dense 47.8 55.6 53.0

(A4)
CPseudo-Mask 47.7 55.3 52.9
CSeg. Mask 47.9 55.7 53.2

Table A3: Ablations of SEC [10]+CONTA on PASCAL VOC 2012 [5] in mIoU (%). “*” denotes our
re-implemented results. “Seg. Mask” refers to the segmentation mask of the val set. “–” denotes that
the result is N.A. for the fully-supervised model.

5 More Visualizations

This is Appendix to Section 4.4 “Comparison with State-of-the-arts”. More segmentation results are
visualized in Figure A1. We can observe that most of our resulting masks are of high quality. The
segmentation masks predicted by SEAM+CONTA are more accurate and have better integrity, e.g.,
for cow, horse, bird, person lying next to the dog, and person standing next to the cows. In particular,
SEAM+CONTA works better to prediction the edges of some thin objects or object parts, e.g., the
tail (or the head) of bird, car, and person in the car.
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Setting CAM Pseudo-Mask Seg. Mask
Upperbound∗ [14] – – 44.8

Baseline∗ [19] 25.1 31.5 31.9
(A1) Mt ← Seg. Mask 24.8 31.1 31.4

(A2)

Round = 1 25.7 31.9 32.4
Round = 2 26.2 32.2 32.7
Round = 3 26.5 32.5 32.8
Round = 4 26.3 32.1 32.6

(A3)

Block-2 25.7 32.0 32.3
Block-3 25.9 32.1 32.4
Block-4 26.3 32.4 32.6
Block-5 26.5 32.5 32.8
Dense 26.5 32.4 32.5

(A4)
CPseudo-Mask 26.4 32.0 32.6
CSeg. Mask 26.5 32.5 32.8

Table A4: Ablation results of SEAM [19]+CONTA on MS-COCO [13] in mIoU (%). “*” denotes
our re-implemented results. “Seg. Mask” refers to the segmentation mask of the val set. “–” denotes
that the result is N.A. for the fully-supervised model.

Setting CAM Pseudo-Mask Seg. Mask
Upperbound∗ [14] – – 42.5

Baseline∗ [1] 27.4 34.0 32.6
(A1) Mt ← Seg. Mask 27.1 33.5 32.3

(A2)

Round = 1 28.0 34.3 32.9
Round = 2 28.4 34.8 33.2
Round = 3 28.7 35.2 33.4
Round = 4 28.5 35.0 33.2

(A3)

Block-2 27.7 34.3 32.8
Block-3 27.9 34.5 32.9
Block-4 28.4 34.9 33.2
Block-5 28.7 35.2 33.4
Dense 28.6 35.2 33.1

(A4)
CPseudo-Mask 28.5 35.0 33.2
CSeg. Mask 28.7 35.2 33.4

Table A5: Ablation results of IRNet [1]+CONTA on MS-COCO [13] in mIoU (%). “*” denotes our
re-implemented results. “Seg. Mask” refers to the segmentation mask of the val set. “–” denotes that
the result is N.A. for the fully-supervised model.
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Image SEAM SEAM+CONTA Ground-Truth

Figure A1: More visualization results. Samples are from PASCAL VOC 2012 [5]. Red rectangles
highlight the improved regions predicted by SEAM [19]+CONTA.
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