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Abstract

Learned neural solvers have successfully been used to solve combinatorial opti-
mization and decision problems. More general counting variants of these problems,
however, are still largely solved with hand-crafted solvers. To bridge this gap, we
introduce belief propagation neural networks (BPNNs), a class of parameterized
operators that operate on factor graphs and generalize Belief Propagation (BP).
In its strictest form, a BPNN layer (BPNN-D) is a learned iterative operator that
provably maintains many of the desirable properties of BP for any choice of the
parameters. Empirically, we show that by training BPNN-D learns to perform the
task better than the original BP: it converges 1.7x faster on Ising models while pro-
viding tighter bounds. On challenging model counting problems, BPNNs compute
estimates 100’s of times faster than state-of-the-art handcrafted methods, while
returning an estimate of comparable quality.

1 Introduction

Probabilistic inference problems arise in many domains, from statistical physics to machine learning.
There is little hope that efficient, exact solutions to these problems exist as they are at least as hard as
NP-complete decision problems. Significant research has been devoted across the fields of machine
learning, statistics, and statistical physics to develop variational and sampling based methods to
approximate these challenging problems [13, 34, 48, 6, 38]. Variational methods such as Belief
Propagation (BP) [31] are computationally efficient and have been particularly successful at providing
principled approximations due to extensive theoretical analysis.

While BP provably lower bounds the partition function for classes of factor graphs, these bounds
are not reliably tight. Handcrafting alternative algorithms that are specialized to problem domains
and that provide bounds is laborious. We introduce belief propagation neural networks (BPNNs), a
flexible neural architecture designed to estimate the partition function of a factor graph that leverage
the theoretical analysis behind BP. BPNNs generalize BP and can thus provide more accurate
estimates than BP when trained on a small number of factor graphs with known partition functions.
During training BPNNs learn a modification to the standard BP message passing operations so
that the final output is closer to the ground truth partition function. At the same time, BPNNs
retain many of BP’s properties, which results in more accurate estimates compared to general neural
architectures. BPNNs are composed of iterative layers (BPNN-D) and an optional Bethe free energy
layer (BPNN-B), both of which maintain the symmetries of BP under factor graph isomorphisms.
BPNN-D is a parametrized iterative operator that strictly generalizes BP while preserving many of
BP’s guarantees. Like BP, BPNN-D is guaranteed to converge on tree structured factor graphs and
return the exact partition function. For factor graphs with loops, BPNN-D computes a lower bound
whenever the Bethe approximation obtained from fixed points of BP is a provable lower bound (with
mild restrictions on BPNN-D). BPNN-B performs regression from the trajectory of beliefs (over a
fixed number of iterations) to the partition function of the input factor graph. While this sacrifices
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some guarantees, the additional flexibility introduced by BPNN-B generally improves estimation
performance.

Experimentally, we show that on Ising models BPNN-D is able to converge faster than standard
BP and frequently finds better fixed points that provide tighter lower bounds. BPNN-D generalizes
well to Ising models sampled from a different distribution than seen during training and to models
with nearly twice as many variables as seen during training, providing estimates of the log partition
function that are significantly better than BP or a standard graph neural network (GNN) in these
settings. We also perform experiments on community detection problems, where BP is known to
perform well both empirically and theoretically, and show improvements over BP and a standard
GNN. We then perform experiments on approximate model counting [46, 27, 28, 8], the problem of
computing the number of solutions to a Boolean satisfiability (SAT) problem. Unlike the first two
experiments it is very difficult for BP to converge in this setting. Still, we find that BPNN learns to
estimate accurate model counts from a training set of 10’s of problems and generalize to problems that
are significantly harder for an exact model counter to solve. Compared to handcrafted approximate
model counters, BP returns comparable estimates 100’s times faster using GPU computation.

2 Background: Factor Graphs and Belief Propagation

In this section we provide background on factor graphs and belief propagation [31]. A factor
graph is a representation of a discrete probability distribution that takes advantage of (conditional)
independencies between variables to make the representation more compact. Belief propagation is a
method for approximating the normalization constant, or partition function, of a factor graph. Let
p(x) be a discrete probability distribution defined over variables x = {x1, x2, . . . , xn} in terms of a
factor graph as
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The factor graph is defined in terms of a set of factors f = {f1, f2, . . . , fm}, where each factor fa
takes a subset of variables xa ⇢ {x1, x2, . . . , xn} as input and fa(xa) > 0. Z is the factor graph’s
normalization constant (or partition function). As a data structure, a factor graph is a bipartite graph
with n variables nodes and M factor nodes. Factor nodes and variables nodes are connected if and
only if the variable is in the scope of the factor.

Belief Propagation Belief propagation performs iterative message passing between neighboring
variable and factor nodes. Variable to factor messages, m(k)

i!a(xi), and factor to variable messages,
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a!i(xi), are computed at every iteration k as
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These messages are vectors over the states of variable xi. The BP algorithm estimates approx-
imate marginal probabilities over the sets of variables xa associated with each factor fa. We
denote the belief over variables xa, after message passing iteration k is complete, as b(k)a (xa) =
fa(xa)

za
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beliefs at each variable as b(k)i (xi) = 1
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(k)
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proceeds by iteratively updating variable to factor messages and factor to variable messages until
they converge to fixed values, referred to as a fixed point of Equations 2, or a predefined maxi-
mum number of iterations is reached. At this point the beliefs are used to compute a variational
approximation of the factor graph’s partition function. This approximation, originally developed in
statistical physics, is known as the Bethe free energy FBethe = UBethe �HBethe ⇡ � lnZ [10]. It is
defined in terms of the Bethe average energy UBethe := �
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ba(xa) ln fa(xa) and the Bethe
entropy HBethe := �
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xi
bi(xi) ln bi(xi), where di is

the degree of variable node i.

3 Belief Propagation Neural Networks
We design belief propagation neural networks (BPNNs) as a family of graph neural networks that
subsume BP. Like BP, BPNNs take a factor graph as input and output an estimate of the factor
graph’s log partition function. Unlike standard graph neural networks (GNNs), BPNNs do not resend
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Figure 1: Left: one iteration of BP with damping. Right: one iteration of BPNN-D with learnable H(·).

messages between nodes, a property taken from BP known as avoiding ‘double counting’ the evidence.
This property guarantees that BPNN-D described below is exact on trees (Theorem 3). BPNN-D
is a strict generalization of BP (Proposition 1), but is still guaranteed to give a lower bound to the
partition function upon convergence for a class of factor graphs (Theorem 3) by finding fixed points
of BP (Theorem 2). Like BP, BPNN preserves the symmetries inherent to factor graphs (Theorem 4).

BPNNs consist of two parts. First, iterative BPNN layers output messages, analogous to standard BP.
These messages are used to compute beliefs using the same equations as for BP. Second, the beliefs
are passed into a Bethe free energy layer (BPNN-B) which generalizes the Bethe approximation by
performing regression from beliefs to ln(Z). Alternatively, when the standard Bethe approximation
is used in place of BPNN-B, BPNN provides many of BP’s guarantees.

BPNN Iterative Layers BPNN iterative layers are flexible neural operators that can operate on
beliefs or message in a variety of ways. Here, we focus on a specific variant, BPNN-D, due to
its strong convergence properties, and we refer the reader to Appendix C for information on other
variants. The BPNN iterative damping layer (BPNN-D, shown in Fig 1) modifies factor-to-variable
messages (Equation 2) using the output of a learned operator H : R

Pn
i=1 di|Xi| ! R

Pn
i=1 di|Xi|,

where di denotes the degree and |Xi| the cardinality of variable Xi. This learned operator H(·)
takes as input the difference between iterations k � 1 and k of every factor-to-variable message,
and modifies these differences jointly. It can thus be much richer than a scalar multiplier. BPNN-D
factor-to-variable messages are given by
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denote the result of applying H(·) to all factor-to-variable message

differences.1 Then �(k)
a!i is the output corresponding to the modified a ! i message difference.

Variable-to-factor messages are unchanged from Eq. 18, except for taking messages n(k)
a!i as input,

n
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Damping is a standard technique for improving the convergence of BP when updates tend to ‘over-
shoot’ (see Section B.1 in the Appendix). Standard damped BP is recovered if H is an elementwise
function H(x) = ↵x. Thus:
Proposition 1. BPNN-Ds subsume BP and damped BP as a strict generalization.

For non-trivial choices of H(·), whether BPNN preserves the fixed points of BP or introduces any
new ones turns out to depend only on the set of fixed points of H(·) itself, i.e., {x | H(x) = x}. As
we show next, this property allows us to easily enforce that every fixed point of BP is also a fixed
point of BPNN-D (Theorem 1), or vice versa (Theorem 2).2

Theorem 1. If zero is a fixed point of H(·), then every fixed point of BP is also a fixed point of

BPNN-D.

Theorem 2. If H(·) does not have any non-zero fixed points, then every fixed point of BPNN-D is

also a fixed point of BP.

1We use message subscripts f and x to denote sets of messages, e.g., n(k)
f!x = {n(k)

a!i : fa 2 f , xi 2 x}.
2For lack of space, all proofs are deferred to Appendix A.

3



Figure 2: Computation graph of BPNN-D applied iteratively and followed by the Bethe approximation.

Combining Theorems 1 and 2, we obtain Corollary 2.1.
Corollary 2.1. If zero is the unique fixed point of H(·), then the fixed points of BP and BPNN-D are

identical. This property is satisfied when H(x) = x+ H̄(x)� H̄(0) for any invertible function H̄(·).

Note that a broad class of highly expressive learnable operators are invertible [7]. Enforcing that every
fixed point of BPNN-D is also a fixed point of BP is particularly useful, as it immediately follows
that BPNN-D returns a lower bound whenever the Bethe approximation obtained from fixed points of
BP returns a provable lower bound (Theorem 3). When a BPNN-D layer is applied iteratively until
convergence, fast convergence is guaranteed for tree structured factor graphs (Proposition 2).
Theorem 3. If zero is the unique fixed point of H(·), the Bethe approximation computed from beliefs

at a fixed point of BPNN-D (1) is exact for tree structured graphs and (2) lower bounds the partition

function of any factor graph with binary variables and log-supermodular potential functions.

Proposition 2. BPNN-D converges within ` iterations on tree structured factor graphs with height `.

As mentioned, BPNN iterative layers are flexible and can additionally be modified to operate directly
on message values or factor beliefs at the expense of guarantees (see Appendix C).

Bethe Free Energy Layer (BPNN-B). When convergence to a fixed point is unnecessary, we can
increase the flexibility of our architecture by building a K-layer BPNN from iterative layers that do
not share weights. Additionally we define a Bethe free energy layer (BPNN-B, Equation 5) using two
MLPs that take the trajectories of beliefs (across all K layers) from each factor and variable as input
and output scalars:
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(5)

This parameterization subsumes the standard Bethe approximation, so we can initialize the parameters
of fBPNN to output the Bethe approximation computed from the final layer beliefs (see the appendix
for details). Note that |xa| is the number of variables in the scope of factor a, S|xa| denotes the
symmetric group (all permutations of {1, 2, . . . , |xa|}), and the permutation � is applied to the
dimensions of all 2k concatenated terms. We ensure that BPNN preserves the symmetries of BP
(Theorem 4) by passing all factor permutations through MLPBF and averaging the result.

BPNN Preserves the Symmetries of BP. BPNN is designed so that equivalent input factor graphs
are mapped to equivalent outputs. This is a property that BP satisfies by default. Standard GNNs are
also designed to satisfy this property, however the notion of ‘equivalence’ between graphs is different
than ‘equivalence’ between factor graphs. In this section we formalize these statements.

Graph isomorphism defines an equivalence relationship between graphs that is respected by standard
GNNs. Two isomorphic graphs are structurally equivalent and indistinguishable if the nodes are
appropriately matched. More formally, there exists a bijection between nodes (or their indices)
in the two graphs that defines this matching. Standard GNNs are designed so that output node
representations are equivariant to the input node indexing; the indexing of output node representations
matches the indexing of input nodes. Output node representations of a GNN run on two isomorphic
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graphs can be matched using the same bijection that defines the isomorphism. Further, standard GNNs
are designed to map isomorphic graphs to the same graph-level output representation. These two
properties are achieved by using a message aggregation function and a graph-level output function
that are both invariant to node indexing.

We formally define factor graph isomorphism in Definition 1 (Appendix A). This equivalence
relationship is more complicated than for standard graphs because factor potentials define a structured
relationship between factor and variable nodes. As in a standard graph, variable nodes are indexed
globally (X1, X2, . . . , Xn) in the representation of a factor graph. Additionally, variable nodes are
also indexed locally by factors that contain them. This is required because each factor dimension (note
that factors are tensors) corresponds to a unique variable, unless the factor happens to be symmetric.
Local variable indices define a mapping between factor dimensions and the variables’ global indices.
These local variable indices lead to additional bijections in the definition of isomorphic factor graphs
(condition 2 in Definition 1). Note that standard GNNs do not respect factor graph isomorphisms
because of these additional bijections.

In contrast to standard GNNs, BP respects factor graph isomorphisms. When BP is run on two
isomorphic factor graphs for the same number of iterations with constant message initialization3

the output beliefs and messages satisfy bijections corresponding to those of the input factor graphs.
Specifically, messages are equivariant to global node indexing (Lemma 1), variable beliefs are
equivariant to global variable node indexing (Lemma 2), and factor beliefs are equivariant to global
factor node indexing and local variable node indexing within factors (Lemma 3). We refer to the above
properties as equivariances of BP under factor graph isomorphisms. We show that these properties
also apply to BPNN-D when H(·) is equivariant to global node indexing. The Bethe approximation
obtained from isomorphic factor graphs is identical, when BP is run for the same number of iterations
with constant message initialization3. BPNN-B also satisfies this property because it is, by design,
invariant to local variable indexing within factors (Lemma 4). Together, these properties lead to the
following:
Theorem 4. If H(·) is equivariant to global node indexing, then (1) BPNN-D messages and beliefs

preserve the equivariances of BP under factor graph isomorphisms and (2) BPNN-B is invariant

under factor graph isomorphisms.

4 Experiments

We trained BPNN to estimate the partition function of factor graphs from a variety of domains. First,
experiments on synthetic Ising models show that BPNN-D can learn to find better fixed points than
BP and converge faster. Additionally, BPNN generalizes to Ising models with nearly twice as many
variables as those seen during training and that were sampled from a different distribution. Second,
experiments and an ablation study on the stochastic block model from community detection show
that maintaining properties of BP in BPNN improves results over standard GNNs. Finally, model
counting experiments performed on real world SAT problems show that BPNN can learn from 10’s
of training problems, generalize to problems that are harder for an exact model counter, and compute
estimates 100’s of times faster than handcrafted approximate model counters. We implemented our
BPNN and the baseline GNN using PyTorch Geometric [19]. See Appendix B.2 for details on the
GNN. In all our experiments, we initialized the BPNN to output the Bethe approximation obtained by
running BP for a specified number of iterations. We used the mean squared error between the BPNN
prediction and the ground truth log partition function as our training loss.

4.1 Ising Models
We followed a common experimental setup used to evaluate approximate integration methods [21, 17].
We randomly generated grid structured attractive Ising models whose partition functions can be
computed exactly using the junction tree algorithm [33] for training and validation. BP computes a
provable lower bound for these Ising models [41]. This family of Ising models is only slightly more
general than the one studied in [30], where BP was proven to quickly converge to the Bethe free
energy’s global optimum. We found that an iterative BPNN-D layer was able to converge faster than
standard BP and could find tighter lower bounds for these problems. Additionally we trained a 10
layer BPNN and evaluated its performance against a 10 layer GNN architecture (details in Appendix).

3Any message initialization can be used, as long as initial messages are equivariant, see Lemma 1.
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Figure 3: Each point represents the root mean squared error (RMSE, y-axis) of the specified method on a test set
of 50 Ising models sampled with the parameters fmax and cmax (x-axis). The leftmost point shows results for test
data drawn from the same distribution as training. BPNN significantly improves upon loopy belief propagation
(LBP) for both in and out of distribution data. BPNN also significantly outperforms GNN on out of distribution
data and larger models.

Compared to the GNN, BPNN has improved generalization when tested on larger Ising models and
Ising models sampled from a different distribution than seen during training.

Improved Lower Bounds and Faster Convergence. We trained an iterative BPNN-D layer to
lower bound the partition function on a training set of 50 random Ising models of size 10x10 (100
variables). (See the appendix for further details.) We then ran the learned BPNN-D and standard
BP on a validation set of 50 Ising models. We empirically verified that BPNN-D found fixed points
corresponding to tighter lower bounds than BP, and that it found them faster than standard BP.
BPNN-D converged on all 50 models, while BP failed to converge within 200 iterations for 6 of the
models. We recorded the number of iterations that BPNN-D and BP run with parallel updates took
to converge, defined as a maximum factor-to-variable message difference of 10�5. BPNN-D had a
median improvement ratio of 1.7x over BP, please refer to the appendix for complete convergence
plots. Among the 44 models where BP converged, the RMSE between the exact log partition function
and BPNN-D’s estimate was .97 compared with 7.20 for BP. For 10 of the 44 models, BPNN-D
found fixed points corresponding to lower bounds on the log partition function that were larger (i.e.,
better) than BP’s by 3 to 22 (corresponding to bounds on the partition function that were 20 to e22

times larger). In contrast, the log lower bound found by BP was never larger than the bound found by
BPNN-D by more than 1.7.

Out of Distribution Generalization. We tested BPNN’s ability to generalize to larger factor graphs
and to shifts in the test distribution. Again we used a training set of 50 Ising models of size 10x10
(100 variables). We sampled test Ising models from distributions with generative parameters increased
by factors of 2 and 10 from their training values (see appendix for details) and with their size increase
to 14x14 (for 196 variables instead of the 100 seen during training). For this experiment we used
a BPNN architecture with 10 iterative layers whose weights were not tied and with MLPs that
operate on factor messages (without a BPNN-B layer). As a baseline we trained a 10 layer GNN
(maximally powerful GIN architecture) with width 4 on the same dataset. We also compute the Bethe
approximation from running standard loopy belief propagation and the mean field approximation. We
used the libDAI [35] implementation for both. We tested loopy belief propagation with and without
damping and with both parallel and sequential message update strategies. We show results for two
settings whose estimates of the partition function differ most drastically: (1) run for a maximum of 10
iterations with parallel updates and damping set to .5, and (2) run for a maximum of 1000 iterations
with sequential updates using a random sequence and no damping. Full test results are shown in
Figure 3. The leftmost point in the left figure shows results for test data that was drawn from the same
distribution used for training the BPNN and GNN. The BPNN and GNN perform similarly for data
drawn from the same distribution seen during training. However, our BPNN significantly outperforms
the GNN when the test distribution differs from the training distribution and when generalizing to the
larger models. Our BPNN also significantly outperforms loopy belief propagation, both for test data
drawn from the training distribution and for out of distribution data.
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Stochastic Block Model RMSE
BP GNN BPNN-DC BPNN-NI BPNN

Train/Val Train/Val Train/Val Train/Val Train/Val
12.55/11.14 7.33/7.93 7.04/8.43 4.43/5.63 4.16/4.15

Table 1: RMSE of SBM ln(Z) estimates. BPNN outperforms BP, GNN, and ablated versions of BPNN.

4.2 Stochastic Block Model
The Stochastic Block Model (SBM) is a generative model describing the formation of communities
and is often used to benchmark community detection algorithms [1]. While BP does not lower bound
the partition functions of associated factor graphs for SBMs, it has been shown that BP asymptotically
(in the number of nodes) reaches the information theoretic threshold for community recovery on
SBMs with fewer than 4 communities [1]. We trained a BPNN to estimate the partition function of
the associated factor graph and observed improvements over estimates obtained by BP or a maximally
powerful GNN, which lead to more accurate marginals that can be used to better quantify uncertainty
in SBM community membership. We refer the reader to Appendix F for a formal definition of SBMs
as well as our procedure for constructing factor graphs from a sampled SBM.

Dataset and Methods In our experiments, we consider SBMs with 2 classes and 15-20 nodes, so
that exact inference is possible using the Junction Tree algorithm. In this non-asymptotic setting, BP
is a strong baseline and can almost perfectly recover communities [14], but is not optimal and thus
does not compute exact marginals or partition functions. For training, we sample 10 two class SBMs
with 15 nodes, class probabilities of .75 and .25, and edge probability of .93 within and .067 between
classes along with four such graphs for validation. For each graph, we fix each node to each class and
calculate the exact log partition using the Junction Tree Algorithm, producing 300 training and 120
validation graphs. We explain in Appendix F how these graphs can be used to calculate marginals.

To estimate SBM partition functions, we trained a BPNN with 30 iterative BPNN layers that operate
on messages (see Appendix C), followed by a BPNN-B layer. Since BP does not provide a lower
bound for SBM partitions, we took advantage of BPNN’s flexibility and chose greater expressive
power over BPNN-D’s superior convergence properties. We compared against BP and a GNN as
baseline methods. Additionally, we performed 2 ablation experiments. We trained a BPNN with a
BPNN-B layer that was not permutation invariant to local variable indexing, by removing the sum
over permutations in S|xa| from Equation 5 and only passing in the original beliefs. We refer to
this non-invariant version as BPNN-NI. We then forced BPNN-NI to ‘double count’ messages by
changing the sums in Equations 22 and 23 to be over j 2 N (a). We refer to this non-invariant version
that performs double counting as BPNN-DC. We refer the reader to Appendix F for further details on
models and training.

Results As shown in Table 1, BPNN provides the best estimates for the partition function. Critically,
we see that not ’double counting’ messages and preserving the symmetries of BP are key improve-
ments of BPNN over GNN. Additionally, BPNN outperforms BP and GNN on out of distribution
data and larger graphs and can learn more accurate marginals. We refer the reader to Appendix F for
more details on these additional experiments.

4.3 Model Counting
In this section we use a BPNN to estimate the number of satisfying solutions to a Boolean formula, a
challenging problem for BP which generally fails to converge due to the complex logical constraints
and 0 probability states. Computing the exact number of satisfying solutions (exact model counting)
is a #P-complete problem [47]. Model counting is a fundamental problem that arises in many domains
including probabilistic reasoning [40, 9], network reliability [16], and detecting private information
leakage from programs [11]. However, the computational complexity of exact model counting has
led to a significant body of work on approximate model counting [46, 27, 28, 8, 20, 18, 24, 3, 5, 44],
with the goal of estimating the number of satisfying solutions at a lower computational cost.

Training Setup. All BPNNs trained in this section were composed of 5 BPNN-D layers followed
by a BPNN-B layer and were trained to predict the natural logarithm of the number of satisfying
solutions to an input formula in CNF form. This is accomplished by converting the CNF formula into
a factor graph whose partition function is the number of satisfying solutions to the input formula. We
evaluated the performance of our BPNN using benchmarks from [44], with ground truth model counts
obtained using DSharp [37]. The benchmarks fall into 7 categories, including network QMR problems
(Quick Medical Reference) [26], network grid problems, and bit-blasted versions of satisfiability
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Figure 4: Left: cactus plot of runtimes for the 105 instances in the ’or_50’ category solved by BPNN, F2, and
ApproxMC3. BPNN-P denotes the time taken to run BPNN in parallel on a GPU divided by the number of
instances per batch (batch size=103). Median speedups of BPNN-P over F2 and ApproxMC among the plotted
benchmarks are 248 and 3,689 respectively. BPNN-S denotes the time taken to run BPNN sequentially on each
instance (using a CPU). Median speedups of BPNN-S over F2 and ApproxMC among the plotted benchmarks
are 2.2 and 32, resp. While BPNN solved each instance within 1 second, ApproxMC3 timed out on 12 instances
(out of 105) after 5000 seconds, which are not plotted. Right: error in estimated log model count (base e) plotted
against the exact model count for ‘or_50’ training and validation benchmarks. BPNN’s validation RMSE was
.30 on this category compared with a RMSE of 2.5 for F2.

modulo theories library (SMTLIB) benchmarks [12]. Each category contains 14 to 105 problems
allocated for training and validation. See the appendix for additional details on training, the dataset,
and our use of minimal independent support variable sets.
Baseline Approximate Model Counters. For comparison we ran two state-of-the-art approximate
model counters on all benchmarks, ApproxMC3 [12, 44] and F2 [4, 5]. ApproxMC3 is a randomized
hashing algorithm that returns an estimate of the model count that is guaranteed to be within a
multiplicative factor of the exact model count with high probability. F2 gives up the probabilistic
guarantee that the returned estimate will be within a multiplicative factor of the true model count
in return for significantly increased computational efficiency. We also attempted to train a GNN,
using the architecture from [43] adapted from classification to regression. We used the author’s code,
slightly modified to perform regression, but were not successful in achieving non-trivial learning.
BPNNs Provide Excellent Computational Efficiency. Figure 4 shows runtimes and estimates for
BPNN, ApproxMC3, and F2 on all benchmarks from the category ‘or_50’. BPNN is signficantly
faster than both F2 and ApproxMC. BPNN provides median speedups of 2.2 and 32 over F2 and
ApproxMC3 when all methods are run using a CPU. When BPNN is allowed to run in parallel on
a GPU, it provides median speedups of 248 and 3,689 over F2 and and ApproxMC3. Additionally,
BPNN’s estimates are significantly tighter than F2’s, with a RMSE for BPNN of .30 compared with
2.5 for F2. Please see the appendix for further runtime comparisons between methods.
Learning from Limited Data. We trained a separate BPNN on a random sampling of 70% of
the problems in each training category. This gave each BPNN only 9 to 73 benchmarks to learn
from. In contrast, prior work has performed approximate model counting on Boolean formulas in
disjunctive normal form (DNF) by creating a large training set of 100k examples whose model counts
can be approximated with an efficient polynomial time algorithm [2]. Such an algorithm does not
exist for model counting on CNF formulas, making this approach intractable. Nonetheless, BPNN
achieves training and validation RMSE comparable to or better than F2 across the range of benchmark
categories (see the appendix for complete results). This demonstrates that BPNNs can capture the
distribution of diverse families of SAT problems in an extremely data limited regime.
Generalizing from Easy Data to Hard Data. We repeated the same experiment from the previous
paragraph, but trained each BPNN on the 70% of the problems from each category that DSharp
solved fastest. Validation was performed on the remaining 30% of problems that took longest for
DSharp to solve. These hard validation sets are significantly more challenging for Dsharp. The
median runtime in each category’s hard validation set is 4 to 15 times longer than the longest runtime
in each corresponding easy training set. Validation RMSE on these hard problems was within 33%
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of validation error when trained and validated on a random sampling for 3 of the 7 categories. This
demonstrates that BPNNs have the potential to be trained on available data and then generalize to
related problems that are too difficult for any current methods. See the appendix for complete results.

Learning Across Diverse Domains. We trained a BPNN on a random sampling of 70% of prob-
lems from all categories, spanning network grid problems, bit-blasted versions of SMTLIB bench-
marks, and network DQMR problems. The BPNN achieved a final training RMSE of 3.9 and
validation RMSE of 5.3, demonstrating that the BPNN is capable of capturing a broad distribution
that spans multiple domains from a small training set.

5 Related Work
[2] use a graph neural network to perform approximate weighted disjunctive normal form (DNF)
counting. Weighted DNF counting is a #P-complete problem. However, in contrast to model counting
on CNF formulas, there exists an O(nm) polynomial time approximation algorithm for weighted
DNF counting (where n is the number of variables and m is the number of clauses). The authors
leverage this to generate a large training dataset of 100k DNF formulas with approximate solutions.
In comparison, our BPNN can learn and generalize from a very small training dataset of less than 50
problems. This result provides the significant future work alluded to in the conclusion of [2].

Recently, [42] designed a graph neural network that operates on factor graphs and exchanges messages
with BP to perform error correction decoding. In contrast, BPNN-D preserves all of BP’s fixed point,
computes the exact partition function on tree structured factor graphs, and returns a lower bound
whenever the Bethe approximation obtained from fixed points of BP is a provable lower bound. All
BPNN layers preserve BP’s symmetries (invariances and equivariances) to permutations of both
variable and factor indices. Finally BPNN avoids ‘double counting’ during message passing.

Prior work has shown that neural networks can learn how to solve NP-complete decision problems
and optimization problems [43, 39, 23]. [53] perform marginal inference in relatively small graphical
models using GNNs. [22] consider improving message passing in expectation propagation for
probabilistic programming, when users can specify arbitrary code to define factors and the optimal
updates are intractable. [50] consider learning Markov random fields and address the problem of
estimating marginal likelihoods (generally intractable to compute precisely). They use a transformer
network that is faster than LBP but computes comparable estimates. This allows for faster amortized
inference during training when likelihoods must be computed at every training step. In contrast,
BPNNs significantly outperform LBP and generalize to out of distribution data.

6 Conclusion
We introduced belief propagation neural networks, a strict generalization of BP that learns to find
better fixed points faster. The BPNN architecture resembles that of a standard GNN, but preserves
BP’s invariances and equivariances to permutations of variable and factor indices. We empirically
demonstrated that BPNNs can learn from tiny data sets containing only 10s of training points
and generalize to test data drawn from a different distribution than seen during training. BPNNs
significantly outperform loopy belief propagation and standard graph neural networks in terms of
accuracy. BPNNs provide excellent computational efficiency, running orders of magnitudes faster
than state-of-the-art randomized hashing algorithms while maintaining comparable accuracy.

Broader impact

This work makes both a theoretical contribution and a practical one by advancing the state-of-the-art
in approximate inference on some benchmark problems. Our theoretical analysis of neural fixed
point iterators is unlikely to have a direct impact on society. BPNN, on the other hand, can make
approximate inference more scalable. Because approximate inference is a key computational problem
underlying, for example, much of Bayesian statistics, it is applicable to many domains, both beneficial
and harmful to society. Among the beneficial ones, we have applications of probabilistic inference to
medical diagnosis and applications of model counting to reliability, safety, and privacy analysis.
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