A PROOFS
®) _ pl=1)

Theorem[l] Every fixed point of BP satisfies m, ,, = T, ., ’ by definition. The computation of
g’g from n(i) (Equations 22 and IZ) 18 1dent1cal to the computation of i l from mg:ll) in

standard BP (Equations and b Therefore, every fixed point of BP satisfies A% = 7% and

is also a fixed point of BPNN-D when H(0) = a— a—i

Theorem[2l Every fixed point of BPNN-D satisfies ”((1 i = *El]:il) by definition. Equation [22 gives
*{(lk_”l) ~((1]2¢ = A(k) = H(n(k b (’“))a_”.. Given the restriction on H(-) that H (z) =

only if z = 0, it follows that n(k 1) ~((L]2i = 0. This is a fixed point of BP by definition as the
computation of n((l_)H from n((lk_)z) is identical to the computation of mg_)n from mflk_”) in standard
BP (Equations[I8|and[T9). O

Theorem[3] If zero is the unique fixed point of H(-), then the fixed points of BPNN-D and BP
are identical by Theorems [T and 2. Therefore, (1) the Bethe approximation obtatined from fixed
points of BPNN-D on tree structured factor graphs is exact because it is exact for fixed points of
BP [31] (or see [36][p.27] for a detailed proof). (2) Ruozzi [41]][p.8] prove in Corollary 4.2 that the
Bethe approximation at any fixed point of BP is a lower bound on the partition function for factor
graphs with binary variables and log-supermodular potential functions. so it follows that the Bethe
approximation at any fixed point of BPNN-D lower bounds the partition function. O

Proposition|2| 1f we consider a BPNN with weight tying, then regardless of the number of iterations
or layers, the output messages are the same if the input messages are the same. Without loss of
generality, let us first consider any node r as the root node, and consider all the messages on the path
from the leaf nodes through r. Let d,.; denote the depth of the sub-tree with root ¢ when we consider
7 as the root (e.g. for a leaf node ¢, d, ; = 1). We use the following induction argument:

e Atiteration 1, the message from all nodes with d,.; = 1 to their parents will be fixed for
subsequent iterations since the inputs to the BPNN for these messages are the same.

o If atiteration ¢ — 1, the message from all nodes with d,.; < ¢ — 1 to their parents are fixed
for all subsequent iterations, then the inputs to the BPNN for all the messages from all nodes
with d,. ; = t to their parents will be fixed (since they depend on lower level messages that
are fixed). Therefore, at iteration ¢, the messages from all the nodes with d,.; < ¢ to their
parents will be fixed because of weight tying between BPNN layers.

o The maximum tree depth is [, so max; d, ; < [. From the induction argument above, after at
most [iterations, all the messages along the path from leaf nodes to r will be fixed.

Since the BPNN layer performs the operation over all nodes, this above argument is valid for all
nodes when we consider them as root nodes. Therefore, all messages will be fixed after at most [
iterations, which completes the proof. O

Isomorphic Factor Graphs To prove Theorem 4 we define isomorphic factor graphs, an equiv-
alence relation among factor graph representations, and break Theorem { into the lemmas in this
section. Standard GNNs are built on the assumption that isomorphic graphs should be mapped to the
same representation and non-isomorphic graphs should be mapped to different representations [S1]].
This is a challenging goal, in fact [S1]][p.4] prove in Lemma 2 that any GNN that aggregates mes-
sages from 1-hop neighbors is, at most, as discriminative as the Weisfeiler-Lehman (WL) graph
isomorphism test. Xu et al. [51] go on to propose a provably ‘maximally powerful’ GNN, one that
maps isomorphic graphs to the same representation and maps non-isomorphic graphs to different
representations whenever the WL test maps them to different representations, which is the best
result possible for this class of graph neural networks that aggregate messages from 1-hop neighbors.
The input to a standard GNN is a graph represented by an adjacency matrix whose i-th row and
column correspond to the i-th node. Nodes and edges may have corresponding features. The GNN
in [51]] was designed to map isomorphic graphs to the same representation by outputting learned node

13

representations that are equivariant to the input node indexing and a graph wide representation that is
invariant to input node indexing.

The input to a BPNN is a factor graph. With the same motivation as for standard GNNs, BPNNs
should map isomorphic factor graphs to the same output representation. A factor graph is represented
aG = (A, FP, F'®) A € {0,1}M>¥ is an adjacency matrix over M factor nodes and N variable
nodes, where7 Ag; = 1if the i-th variable is in the scope of the a-th factor and A,; = 0 otherwise.
F? is an ordered list of M factor potentials, where the a-th factor potential, F'?, corresponds to the
a-th factor (row) in A and is represented as a tensor with one dimension for every variable in the
scope of FP. F'4% is an ordered list of ordered lists that locally indexes variables within each factor.
F?4% is an ordered list specifying the local indexing of variables within the a-th factor (in A and F'P).
Fide — j specifies that the k-th dimension of the tensor F corresponds to the i-th variable (column)
in A. We define two factor graphs to be isomorphic when they meet the conditions of Definition [I]

Definition 1. Factor graphs G = (G(A), G(FP?), G(F®)) and G' = (G'(A), G'(FP), G'(Fir))

with G(A) € {0,1}M*N and G'(A) € {0,13M >N are isomorphic if and only if M = M,
N = N', and

1. There exist bijectiomﬂ fr: [M] — [M]and fy : [N] = [N] such that G(Ag;) = G'(Ap;)
foralla € [M] and v € [N], where b = fr(a) and j = fv(i).

2. There exists a bijection for every factor,
fidr L1 |G(FE) Y = (L, |GUEE)|} Ya e [M], (6)

such that fy (G(Fi4)) = G'(Fi™) and G(F?) = 0,(G'(F})), where where b = fr(a),
L= fa¥(k), o0 = ((f™ (1), f25(2), ... a7 (|G(FZ)])), and o4 (G'(FY)) denotes

permuting the dimensions of the tensor G'(F}') according to o,

Condition 1 in Definition [I]states that permuting the global indices of variables or factors in a factor
graph results in an isomorphic factor graph. Condition 2 in Definition|[T|states that permuting the local
indices of variables within factors also results in an isomorphic factor graph. In Lemmas and
we formalize the equivariance of messages and beliefs obtained by applying BPNN iterative layers.
We use using the bijections from Definition[I]to construct bijective mappings between messages and
beliefs. In Lemmald we use the equivariance of beliefs between isomorphic factor graphs to show
that the output of BPNN-B is identical for isomorphic factor graphs.

(k)

i—

(k)

o and hiﬂa denote variable to factor messages and g, ;

Lemma 1. Message equivariance: Let g

and hflli ; Jactor to variable messages obtained by applying k iterations of BP to factor graphs G and
G'. If G and G’ are isomorphic as factor graphs and messages are initialized to a constan then
there is a bijective mapping between messages: 97@(1 = h;k_zb and g((lk_)” = hg]i)) j where j = fy (i)

and b = fr(a). This property holds for BPNN-D iterative layers if H(-) is equivariant to global
node indexing.

Proof. We use a proof by induction.

Base case: the initial messages are all equal when constant initialization is used and therefore satisfy
any bijective mapping.

Inductive step: Writing the definition of variable to factor messages, we have

k k— k— k
g @)= [oPey= T a5 @) =00, (7)
ceN(i)\a ceN(5)\b

“Note that a factor graph can be viewed as a weighted hypergraph where factors define hyperedges and
factor potentials define hyperedge weights for every variable assignment within the factor.

>For readability, we use a and b to index factors and 4 and j to index variables throughout this section.

SFor K € N, we use [K] to denote {1,2,..., K}.

" Any message initialization strategy can be used, as long as initial messages are equivariant; e.g. they satisfy

(0) :h(o) (k) :h(k>
J

the bijective mapping g, ", , pand g, p; Where j = fv (i) and b = fr(a).

14

since the bijective mapping holds for factor to variable messages at iteration & — 1 by the inductive
hypothesis. Writing the definition of factor to variable messages, we have

g((zk—)m Z G H gl—m

xa\zi ZEN (@)\i ()
k k
=Y a(GED)x) [ath(@) =g (x)).
xo\z; LEN B\

showing that the bijective mapping continues to hold at iteration k.

Proof extension to BPNN-D: the logic of the proof is unchanged when BP is performed in log-space
with damping. The only difference between BPNN-D and standard BP is the replacement of the
= (k—1) (k)

term a(ma = m) in the computation of factor to variable messages with Ak

—1 a—1 Where

a—m’
A = (ﬁ(k b _ ")), If H(-) is equivariant to global node indexing (the bijective mapping
Agﬂl(G) = Az(;lig (G') holds, where Ag]zl(G) denotes applying the operator H(-) to the k-th
iteration’s message differences when the input factor graph is G and taking the output correpsonding
to message a — i), then equality is maintained in Equation 8 and the bijective mapping between
messages holds.

Lemma 2. Variable belief equivariance: Let ggk) and hgk) denote the variable beliefs obtained

by applying k iterations of BP (or BPNN-D iterative layers with H (-) equivariant to global node
indexing) to factor graphs G and G'. If G and G' are isomorphic as factor graphs, then there is a

bijective mapping between beliefs: g(k) = hg»k), where j = fy (i).

B =

Proof. By the definition of variable beliefs,
k 1 k k
g LT o sl W () = b (), ©)
aEN(z aeN(])

where the second equality holds due to factor to variable message equivariance from Lemmal[l] [J

Lemma 3. Factor belief equivariance: Let g,(lk) and hflk) denote the factor beliefs obtained
by applying k iterations of BP (or BPNN-D iterative layers with H(-) equivariant to global
node indexing) to factor graphs G and G'. If G and G' are isomorphic as factor graphs,

then there is a bijective mapping between beliefs: gak) = Ua(hl()k)), where b = fr(a) and

= ((fa (D), o™ (2), -, a™(IG(FF)))).

Proof. By the definition of factor beliefs,

G(FP)(x, G (FP
() = SERC) T g0 () = elTEDNCD) 1140 0y — 6, (10,
¢ ieN(a) b iEN()
(10)

where the second equality holds due to variable to factor message equivariance from Lemmal[l] [J

Lemma 4. Bethe approximation invariance: If factor graphs G and G' are isomorphic, then the
Bethe approximations obtained by applying BP to G and G’ (or the output of BPNN-B) are identical.

15

Proof. By the definition of the Bethe approximation (or the negative Bethe free energy),

M
—Fetme(G) = Z Z 9a(Xa) W G(FY)(%4)

a=1 X,

M
_Zzga(xa) lnga(xa) Z d -1 Zgz lngz xz)

a=1 xq

M
=30 owr) (x) o (G (1) ()

b=1 xp

N
72200 () (x0) In 0w () (x6) + D (dj — 1) Y hj(;) Inhy(a))
J=1 T

=1 Xp

(1)

- - FBethe(G,)

where o' = f L(b), the second equality follows from the equivariance of variable and factor beliefs
(Lemmas[2]and [3), and the final equality follows from the commutative property of addition.

Proof extension to BPNN-B: the proof holds for BPNN-B because every permutation (in S, |) of
factor belief terms is input to MLPg . O

B Extended Background

We provide background on belief propagation and graph neural networks (GNN) to motivate and
clarify belief propagation neural networks (BPNN).

B.1 BELIEF PROPAGATION

We describe a general version of belief propagation [52] that operates on factor graphs.

Factor Graphs. A factor graph [320152] is a general representation of a distribution over n discrete

random variables, { X1, Xo,..., X, }. Let x; denote a possible state of the i*" variable. We use
the shorthand p(x) = p(X; = z1,...,X,, = z1) for the joint probability mass function, where
x = {x1,x2,...,2,} is a specific realization of all n variables. Without loss of generality, p(x) can
be written as the product
| M
= 2T fulxa) (12)
a=1
The functions f1, fa, ..., fm each take some subset of variables as arguments; function f, takes
Xa C {21, 2, ...,2,}. Werequire that all functions are non-negative and finite. This makes p(x) a

well defined probability distribution after normalizing by the distribution’s partition function

M
z=y, (H fa(xa>> : (13)
x a=1

A factor graph is a bipartite graph that expresses the factorization of the distribution in equation[I2.
A factor graph’s nodes represent the n variables and M functions present in equation The nodes
corresponding to functions are referred to as factor nodes. Edges exist between factor nodes and
variables nodes if and only if the variable is an argument to the corresponding function.

Message Updates. Belief propagation performs iterative message passing. The message mfi)a (z;)
from variable node ¢ to factor node a during iteration k is a vector over the states of variable x;, which
can be viewed as containing the relative probabilities that z; is in each state based on information

from all factors connected to z; except for factor a. It is computed according to the rule

m @)= [ml" (14)
ceN(i)\a

16

The message mi’il(xl) from factor node a to variable node % during iteration k is also a vector over
the states of variable x;, which can be viewed as containing the relative probabilities that z; is in each

state based on information available to factor a. It is computed according to the rule

m @)= > faxa) J[mala (15)

%o \T; JEN (a)\i

Messages are typically initialized either randomly or as constants. The BP algorithm estimates
approximate marginal probabilities for each variable, referred to as beliefs. We denote the belief at

variable node i, after message passing iteration k is complete, as bgk) (z;) which is computed as

b(k) = H m(k)), with normalization z; = Z H m(k) (16)

(1—)1 (1—)7,
aEN() zi a€N(4)
Similarly, BP computes joint beliefs over the sets of variables x, associated with each factor f,. We

denote the belief over variables x,, after message passing iteration k is complete, as bgk) (%x4) which
is computed as

b(k) (xq) = H m o.(2;), with normalization z, = Zf“ Xq) H mlﬁa(xq;).

“a ieN(a) Xq i€N (a)
(17)

Partition Function Approximation. The belief propagation algorithm proceeds by iteratively
updating variable to factor messages (Equation[T4) and factor to variable messages (Equation [I5)
until they converge to fixed values, referred to as a fixed point of Equations[T4]and[T3] or a predefined
maximum number of iterations is reached. While BP is not guaranteed to converge in general,
whenever a fixed point is found it defines a set of consistent beliefs, meaning that marginal beliefs
at factor nodes agree with beliefs every variable node they are connected to. At this point the
beliefs are used to compute a variational approximation of the factor graph’s partition function.
This approximation, originally developed in statistical physics, is known as the Bethe free energy
Fgethe = —In Z [10]. It is defined in terms of the Bethe average energy Ugeme and the Bethe entropy
HBethe~

Definition 2. Ugpe == — 224—1 > x, ba(xa) In fo(x,) defines the Bethe average energy.

Definition 3. Hp.y, = — Za 12 ba(xq)Inb, (xa)—i—zl (di=1) >, bi(wi) Inb;(x;) defines
the Bethe entropy, where d; is the degree of variable node i.

Definition 4. The Bethe free energy is defined as Fpeine = Upethe — Hpethe-

Numerically Stable Belief Propagation. For numerical stability, belief propagation is generally
performed in log-space and messages are normalized at every iteration. It is also standard to add a
damping parameter, a € [0, 1), to improve convergence by taking partial update steps. BP without
damping is recovered when o = 0, while a = 1 would correspond to not updating messages and
instead retaining their values from the previous iteration. With these modifications, the variable to
factor messages from Equation [2 are rewritten as follows, where terms scaled by « represent the
difference in the message’s value from the previous iteration:

—(k ~ (k —(k ~ (k k —(k
’EJ(L = E—za +a (§—> V- E—Za)’ where mz(—za = —Zisa + Z (c—ml)' (18)
ceN(i)\a
Similarly, the factor to variable messages from Equation z are rewritten as

—(k ~ (k —(k—1 k ~ (k —(k
mEL—)n = El—)n + Oé(((z—m) m((z—)>i)7 mé—)m = —Za—i T)]:SE (¢a(xa + Z 5—)>a)’ (19)
a\e JEN (a)\i

Note that mgla and mfjﬁ” are vectors of length | X;|, ¢4(x,) = In (f, (x4)) denotes log factors,

Zi—yq and z,_,; are normalization terms, and we use the shorthand LSE for the log-sum-exp function:

LSE ((ba(xa)) =1In (Zxa\% exp <¢a(xa)>>.

Xa \T;

17

BPNN-B)

v v l v
0 2 —
n® [BpNN-D | 7Y [BPNN-D |72 v 5" (BPNN-D
— —>| S . =
Layer 1 Layer 2 Layer K

(K)
nl'—» X

Factor Graph

v v A\ 4 \4

In(2)
Bethe Free Energy Layer (BPPN-B) —

Figure 5: Computation graph of BPNN iterative layers followed by BPNN-B.

B.2 GNN Background

This section provides background on graph neural networks (GNNs), a form of neural network used
to perform representation learning on graph structured data. GNNs perform iterative message passing
operations between neighboring nodes in graphs, updating the learned, hidden representation of each
node after every iteration. Xu et al. [51]] showed that graph neural networks are at most as powerful
as the Weisfeiler-Lehman graph isomorphism test [49], which is a strong test that generally works
well for discriminating between graphs. Additionally, [S1] presented a GNN architecture called the
Graph Isomorphism Network (GIN), which they showed has discriminative power equal to that of
the Weisfeiler-Lehman test and thus strong representational power. We will use GIN as a baseline
GNN for comparison in our experiments because it is provably as discriminative as any GNN that
aggregates information from 1-hop neighbors.

We now describe in detail the GIN architecture that we use as a baseline. Our architecture performs
regression on graphs, learning a function fgin : G — R from graphs to a real number. Our input is a
graph G = (V, E) € G with node feature vectors hE,O) for v € V and edge feature vectors e,, ,, for
(u,v) € E. Our output is the number fgn(G), which should ideally be close to the ground truth
value yq. Let th“) denote the representation vector corresponding to node v after the k" message
passing operation. We use a slightly modified GIN update to account for edge features as follows:

h(®) = MLpgk) (hq(jkl) + Z MLng) (h,(ffl),euﬂ) > (20)
wEN (v)

A K-layer GIN network with width M is defined by K successive GIN updates as given by Equa-
tion @,ywhere h{*) € RM is an M-dimensional feature vector for k € {1,2,...,K}. All MLPs
within GIN updates (except MLPéO)) are multilayer perceptrons with a single hidden layer whose

input, hidden, and output layers all have dimensionality M. MLPéO) is different in that its input
dimensionality is given by the dimensionality of the original node feature representations. The final
output of our GIN network is given by

K
= (K+1) k
fon(G) = MLP (COI}C\ISAT v§eG hv> 7 (21)

where we concatenate summed node feature vectors from all layers and MLPE+D) jsa multilayer
perceptron with a single hidden layer. Its input and hidden layers have dimensionality M - K and its
output layer has dimensionality 1.

C BPNN Iterative Layer Implementation Details

We implemented BPNN iterative layers to operate in log space with message normalization. In this
section we write out the equations for BPNN with these modifications. BPNN iterative layers are
flexible neural operators that can operate on beliefs or message in a variety of ways. The BPNN
iterative damping layer (BPNN-D, shown in Fig[T) modifies factor-to-variable messages (Equation[T9)

18

using the output of a learned operator H : R2i=1 %l Xil 5 R32i=1 &1l i place of the conventional

damping term a((’: 1) m(k)) where d; denotes the degree and | X;| the cardinality of variable
X;. This learned operator H (-) takes as input the difference between iterations k£ — 1 and & of every
factor-to-variable message, and modifies these differences jointly. It can thus be much richer than a
scalar multiplier. BPNN-D factor-to-variable messages are given by

75,’22 ﬁa%z Az(lkln? ~¢<7,12>7, = —Za—i T LSE (d)a (x‘l) + Z 75120,)7 (22)
xa i JEN(@)\i
Let Agk_)x =H (gk_ml) _# t(~k_)>) denote the result of applying H (-) to all factor-to-variable message

differences ﬁ Then Aa —,, 1s the output corresponding to the modified a — ¢ message difference.

Variable-to-factor messages are unchanged from Eq. |1 E except for taking messages 7 7()

; as input,
W= 70+ ol), where i, = —zoat Y AP oY
ceN(i)\a

Note that we recover Equations [18|and[19]exactly if H is an elementwise function H(z) = .

C.1 Variants

When the convergence properties of BPNN-D are not needed (e.g., if BP is not a lower bound to the

partition function of a particular problem), we have the flexibility to create BPNN iterative layers
(k) (k)

i—a a—1 from

that directly operate on a combination of messages and beliefs by modifying m, " and m

Equations[T8]and[T9]

We can introduce a variant that parameterizes both factor to variable messages and factor beliefs and
computes factor to variable messages as:

= ~2a-i + LSE <¢a(xa +LNE2{ > LNE (m]_m)]> (24)
e JEN(@)\i

where we use the shorthand

LNE;(h) = In (MLPgi (exp(h))), (25)

and MLPy, is a multilayer perceptron parameterized by 6;,. We exponentiate before applying the
multilayer perceptron because we empirically find that this improves training as opposed to having
MLPs operate directly in log space.

We can also introduce additional variants that operate only on messages. This is beneficial because
it preserves equivariance under factor graph isomorphism, which applying MLPs to factor beliefs
violates. We parameterize both variable to factor and factor to variable messages:

i), = —zina+ S LNEymY). (26)
ceN(i)\a
m*) = 2 +LSE (%(xa) + Y LNE4(m§.’2a)>, 27)
xa\xi . .
JEN(a)\i

BPNN iterative layers allow for great flexibility and different combinations of these MLPs can be
applied in a specific layer depending on the task at hand. These MLPs can even be combined with
the damping MLPs found in BPNN-D layers in lieu of the fixed scalar damping coefficient o found

in Equations[18]and

8We use message subscripts f and x to denote sets of messages, e.g., nfﬁx = { aﬁz : fo €f,2; € x}

19

BPNN Initialization Note that any BPNN architecture built from iterative layers with or without a
BPNN-B layer can be initialized to perform BP run for a fixed number of iterations by initializing
MLPs functions f(z) = z. E.g. weight matrices are set to the identity, bias terms to zero, and any
nonlinearities are chosen so as to avoid affecting the input at initialization.

D Ising Model Experiments

Data Generation. An N x N Ising model is defined over binary variables x; € {—1,1} for
i = 1,2,..., N2, where each variable represents a spin. Each spin has a local field parameter
J; which corresponds to its local potential function J;(z;) = J;z;. Each spin variable has 4
neighbors, unless it occupies a grid edge. Neighboring spins interact with coupling potentials

Jij(xi,x5) = J; ja;2;. The probability of a complete variable configuration x = {z1,...,xN2} i
defined to be
p(x) = — exp Z Jixi + Z Jijriz; |, (28)
eV (i,5)EE

where the normalization constant Z, or partition function, is defined to be

7 = Zexp ZJl‘ri- Z Jijrix; | - 29)

eV (i,7)€E

We performed experiments using datasets of randomly generated Ising models. Each dataset was
created by first choosing N, cmax, and fi.x. We sampled N x N Ising models according to the
following process

¢ ~ Unif[0, ¢max),
f ~ Umf[O, fmax)a

(Ji)iev b Unif[—f, f),
(Jii)gyer " Unif[0,).

Baselines. We trained a 10 layer GNN (GIN architecture) with width 4 on the same dataset of
attractive Ising models that we used for our BPNN. We set edge features to the coupling potentials;
that is, e, , = Jy. We set the initial node representations to the local field potentials of each

node, h(o) J,. We used the same training loss and optimizer as for our BPNN. We used an initial
learning rate of 0.001 and trained for 5k epochs, decaying the learning rate by .5 every 2k epochs.

We consider two additional baselines: Bethe approximation from running standard loopy belief
propagation and mean field approximation. We used the libDAI [35] implementation for both. We
test loopy belief propagation with and without damping and with both parallel and sequential message
update strategies. We show results for two settings whose estimates of the partition function differ
most drastically: (1) run for a maximum of 10 iterations with parallel updates and damping set to .5,
and (2) run for a maximum of 1000 iterations with sequential updates using a random sequence and
no damping.

Improved Lower Bounds and Faster Convergence. We trained a BPNN-D to estimate the par-
tition function on a training set of 50 random Ising models. We randomly sampled the number
of iterations of BPNN-D to apply during training between 5 and 30. When BPNN-D is then run
to convergence on a validation set of random Ising models, we find that (1) it finds fixed points
that provide tighter lower bounds on the partition function as explained in the main text and (2) it
converges faster than BP as shown in Figure|[6]

Out of Distribution Generalization. We tested BPNN’s ability to generalize to larger factor graphs
and to shifts in the test distribution. Again we used a training set of 50 Ising models. We sampled test
data from distributions with ¢, 4, and fy,4. increased by factors of 2 and 10 from their training values,

20

Factor to Variable Message Convergence Il:oactor to Variable Message Convergence Factor to Variable Message Convergence
100 =

100

Max Difference
Max Difference
Max Difference

0 2 50 75 10 15 10 175 200 C 25 s0 75 10 15 150 175 200 0 25 50 75 100 15 10 175 200
Message Passing Iteration Message Passing lteration Message Passing Iteration

Factor to Variable Message Convergence Factor to Variable Message Convergence

100 100 — B

— e
100

Max Difference

Max Difference

G 25 50 75 100 15 10 15 200 0 25 0 75 100 15 130 175 200
Message Passing lteration Message Passing lteration

Figure 6: The maximum difference in factor to variable message values between iterations is plotted against the
message passing iteration for BPNN-D and BPNN run on 50 validation Ising models. BPNN-D converges to a
maximum difference of 10~ faster than BP, with a median speedup of 1.7x.

with N set to 14 (for 196 variables instead of the 100 seen during training). For this experiment we
used a BPNN architecture with 10 iterative layers whose weights were not tied and with MLPs that
operate on factor messages. For the out of distribution experiments, we did not use a final BPNN-B
layer, we set the residual parameters to ag = a1 = ao = .5, and trained on 50 attractive Ising models
generated with N = 10, f.x = .1, and ¢pax = 5. We used mean squared error as our training loss.
We used the Adam optimizer [29] with an initial learning rate of .0005 and trained for 100 epochs,
with a decay of .5 after 50 epochs. Batching was over the entire training set (of size 50) with one
optimization step per epoch.

E SAT Experiments

Additional Dataset Details We evaluated the performance of our BPNN using the suite of bench-
marks from Soos and Meel [44]]. Some of these benchmarks come with a sampling set. The sampling
set redefines the model counting problem, asking how many configurations of variables in the sam-
pling set correspond to at least one complete variable configuration that satisfies the formula. (A
formula with n variables may have at most 2" satisfying solutions, but a sampling set over ¢ variables
will restrict the number of solutions to at most 2%). We stripped all problems of sampling sets since
they are outside the scope of this work. We also stripped all problems of minimal independent support
variables sets and recomputed these when possible (we will discuss further later in this section).We
ran the exact model counter DSharlﬂ [37] on all benchmarks with a timeout of 5k seconds to obtain
ground truth model counts for 928 of the 1,896 benchmarks. Only 50 of these problems had more
than 5 variables in the largest factor, so we discarded these problems and set the BPNN architecture
to run on factors over 5 variables. We categorized the remaining 878 by their arcane names into
groupings. With some sleuthing we determined that categories ‘or_50’, ‘or_60’, ‘or_70’, and ‘or_100’
contain network DQMR problems with 150, 121, 111, and 138 benchmarks per category respectively.
Categories ‘75’ and ‘90’ contain network grid problems with 20 and 107 benchmarks per category
respectively. Category ‘blasted’ conains bit-blasted versions of SMTLIB (satisfiability modulo
theories library) benchmarks [[12] and has 147 benchmarks. Category ‘s’ contains representations of
circuits with a subset of outputs randomly xor-ed and has 68 benchmarks. We discarded 4 categories
that contained fewer than 10 benchmarks. For each category that contained more than 10 benchmarks,
we split 70% into the training set and left the remaining benchmarks in the test set. We then performed
two splits of the training set for training and validation; for each category we (1) trained on a random
sampling of 70% of the training problems and performed validation on the remaining 30% and (2)
trained on 70% of the training problems that DSharp solved fastest and performed validation on the
remaining 30% that took longest for DSharp to solve. These hard validation sets are significantly

*https://github.com/QuMuLab/dsharp

21

https://github.com/QuMuLab/dsharp

more challenging for Dsharp. The median runtime in each category’s hard validation set is 4 to 15
times longer than the longest runtime in each corresponding easy training set.

Minimal Independent Support As a pre-processing step for ApproxMC3 and F2, we attempted to
find a set of variables that define a minimal independent support (MIS) [25]] for each benchmark using
the authors’ codd!with a timeout of 1k seconds. A set of variables that define a MIS for a boolean
formula fully determine the values of the remaining variables. Randomized hashing algorithms can
run significantly faster when given a set of variables that define a MIS. When we could find a set of
variables that define a MIS, we recorded the time that each randomized hashing algorithm required
without the MIS and the sum of the time to find the MIS and perform randomized hashing with the
MIS. We report the minimum of these two times.

Baseline Approximate Model Counters. For comparison, we ran the state of the art approximate
model counter ApproxMCﬂ [12, 44] on all benchmarks. ApproxMC3 is a randomized hashing
algorithm that returns an estimate of the model count that is guaranteed to be within a multiplicative
factor of the exact model count with high probability. Improving the guarantee, either by tightening
the multiplicative factor or increasing the confidence, will increase the algorithm’s runtime. We ran
ApproxMC3 with the default parameters; confidence set to 0.81 and epsilon set to 16.

We also compare with the state of the art randomized hashing algorithm F from [4} 5], run with
CryptoMiniSat [45] 144]. This algorithm gives up the probabilistic guarantee that the returned
estimate will be within a multiplicative factor of the true model count in return for significantly
increased computational efficiency. We computed only a lower bound and ran F2 with variables
appearing in only 3 clauses. This significantly speeds up the reported results [4), p.14], at some
additional cost to accuracy. For example, on the problem ‘blasted_case37’ [4, p.14] report an
estimate of log, (#models) ~ 151.02 and a runtime of 4149.9 seconds. Running F2 with variables
appearing in only 3 clauses, we computed the lower bound on log, (#models) of 148 in 2 seconds.

We also attempted to train a GNN, using the architecture from [43] to perform regression instead
of classification. We used the author’s code, making slight modifications to perform regression.
However, we were not successful in achieving non-trivial learning.

BPNN Training Protocol. We trained our BPNN to predict the natural logarithm of the number of
satisfying solutions to an input boolean formula. We consider the general case of an input formula
over n boolean variables, { X1, X, ..., X, }, in conjunctive normal form (CNF). Formulas in CNF
are a conjunction of clauses, where each clause is a disjunction of literals. A literal is either a variable
or its negation. We converted boolean formulas into factor graphs where each clause corresponds to a
factor. Factors take the value of 1 for variable configurations that satisfy the clause and O for variable
configurations that do not satisfy the clause. The partition function of this factor graph is equal to
the number of satisfying solutions. We trained a BPNN architecture composed of 5 BPNN-D layers
followed by a BPNN-B layer. We used the Adam optimizer [29] with learning rate decay.

Ablation Study. The columns labeled BPNN-NI and BPNN-DC in table|2 correspond to ablated
versions of our BPNN model. We trained a BPNN with a BPNN-B layer that was not permutation
invariant to local variable indexing, by removing the sum over permutations in S| from Equation
and only passing in the original beliefs. We refer to this non-invariant version as BPNN-NI. We then
forced BPNN-NI to ‘double count” messages by changing the sums in Equations[22]and 23]to be over
J € N(a). We this non-invariant version that performs double counting as BPNN-DC. We observe
validation improvement in BPNN over these ablated versions when generalization is particularly
challenging, e.g. on ‘blasted’ problems individually and on all categories.

Additional Baseline Approximate Model Counter Information Table [3] shows the root mean
squared error (RMSE) of estimates from the approximate model counters ApproxMC3 and F2 across
all training benchmarks in each category. Error was computed as the difference between the natural
logarithm of the number of satisfying solutions and the estimate. The fraction of benchmarks that

"https://github.com/meelgroup/mis
Uhttps://github.com/meelgroup/ApproxMC
https://github.com/ptheod/F2
Bhttps://github. com/msoos/cryptominisat

22

https://github.com/meelgroup/mis
https://github.com/meelgroup/ApproxMC
https://github.com/ptheod/F2
https://github.com/msoos/cryptominisat

RMSE Ablation Study by SAT Category

Benchmark Train / Val Train / Val Train / Val Train / Val
Category Split BPNN BPNN-NI BPNN-DC
‘or 50° Random Split .32/.30 0.18/0.37 095/2.21

Easy / Hard 31/1.10 0.17/0.70 0.72/4.81
Random Split .327.39 0.20/0.43 0.70/2.36

or_60 Easy/Hard ~ 31/17 021/122 0.57/3.69

or 70 Random Split 28/.53 0.19/045 0.79/1.85

- Easy/Hard 35/.50 0.19/0.58 073/2.75

or 100 Random Split 48/.51 031/0.59 1.05/237
- Easy/Hard ~ 48/.58 027/0.60 0.89/288.91

olastod Random Split 4.39/4.24 422/1039 3.01/6.59
Easy/Hard 2.19/10.10 1.51/828 1.57/948.95

s Random Split 1.69/139 131/1.34 0.66/0.36

Easy/Hard ~ 1.51/2.81 098/296 0.65/2.00

o Random Split 2.46/2.18 1.59/221 0.94/1.59

Easy / Hard 2.17/286 1.76/3.27 0.81/1.23

All Categories Random Split 3.92/5.31 6.77/9.57 4.28/27.03

Table 2: RMSE of BPNN for each training/validation set, along with ablation results. BPNN corresponds to
a model with 5 BPNN-D layers followed by a Bethe layer that is invariant to the factor graph representation.
BPNN-NI corresponds to removing invariance from the Bethe layer. BPNN-DC corresponds to performing
’double counting’ as is standard for GNN, rather than subtracting previously sent messages as is standard for BP.
’Random Split” rows show that BPNNSs are capable of learning a distribution from a tiny dataset of only 10s of
training problems. ‘Easy / Hard’” rows additionally show that BPNNs are able to generalize from simple training
problems to significantly more complex validation problems.

Baselines RMSE by SAT Category
RMSE (% Completed)

Category ApproxMC3 F2

‘or_50’ 0.07 (89%) 2.4 (100%)

‘or_60’ 0.07 87%) 2.3 (100%)

‘or_70° 0.06 (78%) 2.4 (100%)

‘or_100 0.06 (73%) 2.4 (100%)

‘blasted’ 0.04 (80%) 2.4 (84%)

“15° 0.04 (92%) 2.0 (100%)

‘90’ 0.03 (16%) 12.4 (68%)
Table 3: Root mean squared error (RMSE) of estimates of the natural logarithm of the number of satisfying
solutions is shown. The fraction of benchmarks within each category that each approximate counter was able to
complete within the time limit of 5k seconds is shown in parentheses.

each approximate counter was able to complete within the time limit of Sk seconds is also shown.
For each benchmark category we show runtime percentiles for ApproxMC3, F2, and the exact model
counter DSharp in Table[d] The DSharp runtime column shows the runtime dividing our easy training
sets and hard validation sets for each benchmark category. It also shows the median run time of each
hard validation set (85th percentile). The median runtime in each category’s hard validation set is 4
to 15 times longer than the longest runtime in each corresponding easy training set. We observe that
F2 is generally tens or hundreds of times faster than ApproxMC3. On these benchmarks DSharp is
generally faster than F2, however there exist problems that can be solved much faster by randomized
hashing (ApproxMC3 or F2) than by DSharp [5} 44].

23

Runtimes By Percentile
Category DSharp (0/70/85/100) ApproxMC3 (0/70/100) F2 (0/70/100)

‘or_50° 0.0/0.8/12.4/48.1 0.1/336.6/5k 0.2/4.0/89.9
‘or_60’ 00/03/2.1/79.1 0.1/276.6/5k 0.2/5.0/353.2
‘or_70° 0.0/0.7/3.6/46.6 0.1/748.3/5k 02/11.9/491.3
‘or_100 0.0/03/4.8/54.2 0.1/1918.8/5k 0.2/33.0/3021.1
‘blasted” 0.0/1.7/29.3/1390.8 0.0/952.6/5k 0.0/742.3/ 5k
“75° 0.0/6.0/29.0/160.3 279.6 / 805.1 / 5k 1.1/23/9.0
‘90° 0.0/1.8/16.7/479.9 326.3/5k/ 5k 1.1/5k/5k

Table 4: Runtime percentiles (in seconds) are shown for DSharp, ApproxMC3, and F2. Percentiles are computed
separately for each category’s training dataset. In comparison, BPNN sequential runtime is nearly a constant and
BPNN parallel runtime is limited by GPU memory.

F Stochastic Block Model Experiments

Stochastic Block Model Definition A C' class Stochastic Block Model (SBM) is a randomly

generated graph with IV vertices, class assignment probabilities p;;i € 1, ..., C, where chzl pi =1,
and edge probabilities e;;;%,j € 1,...,C. Then, to generate the graph, we sample a class for each
node, ¢,,;m € 1,..., N in accordance with the class assignment probabilities. Then, we sample the
edge set I in the following manner: we take every pair of nodes z,,,, x,;m,n € 1,..., N and with
probability e.,, ., assign an edge between those nodes.

SBM Factor Graph Construction We can construct a factor graph for a sampled SBM model.
This factor graph represents a function over arrangements of node class membership, which, when
normalized, gives the joint probability distribution of observing those class memberships given the
SBM generation parameters and sampled SBM structure. For a given SBM with N nodes, C classes,
class assignment probabilities p;;i € 1,...,C, sampled class assignments c¢,,,;m € 1,..., N, edge
probabilities e;;;7, 7 € 1, .., C, and sampled edge set , we have the following unary factor potentials
filxm);i € 1,...,C forevery node x,,;m € 1,...,N:

fi(zm) = pi

We can construct binary factor potentials f;; (2, z5);7,j € 1, .., C between nodes .y, , T,; (m,n) €
FE as:

fl] (xm) xn) = ec'nucn

and between nodes %, T,; (m,n) ¢ F as:

fij(xma Tp) =1~ €cm,cn

Note that when we fix a variable to a specific value (which is needed to calculate marginals, as
explained below), we simply set all factor potentials involving that variable that do not agree with
that value to zero.

Marginal Calculation from Log Partitions Training a model to estimate partition functions with
fixed variables is advantageous as we train the model to perform tasks that can directly be used to
compute marginals, which are the probabilities that a node belongs to a specific class. This can
be used to perform community detection or to quantify uncertainty and rare events in community
membership. To see how we compute marginals with our experimental setup, take a two class SBM,
select a node x,,, fix its value to class 0 to obtain log partition function In(Z;) and then fix its value
to class 1 to obtain log partition In(Z). Then, the log marginals In(20,) and In(xz],) are simply:

hl(l’gn) = ln(Zl) — ln(Z1 + Zg)

and

In(zl) = In(Zy) — In(Zy + Zo)
where

In(Z1 + Zs)

24

Out of Distribution SBM RMSE
Nodes Data Edge Probs Data Class Probs BP RMSE GNN RMSE BPNN RMSE

5 (93, .067) 6, 4 1227 921 4.61
5 (93,.067) (8,2 1.22 12.19 5.68
5 (967, .033) (6, 4 16.77 12.62 492
15 9,1 (8,2 8.99 16.83 6.53
i5 (967, .13) (75, 25) 9.54 12.77 6.64
15 (.867, .033) (75, 25) 1155 9.17 414
6 (9375, .0625) (75, 25) 13.88 15.07 7.08
17 (.94, .06) (75, 25 15.92 17.89 8.43
18 (.94, .06) (75, 25) 15.81 20.90 10.50
19 (.95, .05) (75, 25) 8.6 2277 10.61
20 (.95, .05) (75, 25) 19.37 2831 15.23

Table 5: RMSE of In(Z) of BPNN against BP and GNN for SBM’s generated from different distributions and
larger graphs than the training or validation set. We see that BPNN outperforms both methods here across
different edge probabilities, class probabilities, and on larger graphs. Furthermore, it generalizes better than
GNN in all these settings.

can be computed in a numerically stable fashion from In(Z;) and In(Z3) using the logsumexp trick.

Model and Training Details For baselines, we ran Belief Propagation to convergence with parallel
updates and damping coefficient .5 as well as a Graph Isomorphism Network (GIN) with 30 layers
and width 8. GIN is maximally discriminative among GNNs that consider 1-hop neighbors, which
is computationally comparable to BPNN. In our evaluations, GIN performs comparably to more
computationally expensive two hop GNNs on the related problem of SBM community detection [14]].
We trained our GIN GNN architecture on the 5 class graph coloring community detection setting
described in [[14] and compared it to the performance of the two hop GNNs described there. Our GNN
had 20 layers with a width of 8 and achieved a permutation invariant validation overlap score of .166
when trained for the same number of iterations, nearly identical to the two hop GNN performance
reported in [14]. Since one hop GNN:ss train significantly faster than two hop, we managed to obtain
overlap scores as high as .185 when training for longer. In any case, our one hop GNN performs
comparably with two hop GNN architectures on the related task of SBM community detection and
thus, in addition to its convenience, makes for a strong baseline method. For all models, we trained
for 300 epochs on 1 GPU with an Adam Optimizer (learning rate of 2e-4, batch size of 8) minimizing
Mean Squared Error between the estimated log partition and true log partition.

Out of Distribution Generalization We test the capacity of our BPNN (with no double counting
and an invariant BPNN-B layer) to generalize to out of distribution graphs compared to the GNN
model, while comparing both against the BP benchmark. Since the factor graphs are fully connected,
slight changes to the initial parameters can produce rather large differences in the graphs and their
log partition function. In addition to perturbing the initial class probabilities and edge probabilities,
we also test the ability of BPNN to generalize to larger graphs, which is a desirable property as the
Junction Tree algorithm for exact inference becomes exponentially more expensive as the size of
the graph grows due to the fully connected nature of SBM factor graphs. For each scenario, we
generate five separate graphs and generate test examples as mentioned previously. We present our
results in Table[5] We observe that BPNN performs the best of all three methods when class and edge
probabilities are changed and generalizes better than GNN in these settings as well. Furthermore,
when the size of graphs are increased, BPNN can outperform BP and GNN on graphs with as many
as 20 nodes (a setting with over 80% more edges than training) and generalizes significantly better
than GNN.

Since our SBM factor graphs are fully connected, adding n times more nodes leads to a O(n?)
increase in edges which may make it tougher for the model to generalize to larger and larger graphs.
Using an auxiliary field approximation for SBM message passing, as described in [[15] can help
generalization to larger graphs, as in this case the increase in edges will increase linearly with graph
size, and this is something to investigate further.

25

Marginal Estimation We also compared BPNN to BP for marginal estimation, using the estimated
log partition functions with single nodes set to a fixed value to calculate marginals for those nodes, as
described above. Under the graph parameters used in these experiments, the marginals are usually
extremely close to 1 and 0, but in such dense graphs, changes to the magnitude of these marginals can
have large effects on the log partition function calculation. In some cases, BP computes the correct
marginals under these conditions, but in some cases, it is off by 20-30 orders of magnitude on the
smaller marginal. Such errors do not affect community recovery, however, when we care about very
rare outcomes, they can have a big effect on quantifying uncertainty in community membership. On
15 node graphs, BPNN, by learning more accurate log partitions, is on average almost 5 orders of
magnitude closer to the true marginals than BP and an order more accurate than GNN in distribution.
Furthermore, BPNN outperforms BP when trained on graphs of 15 nodes and tested on graphs
of as many as 20 nodes. While in this work we focus mainly on partition function estimation, as
these estimates are better understood in the context of Loopy Belief Propagation, BPNN also shows
promising results on estimating marginals. We believe these results could be further improved by
training explicitly to estimate marginals, e.g. by correctly predicting the difference in partitions
between graphs with one variable fixed to either value, and this is a promising avenue for further
research.

26

	Introduction
	Background: Factor Graphs and Belief Propagation
	Belief Propagation Neural Networks
	Experiments
	Ising Models
	Stochastic Block Model
	Model Counting

	Related Work
	Conclusion
	PROOFS
	Extended Background
	BELIEF PROPAGATION
	GNN Background

	BPNN Iterative Layer Implementation Details
	Variants

	Ising Model Experiments
	SAT Experiments
	Stochastic Block Model Experiments

