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Abstract

In this paper, we propose a new iterative hierarchical data augmentation (IHDA)
method to fine-tune trained deep neural networks to improve their generalization
performance. The IHDA is motivated by three key insights: (1) Deep networks
(DNs) are good at learning multi-level representations from data. (2) Performing
data augmentation (DA) in the learned feature spaces of DNs can significantly im-
prove their performance. (3) Implementing DA in hard-to-learn regions of a feature
space can effectively augment the dataset to improve generalization. Accordingly,
the IHDA performs DA in a deep feature space, at level [, by transforming it into a
distribution space and synthesizing new samples using the learned distributions for
data points that lie in hard-to-classify regions, which is estimated by analyzing the
neighborhood characteristics of each data point. The synthesized samples are used
to fine-tune the parameters of the subsequent layers. The same procedure is then
repeated for the feature space at level [ + 1. To avoid overfitting, the concept of
dropout probability is employed, which is gradually relaxed as the IHDA works
towards high-level feature spaces. IHDA provided a state-of-the-art performance on
CIFAR-10, CIFAR-100, and ImageNet for several DNs, and beat the performance
of existing state-of-the-art DA approaches for the same networks on these datasets.
Finally, to demonstrate its domain-agnostic properties, we show the significant
improvements that IHDA provided for a deep neural network on a non-image
wearable sensor-based activity recognition benchmark.

1 Introduction

Despite the tremendous success of deep neural networks in solving discriminative tasks, improving
the generalization ability of these models remains as one of the most difficult challenges. There
exist several ways to solve this problem, such as dropout, batch normalization, pretraining, transfer
learning, and data augmentation (DA) [11 12} (3,4, [5]]. The goal of DA is to present the predictor with a
more comprehensive set of data points, during training, to minimize the distance between the training
and the test sets.

DA increases the size of the training data set, generally, in two ways. The first approach expands
the training data by performing expert-defined content preserving transformations to existing data
points [2]. In the case of images, such alterations may include image rotation, flipping, random
cropping, random erasing, and color space augmentation, etc. The second approach, on the other hand,
inflates the training data through deep learning. These include feature space augmentation [6, [7 8],
adversarial training [9, [L0], generative-adversarial-network based augmentation [[11} [12} [13] [14],
and meta-learning data augmentations (MLDA) [15} [16} [17, [18} [19]. MLDA employs prepended
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neural networks to learn data augmentations; the learned augmentation strategies may include mixing
images, neural style transfer, and a series of geometric transformations. Recently, [20] proposed a
new DA method which performs implicit semantic data augmentation (ISDA). The ISDA is different
from other DA methods because it does not require training/inferring auxiliary networks or explicitly
generating extra training samples. It achieves DA implicitly by minimizing a derived closed-form
upper bound of the expected cross-entropy loss.

There are some valuable lessons to be learned from the existing works on DA, and on machine
learning, in general. The first is that DA is not as straightforward to apply in all domains as it is for
images [8]. The second is that performing DA in the learned feature space instead of the input space
can be beneficial, especially for domain-independent DA [7, [8]]. The third is that the success of deep
networks can be attributed to their ability to exploit the unknown structure in the input distribution
to discover useful features at multiple levels. In this multi-level representations, the higher-level
learned features are defined in terms of lower-level features [21]]. Finally, the learning or classification
difficulty associated with different samples in the feature space could be different [22].

In this paper, based on the lessons that we mentioned above, we propose and implement an iterative
hierarchical data augmentation (IHDA) algorithm for deep networks. In IHDA, we do augmentation in
the feature space, but unlike [7] which generates new samples in the feature space using extrapolation
and interpolation, we generate new samples by learning a generative model over the feature space.
Furthermore, unlike all existing works where the DA is performed once before or during the learning
phase, we do it in the feature spaces of a learned model in an iterative manner, and use the augmented
data to fine tune the model’s parameters. More specifically, we start by training a deep network
w.r.t a supervised loss on a given labeled training data without any augmented samples. Then, we
generate augmented samples at each level of the representation learning part of the network and use
them to fine-tune the subsequent levels of the representation learning part (results in learning of new
hierarchical representations) as well as the predictor part of the network. Another vital property of the
algorithm is that instead of blindly or randomly generating new samples for augmentation, it identifies
regions that are hard to classify by assigning a potential value to each point in the learned feature
space. Only the points having positive potential can act as sources for generating new data. Although
it has a computationally expensive training phase, the proposed IHDA algorithm is significantly
effective. Extensive empirical evaluations on several competitive image and non-image classification
benchmarks showed that the IHDA consistently improved the generalization performance of popular
deep networks and outperformed the existing state of the art DA algorithms for deep networks.

2 Related Work

Several methods have emerged over the past decade to reduce overfitting and improve the general-
ization performance of deep neural networks. These include dropout [23]], batch normalization [24],
transfer learning 25} 26], pretraining [27]], few-shot learning [28]], and DA. The focus of this work is
DA, which can be classified and described in various ways.

Explicit or Implicit: DA can be explicit, such that it combats the overfitting problem by artificially
increasing the size of training data through data warping or oversampling. Data warping-based DA
generates new data by transforming existing data points while keeping their class labels preserved 1}
2,3L4L150 1501164 17,18L[19]. The transformations could include elastic distortions, scaling, translation,
rotation, mirroring, or color shift, etc. Oversampling-based DA works by expanding the training data
through synthesizing new samples [[11}[12}[13] 14, 22].

On the other hand, DA can be implicit [20] where the training procedure optimizes a surrogate loss
function, instead of the original loss, to achieve augmentation without explicitly generating any extra
training samples.

Manual or Automated: Explicit data warping-based DA can be a manual process where experts
manually design dataset-specific augmentation strategies [} 2, 3, 14, 5]]. Or, it can be a completely
automated approach where the augmentation policies are learned from the data using meta-learning
techniques [[15} 16, [17, [18}[19} 29].

Explicit oversampling-based DA either uses traditional methods like SMOTE (or its variants) [22]]
to create new data points or employ generative models like Variational Autoecoder or Generative
Adversarial Networks for generating new data [[11} (1213} [14].



Input or Feature Space: Finally, the DA can be implemented either directly in the input space [1} 2}
3144150 1SL 16, 1177, (8L (194 1114 112, 13 [14]], or it can work by creating a feature space which is then
manipulated to augment the training set 8l 30]. Terrance et al. 8] have demonstrated that because of
the manifold unfolding in the feature space, by applying simple transformations to the encoded or
learned representations of the data, more credible synthetic data can be generated than directly in the
input space.

To summarize, the problem of DA has been extensively studied in literature. The idea of DA in
the feature space, which is the foundation of our method, is not new as well. Nevertheless, our
contribution is two-fold: (a) we propose the first post-training DA approach based on generative
models that does DA iteratively in difficult regions of the learned representations to improve the
generalization of deep networks. (b) we achieve better results than the state-of-the-art (SOTA) DA
approaches on public benchmarks.

3 Methods

Let D = {xi,yi}fil be a labelled training dataset where x; € R? is the i — th sample and
y; € {1,---,C} is its associated class label over C classes. Let Fy : x; — y; be a deep network,
parameterized by 6, trained on D with respect to a supervised loss, such as cross entropy, and
an optimization procedure, such as stochastic gradient descent. Furthermore, let E'r, € R be the
classification error of Fy on a test set. The goal of this work is to implement an augmentation method
A to generate new training samples to fine-tune Fj such that Ep, > Ef, ,, where Ef, , is error of
the model that is initially trained on D and then fine-tuned using the augmented data generated by A.

3.1 Proposed Data Augmentation Method

Let us consider Fy as a composition of two components. The first component is the parameterized
representation learning function H. g 1 x; — fi, having L representation learning steps or levels
(e.g. convolutional layers or residual blocks), parameterized by ¢, which transforms input x; to
its corresponding feature representation (or embedding) f;. The second component is a linear or
non-linear predictor function Pé‘/[ . f; — y;, having M layers, parameterized by ¢, which takes f; as
input and maps it to its corresponding class label y;. Thus, 8 = {¢, ¢}, and Fy is trained with respect
to a supervised loss on D, optimizing the parameters of both components.

The proposed augmentation method is based on three key observations. Firstly, it is known that deep
networks have the ability to exploit the hidden input to learn/discover meaningful representations
at multiple levels such that the higher level features are defined in terms of low-level feature [21].
Secondly, it has been suggested that doing DA in the learned feature space, instead of the input space,
can be more effective in improving the performance of supervised learning algorithms [7, 8]. Thirdly,
learning difficulty associated with different instances in the feature space could be different [22].

Given these key observations, we propose the following DA method. We start by training Fy on
D with respect to a supervised loss. Once trained, the DA is performed at multiple levels (in both
low-level and high-level feature spaces) of H é The augmentation process is iterative, that is, the
augmentations performed at level [ € L are used to fine-tune the subsequent layers in both H and P,
before doing the DA at level [ + 1.

3.2 Data Augmentation at Step [

Let h! (X) denote the learned representation or deep features (or simply activations) at level I of H (f,

where X = {Xi}i’v=1 is the set of training samples. We formulate the task of DA as the generation of
new samples in h' (X). To achieve that, we set out an objective to learn a transformation function g’
that transforms h! (X) into a compact space. We propose to learn a continuous space by modeling
each vector in h! (X) as a distribution. Hence, we use variational inference to learn a variational
family approximated through a variational autoencoder (VAE) [31]], defined by

W (x)=g' (b (x)),x € X, (1)



where g' has two parts: the encoder Q (z | h' (x)) and the decoder Q (h' (x) | z); z is the latent
variable. We omit the argument x from h! for brevity, and define the loss function as

Ly = Hfil —th2+KL (@ (z| W) ||N(0,1)), 2)

where the first term is the reconstruction loss and K L is the Kullback-Leibler divergence to measure
the distance between the prior and the learned distribution. We assume that our proposed distribution,
Q (z | h'), is distributed as a Gaussian and try to minimize its distance towards a zero-centered
unitary Gaussian, A (0, I)). Finally, our objective is to learn a set of parameters for g' that minimizes
Eq. 2] which is learned through backpropogation during the training phase of the VAE.

Once trained, we can use the encoder of the VAE to construct a set of distributions for the step [ as

Ql:{(u7a):Q(z|hl(x))\xeX}. 3)

For a given (1, o), we can generate a new sample for augmentation by sampling a latent vector as

z:u+ﬁ0’€,€NN(O,I), “4)

where € is the generated noise, and we use 3, which is randomly chosen from [0, 1], to introduce
variation in the synthesized sample. Each generated sample has a different 3. Note that we tried both
with and without /3, and empirically found the former to work better. We believe that 5 provides more
powerful semantic transformations in the learned representations. The latent vector, thus sampled, is
passed to the decoder to generate the augmented data point.

Though new data can be generated from every (u, o) € Q', based on our third key observation (listed
in section , we propose to generate new data for y; € {1,---,C} in regions where y; is hard to
classify. In other words, we formulate the problem of generating new data from a point p € h' (X) if
we believe that p is hard to classify. To achieve this, for every p € h! (X), we define a neighborhood
as

Np = {q e n' (X) | dist (p,q) < w}, )

where dist (p, q) is the distance function for points p and q. In this work, we implement it using the
cosine similarity (CS) function. Note that we tried the Euclidean and Manhattan distances, too, but
CS’s results (reported in section[4.3)) were slightly better.

Next, we compute the potential of p using radial basis functions (RBFs), as shown in Algorithm I
The value of RBF of p and its neighbor q is added if they belong to different classes, otherwise it is
subtracted. Therefore, observing a positive potential in p would mean that it is surrounded more by
the instances of other classes as compared to the instances of the same class. Accordingly, we choose
p as a source for generating new data if its potential is positive. Note that Algorithm|I|makes sure
that at least one of its neighbors belongs to the same class as p. This constraint is imposed to exclude
potentially noisy samples. Thus, the final set of distributions for DA at step | of H (f is given as

o' = {(N,U) =Q (Z | Bt (X)) | x € X, potential (hl (x) > 0)} . (6)

Finally, we generate the set of augmented data at step [ as

by = {(pvy) | p:Q(Z)7Z:N+ﬂUEa(ﬂ7U) Golang((lI)}v (7N

where y is the class label associated with h! (x) whose corresponding distribution is (u, o) € O'.
Note that for every (p1, o) € O' we randomly generate N (n,0) New data points (e.g., 3, 5 or 10 data
points).

Once generated, we can use the hy in two ways. The first option is to freeze the representation
learning component HJ, pass hy through {A**1, h!+2 ... A} and use the output of h* to fine-tune
only the predictor Pg[ . The second option is to fine-tune all subsequent layers to optimize parameters
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Algorithm 1: The algorithm to compute potential of a point p € h' (X)
Input :Point p, neighborhood A, and the spread of RBF ~

potential =0
noisy = true
for every q € N, do
if p and q have the same class label then
noisy = false
. . ( lla—pl| )2
potential = potential - e\" 7
else
‘ . . ( lla—pll )2
potential = potential + e\~
end
end

if noisy then

| potential = -1
end
Output : potential

of both the predictor and representation learning components. We tested both options, and found the
latter to work significantly better.

After computing the h!; and completing the fine-tuning of the proceeding levels, we repeat the
entire process for level [ + 1. We present the pseudo-code of the proposed iterative hierarchical data
augmentation procedure in Algorithm 2]

Algorithm 2: The IHDA Algorithm
Input :Dataset D, distance w, and probability p
Train F) = [H(f,Pé”} on D
for [=1t0 Ldo
continue to next level with probability m P
Train ¢ using Eq.
Compute O' using Eq. |f]
Generate h!4 using Eq.
Fine-tune [{A'*?, hl*2 ... AL} P using by
end
Output: Fy»

Note that the generic form of the proposed IHDA, as sown in Algorithm 2} can be applied to any deep
network that has L representation learning levels, where [ € L can be a convolutional layer or even a
residual block. In this work we tested IHDA mostly for block-based deep networks, i.e., residual
networks, where we apply IHDA at block-level (output of residual blocks) instead of individual
convolutional layers, except for one experiment (see sec. 4.2.2). Further note that to reduce overfitting
and computational complexity for very deep networks, we employ an approach inspired by the idea of
“dropout." More specifically, we drop out a level from IHDA with probability p, whose value can be
found using a validation set. However, since feature spaces at deeper levels can be more meaningful

than those at the earlier levels, we multiply p with ——— to gradually reduce the probability of

1+log(1)
dropout for deeper levels.

4 Experiments

This section presents the results of the empirical validation of IHDA on three image classification
benchmarks: CIFAR-10, CIFAR-100 [1]], and ImageNet [32]]. The CIFAR datasets consist of 32x32
colored natural images. CIFAR-10 has ten classes, where CIFAR-100 has undred classes. Both
datasets have 50,000 images for training a model and 10,000 images for testing. On the other hand,



ImageNet has 1000 classes. It consists of 1.2 million images for training a model, and 50,000 images
for testing.

This section also presents the results of applying IHDA on Sussex-Huawei Locomotion-Transportation
(SHL) challeneg dataset [33]], which is a (non-image) wearable-sensor based activity recognition
benchmark. It consists of labelled data on eight different modes of transportation, which were
collected from one person over a period of 82 days, from which 62 days of data is provided for
training, and 20 days of data for testing. Both training and testing data have 1-minute segments
ordered in a randomized fashion.

4.1 Experimental Setup

In the first experiment, we evaluated the performance of IHDA on CIFAR and ImageNet datasets
with several state-of-the-art deep networks. For this, we implemented ResNet, Wide-ResNet, SE-
RestNet, Shake-Shake, and PyramidNet. Within this experiment, we also compared the IHDA with
the state-of-the-art DA methods on these datasets. For this, we chose AA [17], AAA [29], PBA [16],
and ISDA [20]. The results of this experiment are summarized in Tables|[T] [2]and 3]

In the second experiment, we conducted an ablation study to better understand the performance of
different components of the [IHDA on CIFAR datasets for RestNet-110. The results of this experiment
are summarized in Table[d] Note that in all image-data experiments we evaluated both the standard
IHDA and the IHDA+, where “+" indicates that the IHDA was applied with standard DA techniques.
That is, we applied random compositions of the given set of transformation operations (translation,
rotation, and flipping) to D before training Fy at step 1 of Algorithm[2] For a fair comparison, in
IHDA+, the DA was performed at the same levels as those of IHDA.

Furthermore, to evaluate IHDA'’s performance on SHL dataset, we implemented a deep neural network
following the guidelines given in [33]], and tested it with and without IHDA. The input to the network
were the frequency-domain features extracted from the raw magnitude vectors.

4.2 Implementation

This sections provides implementation details, including the details of hyper-parameter tuning for
both image and SHL datasets.

4.2.1 Experiments on Image Data

In all experiments, the spread of RBF ~y in Algorithm[T|was set to 0.05. For other hyper-parameters
(including p, and w), we held out a part of the training dataset as the validation set to find their
optimum values. The hyper-parameter p and w, for each experiment, are selected from the interval
[0, 1], with a step size of 0.05, based on the performance on the validation set.

For CIFAR datasets, the validation set had 5000 images, which were taken from the training set. For
ImageNet, we used its reduced subset, which was created by randomly choosing 150 classes and
50,000 samples. From this reduced subset, we held out 5000 images for the validation set to tune the
hyperparameters. The optimum values of the hyperparameters were then used to apply Algorithm
[2on full datasets from scratch. Note that the final results on ImageNet are reported on a set that is
different from the validation set, which was used to tune the hyperparameters. For configurations of
the models, please see the supplementary materials.

Three important points to note about the implementation of ¢' (a VAE at level [) are as follows. (1)
For each ¢!, we used the same architecture and hyper-parameters for all models, but it varied for
CIFAR and ImageNet datasets. Please see the supplementary materials for details. (2) Each g’ was
trained on the output of residual block corresponding to level [. (3) In each experiment, to train g' on
the output space of a residual block I, 10% of the set h! (X) was used as the validation set.

4.2.2 Experiments on SHL Data

In order to reproduce the results of [33]], we followed their setup and considered only three sensors:
accelerometer, gyroscope, and magnetometer. For each sensor, 1-minute multi-channel data were
combined by computing a magnitude vector. Next, the magnitude vector for each 1-minute segment
was truncated into 5-second frames with a skip size of 2.5 seconds. This resulted in 375,130 frames



Table 1: Test set error (%) of IHDA on CIFAR 10 with different models. Lower is better. We
conducted five independent experiments, and report the mean values along with their standard
deviations. The best results are bold-faced; whereas the second best results are italic-faced. For
ISDA, PBA, AA and AAA, where available, we report the results from [20} [16} 17, [29], respectively.
“Baseline (B)” represents the initial accuracy of IHDA+.

Model B ISDA PBA AA AAA [HDA IHDA+

ResNet-32 7.60 7.09 - 450 - 390+ 0.1 3.80+0.1
ResNet-56 6.67 - - 3.60 - 293+0.1 285+0.1
ResNet-110 645 633 - - - 278+ 02 272+0.2
Se-ResNet-110 622 596 - - - 26702 250+£0.2
Wide-ResNet-16-8 424 404 - - - 237+01 223+0.1
Wide-ResNet-28-10 385 358 258 260 190 219+£0.1 21711+£0.1
Shake-Shake (26, 2x32d)  3.55 - 254 250 236 2.07+02 2.00+0.2
Shake-Shake (26, 2x96d) 291 - 203 200 185 1.72+0.2 1.66+0.2
Shake-Shake (26, 2x112d) 2.84 - 203 190 1.78 1.63+02 1.60+0.2
PyramidNet 265 - 146 150 136 1.23+0.1 1.20+0.1

of training and 68,376 frames of testing data. Finally, Fast Fourier Transform was applied to each
frame to extract a 753-dimensional feature vector.

For the classification model, we implemented a fully connected neural network classifier by following
the guidelines provided in [33]]. Since the model consisted of only three hidden layers, to which the
IHDA was applied, we did not use the hyper-parameter p. The best hyper-parameter w was selected
in the same manner as it was done in experiments on image datasets using 10% of the training data as
validation data. The spread of RBF ~ in Algorithm [I] was again set to 0.05.

Finally, each ¢! in this case also had the same architecture and hyper-parameters. Please see the
supplementary materials for details. Similar to our experiments on image datasets, 10% of the set
h' (X) was used as the validation set to train each g'. However, unlike the experiments on image
data, each ¢! in this case was trained on the activation space of a hidden layer, instead of a residual
block, corresponding to level [.

4.3 Results

Table [T) presents the baseline results of the state-of-the-art deep networks on CIFAR 10. It also shows
the results of state-of-the-art DA methods and those of IHDA and IHDA+. Please observe that the
IHDA and the IHDA+ consistently improved the models’ performance by iteratively fine-tuning them
on the generated data. Furthermore, their performance is better than the existing DA solutions for
these networks in all cases, except for Wide-ResNet-28-10 for which AAA gave the best results.

Between IHDA and IHDA+, the latter provided slightly better performance, which shows that the
proposed IHDA algorithm benefited from doing simple augmentations in the input space. Therefore,
we think that if used with more advanced DA methods, the IHDA can improve the generalization
performance of deep networks even more. We confirm this fact by implementing IHDA+ using DA
policies of AA [17], results for which are presented in section {.4]

Table 2] and Table [3|present the results of IHDA and IHDA+ alongside the baseline performance of the
deep networks on CIFAR 100 and ImageNet datasets, respectively. Similar to the results on CIFAR
10, these tables also show consistent improvement in the models’ performances when fine-tuned with
IHDA and IHDA+. Their results are also better than the state-of-the-art DA approaches, and the gain
in the performance of IHDA with simple augmentations in the input space can be observed again.

Table [ presents the ablation study results, which we did to understand the effectiveness of different
components of IHDA. For this study, we considered the following variants: (1) p = 0 means that we
did the augmentations for each . (2) p = 1 means that we set the dropout probability to maximum.
(3) Only Péw means that we only fine-tuned the predictor part of the network. (4) Same p for each |
means that we did not reduce the dropout probability for deeper layers. (5) Random Selection means
that instead of selecting source data points based on their potential, we selected them randomly.



Table 2: Test set error (%) of IHDA on CIFAR 100 with different models. The details are the same
as those of Table[T] Note that the results of Shake-Shake are for its (26, 2x96d) implementation.

Model B ISDA PBA AA AAA THDA IHDA+

ResNet-32 31.30 30.27 - - - 2220£0.1 21.80 +0.1
ResNet-110 28.57 2757 - - - 1845+ 0.2 18.00 £0.2
Se-ResNet-110 274 2663 - - - 17.54 £ 0.2 17.00 £ 0.2

Wide-ResNet-16-8  20.23 1991 - - - 16.15+ 0.1 16.00 £0.1
Wide-ResNet-28-10  18.76 17.98 16.73 17.1 1549 1391+0.1 1319+0.1
Shake-Shake 17.09 - 1531 143 1410 11.17£02 11.08 £0.2
PyramidNet 14.01 - 1094 10.70 1042 09.70£0.1 09.01 = 0.1

Table 3: Validation set Top 1/ Top 5 accuracy (%) of IHDA on ImageNet with different models.
Higher is better. We conducted three independent experiments, and report the mean values. The best
results are bold-faced; whereas the second best results are italic-faced. Results for baseline and AA
are taken from [17] and those of AAA are taken from [29].

Model Baseline AA AAA IHDA IHDA+

ResNet-50  76.3/93.1 77.6/93.8 79.94/9447 79.2/95.1 79.9/95.9
ResNet-200 78.5/942 80.0/95.0 81.32/953 82.0/96.8 82.9/97.3

Please observe that when augmented data were generated for each [, the performance of the model
degrades, which could be because fine-tuning for each [ could lead to model’s overfitting. The results
of training only the predictor, using the same dropout probability for each level, and those of random
selection of samples are better than the baseline, but not as notable as that of [HDA and IHDA+. This
indicates the importance of tuning of all subsequent levels, forcing the dropout to decrease for higher
levels, and generation of new data in difficult regions of the feature space, respectively. Note that the
results of even the most light-weight version of IHDA (p = 1) were better than the baseline.

In the experiment on (non-image) SHL dataset, the baseline recognition accuracy of the model on the
testing set was 83% (for before post-processing case), which is slightly better than what is reported
in [33]. However, after fine-tuning the model with the IHDA, the performance improved to 92% =+
0.05%. Note that we report the mean performance of five independent trials. The results indicate that
IHDA can be used to improve the generalization performance of deep networks for different domains.

4.4 THDA+ using Augmentation Policies of AA [17]

We also tested IHDA+ with the learned augmentation policies of AA for (a) Wide-ResNet-28-10 on
CIFAR-10 and (b) Resnet-50 on ImageNet. In (a) the test error (%) improved to 1.92 (previously
2.11). In (b) the Top 1/ Top 5 accuracy (%) improved to 81.47 / 96.50 (previously 79.9 / 95.9). These
results confirm that if used with advanced DA methods, the IHDA can improve the generalization

Table 4: Test set error(%) of the ablation study of IHDA on CIFAR datasets for ResNet-110

Setting CIFAR 10 CIFAR 100
Baseline 6.45 28.57
p=20 6.87 29.68
p=1 4.14 24.25
Only Péw 6.01 27.78
Same p = 0.55 foreach ! 5.01 25.65
Random selection 5.73 26.91
IHDA (p = 0.55) 2.78 18.45
IHDA+ (p = 0.55) 2.72 18.00
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Figure 1: Test error (%) of ResNet-110 vs. p on CIFAR-10

performance of deep networks even more. Therefore, [HDA can be considered as a complementary
approach to the SOTA DA techniques that work in the input space

5 Hyper-parameters p and w

For the hyper-parameter p, we observed a U-shaped behavior; see Figure(l] That is, increasing its
values improved the performance to a certain extent, after which the performance started to degrade.
Furthermore, we observed that the best value of p depends on the number of levels L. For example,
for ResNet-32, the best results were obtained for p = 0.35, whereas it was p = 0.55 for ResNet-110.

As for w, it is a difficult hyper-parameter to tune and has to be tuned for each [, separately. Unfor-
tunately, it is not easy to provide a concrete guideline on how to select its optimal value other than
using the validation set.

6 Computational Complexity

IHDA is an iterative method, which starts after the initial training of the model to convergence, where
each iteration is a composition of (a) Generation of augmented data and (b) Fine-tuning of the model.
However, the number of iterations is determined by the hyperparameter p, which can be tuned based
on practical user constraints. Furthermore, each iteration fine-tunes a smaller version of the model
(only proceeding layers are trained) on fewer data points (only points with positive potential are
employed) as compared to the initial training. On average, computed over all experiments, IHDA took
about 30% of the original training time, which also includes the time spent on tuning hyperparameters.
For the sake of comparison, we trained the baseline model for ResNet-110 (without IHDA) for the
same extra number of epochs on CIFAR-10 & CIFAR-100. The test errors were 6.33 and 28.21,
respectively, which are significantly larger than those of IHDA and IHDA+.

7 Conclusion

In this paper, we proposed a domain-agnostic post-training domain augmentation (DA) method, called
IHDA, to fine-tune trained deep networks to improve their generalization performance. In contrast to
previous approaches, the IHDA performs iterative data augmentation in both low-level and high-level
learned representation spaces of a deep network. At a given level, DA is achieved by transforming
the feature space into a distribution space and generating new samples using the learned distributions.
For effective DA, the IHDA synthesizes new samples in hard-to-learn regions by analyzing each data
point’s neighborhood properties. The new representations, thus generated, are used to fine-tune the
parameters of the subsequent layers. Superior results on three image classification datasets and one
(non-image) activity classification dataset demonstrate the effectiveness of IHDA in improving the
generalization performance of deep networks.



Broader Impact

In this paper, we proposed a new data augmentation technique to improve the generalization of any
deep network, making our work general enough to be applied to a large variety of supervised learning
problems. Since we do not foresee any particular application for our method, a Broader Impact
discussion is not applicable.
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