- We thank all the reviewers for their positive and useful feedbacks, which we will use to improve the paper. We first
- 2 address the common comments from reviewers:

3 To Reviewer #1

- 4 @ The γ -separatability requirement is odd since it also requires samples from the same class to be separated:
- 5 Good point! Actually, γ -seperatability can be replaced by separation only among different classes. With minor
- 6 modifications, our results can be applied to classification losses, like cross-entropy. For such losses, we can define δ =
- 7 minimum distance between different classes and thus $1/\gamma$ not being large becomes even more practically relevant, as an
- assumption (remember that $\gamma = \delta(\delta 2\rho)$). We will add more discussions in the next version.
- 9 @ Can something be said about the robustness against the most intelligent adversary for a network trained
- using a polynomial time adversary?: This is certainly an interesting future direction. This might require character-
- ization of what polynomial time adversary means, since training with a trivial adversarial which only generates the
- original data doesn't lead to robustness against the most intelligent adversary.
- Note that our results apply to any adversary (including the most intelligent one) used in training.

14 To Reviewer #2

- 15 We appreciate the suggestions and will update the related-work section accordingly. Regarding experiments, we note
- previous works (e.g. Figure 4 in Madry et al.) have already shown empirically that reasonably wide networks achieve
- 17 small robust training error. Our work serves as a potential theoretical explanation for this phenomenon.

18 To Reviewer #3

- 19 @ "Wang et al.": We are unable to find any related works with the reference "Wang et al". Given the comments, we believe the reviewer meant to refer to Gao et al.
- 21 @ the paper lacks novelty, and the contribution is small because Gao et al. only requires poly(d) width with a
- 22 **seldom used activation function where d is the input dimension:** This claim made by the reviewer is incorrect.
- 23 In Gao et al., in order to achieve small robust training loss, Theorem 5.2 and Corollary 5.1 require the width to be
- polynomial in the constant $R_{D,B,\epsilon}$, and Gao et al did not to show $R_{D,B,\epsilon}$ is poly(d) with *any* activation function.
- In fact, they only managed to upper bound $R_{D,B,\epsilon}$ by $(1/\epsilon)^d$ with the quadratic ReLU activation. One of our main
- contribution is to bound $R_{D,B,\epsilon}$ by poly(d) with the ReLU activation using a novel analysis.
- 27 This misunderstanding is possibly due to a claim made in Gao et al.'s intro that "we show that projected gradient descent
- converges to a network where the surrogate loss with respect to the attack A is within ϵ of the optimal robust loss. The
- 29 required width is polynomial in the depth and the input dimension." We note that although this claim is correct, the
- optimal robust loss in their setting may not be necessarily small. The only concrete case where they prove it is small is
- for quadratic ReLU networks with $(1/\epsilon)^d$ width (Theorem C.1 in Gao et al.).
- 32 @ it is misleading that the authors claim quadratic ReLU is not used in practice: We are not aware of the use
- 33 of quadratic ReLU in any practical setting but are happy to change that phrase if the reviewer could give us some
- references. But it is important to note that even for the quadratic ReLU, the upper bound in Gao et al. is exponential in
- 35 d. That is the main point in that line.
- ³⁶ @ appendix C.2 instead of C.1 : We thank the reviewer for pointing out this typo. We meant to write theorem C.1.
- We will fix it in the next version.

To Reviewer #4

- 39 @ the paper could benefit from small toy examples experimentally demonstrating the authors' claim. E.g., plot
- 40 **the dependence of robust training loss vs depth:** By "loss vs depth", did the reviewer mean loss vs width? If so,
- 41 many previous works (e.g. Figure 4 in Madry et al.) have already showcased the suggested experiments. They show
- larger width leads to lower robust training loss. Our work serves as a theoretical explanation for such experiments.