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The route to chaos in routing games:

When is price of anarchy too optimistic?

A Background Material on Dynamical Systems

This section familiarizes the reader with key concepts from dynamical systems necessary for this
work, e.g., chaotic behavior, absolutely continuous invariant measures, topological entropy, and
ergodic theorem.

It seems that there is no universally accepted definition of chaotic behavior of a dynamical system.
Most definitions of chaos concern one of the following aspects:

• complex behavior of trajectories, such as Li-Yorke chaos;
• fast growth of the number of distinguishable orbits of length n, such as positive topological

entropy;
• sensitive dependence on initial conditions, such as Devaney or Auslander-Yorke chaos;
• recurrence properties, such as transitivity or mixing.

In this article, the first two are crucial. Also, in the presence of chaos, studying precise single
orbit dynamics can be intractable; we study the average behavior of trajectories instead. Thus, it is
important to know whether the average converges. This is when ergodic theorems come into play.

A.1 Li-Yorke chaos and topological entropy

The origin of the definition of Li-Yorke chaos (see Definition 3.8) is in the seminal Li and Yorke’s
article [37]. Intuitively orbits of two points from the scrambled set have to gather themselves
arbitrarily close and spring aside infinitely many times but (if X is compact) it cannot happen
simultaneously for each pair of points. Why should a system with this property be chaotic? Obviously
the existence of a large scrambled set implies that orbits of points behave in unpredictable, complex
way. More arguments come from the theory of interval transformations, in view of which it was
introduced. For such maps the existence of one Li-Yorke pair implies the existence of an uncountable
scrambled set [34] and it is not very far from implying all other properties that have been called
chaotic in this context, see e.g. [47]. In general, Li-Yorke chaos has been proved to be a necessary
condition for many other “chaotic" properties to hold. A nice survey of properties of Li-Yorke chaotic
systems can be found in [8].

A crucial feature of the chaotic behavior of a dynamical system is exponential growth of the number
of distinguishable orbits. This happens if and only if the topological entropy of the system is positive.
In fact positivity of topological entropy turned out to be an essential criterion of chaos [27]. This
choice comes from the fact that the future of a deterministic (zero entropy) dynamical system can be
predicted if its past is known (see [57, Chapter 7]) and positive entropy is related to randomness and
chaos.

For every dynamical system over a compact phase space, we can define a number h(f) 2 [0,1]
called the topological entropy of transformation f . This quantity was first introduced by Adler,
Konheim and McAndrew [1] as the topological counterpart of metric (and Shannon) entropy.

For a given positive integer n we define the n-th Bowen-Dinaburg metric on X , ⇢fn as

⇢fn(x, y) = max
0i<n

dist(f i(x), f i(y)).

We say that the set E is (n, ")-separated if ⇢fn(x, y) > " for any distinct x, y 2 E and we denote by
s(n, ", f) the cardinality of the most numerous (n, ")-separated set for (X, f).
Definition A.1. The topological entropy of f is defined as

h(f) = lim
"&0

lim sup
n!1

1

n
log s(n, ", f).
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We begin with the intuitive explanation of the idea. Let us assume that we observe the dynamical
system with the precision " > 0, that is, we can distinguish any two points only if they are apart by
at least ". Then, after n iterations we will see at most s(n, ", f) different orbits. If transformation
f is mixing points, then s(n, ", f) will grow. Taking upper limit over n will give us the asymptotic
exponential growth rate of number of (distinguishable) orbits, and going with " to zero will give us
the quantity which can be treated as a measure of exponential speed, with which the number of orbits
grow (with n).

Both positive topological entropy and Li-Yorke chaos are local properties; in fact, entropy depends
only on a specific subset of the phase space and is concentrated on the set of so-called nonwandering
points [10]. The question whether positive topological entropy implies Li-Yorke chaos remained
open for some time, but eventually it was shown to be true; see [7]. On the other hand, there are
Li-Yorke chaotic interval maps with zero topological entropy (as was shown independently by Smítal
[52] and Xiong [58]). For deeper discussion of these matters we refer the reader to the excellent
surveys by Blanchard [6], Glasner and Ye [28], Li and Ye [36] and Ruette’s book [47].

Entropy of fa,b is positive: After this discussion we can show how entropy behaves for fa,b. For
any interval map, we have the following:
Theorem A.2 ([39]). For an interval map f , the following assertions are equivalent:

i) f has a periodic point whose period is not a power of 2,

ii) the topological entropy of f is positive.

Thus, Theorem A.2 combined with Corollary 3.10 strengthen the latter.
Corollary A.3. If b 2 (0, 1) \ {1/2}, then there exists ab such that if a > ab then fa,b has periodic

orbits of all periods, positive topological entropy and is Li-Yorke chaotic.

Calculating entropy: In general, computing the entropy is not an easy task. However, in the context
of interval maps, topological entropy can be computed quite straightforwardly — it is equal to the
exponential growth rate of the minimal number of monotone subintervals for fn.
Theorem A.4 ([40]). Let f be a piecewise monotone interval map and, for all n � 1, let cn be the

minimal cardinality of a monotone partition for fn
. Then

h(f) = lim
n!1

1

n
log cn = inf

n�1

1

n
log cn.

Moreover, for piecewise monotone interval maps, the entropy computed with any partition into
intervals, on which the map is monotone, is equal to the topological entropy [2, Prop. 4.2.3]. This
gives us a way to understand what positive entropy of fa,b means from a game-theoretic perspective.
For a > 1

b(1�b) the map fa,b is a bimodal map with two critical points xl, xr (defined in (7)) and
a (unique in (0, 1)) equilibrium b 2 (xl, xr). Because x is the probability of choosing the first
strategy, we can say that if x < xl or x > xr, then one of the strategies is overused and if x
is close to b, x 2 [xl, xr], then the system is approximately at equilibrium. Now, we can take a
partition {[0, xl), [xl, xr], (xr, 1]} into three intervals on which fa,b is monotone. For every x 2 [0, 1]
and for every n � 1 we encode three events for the n-th iteration of x: x[n] = A if the system is
approximately at equilibrium, that is if fn

a,b(x) 2 [xl, xr]; x[n] = B if the second strategy is overused,
that is when fn

a,b(x) 2 [0, xl) and x[n] = C if the first strategy is overused, fn
a,b(x) 2 (xr, 1]. This

way for every x 2 [0, 1] we get an infinite sequence x on the alphabet {A,B,C}. Now, the fact that
h(fa,b) > 0 implies that the number of different blocks of length n, which we can observe looking at
different x we generated this way, will grow exponentially.

A.2 Invariant measures and ergodic theorem

We can also discuss a discrete dynamical system in terms of a measure preserving transformation
defined on a probability space. This approach can handle not only purely mathematical concepts
but also physical phenomena in nature. This subsection is devoted to invariant measures, absolutely
continuous measures and the most fundamental idea in ergodic theory — the Birkhoff Ergodic
Theorem, which states that with probability one the average of a function along an orbit of an ergodic
transformation is equal to the integral of the given function.
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Definitions. Let (X,B, µ) be a probability space and f : X 7! X be a measurable map. The measure
µ is f -invariant (a map f is µ-invariant) if µ(f�1E) = µ(E) for every E 2 B. For an f -invariant
measure µ we say that µ is ergodic (f is ergodic) if for all E 2 B if f�1E = E then µ(E) = 0 or 1.
A measure µ is absolutely continuous with respect to Lebesgue measure if and only if for every set
E 2 B of zero Lebesgue measure µ(E) = 0.

We can now state the ergodic theorem.
Theorem A.5 (Birkhoff Ergodic Theorem). Let (X,B, µ) be a probability space. If f is µ-invariant

and g is integrable, then

lim
n!1

1

n

n�1X

k=0

g(fk(x)) = g⇤(x)

for some g⇤ 2 L1(X,µ) with g⇤(f(x)) = g⇤(x) for almost every x. Furthermore if f is ergodic,

then g⇤ is constant and

lim
n!1

1

n

n�1X

k=0

g(fk(x)) =

Z

X
g dµ

for almost every x.

Lastly, why do absolutely continuous invariant measures matter? Computer-based investigations are
widely used to gain insights into the dynamics of chaotic phenomena. However, one must exercise
caution in the interpretation of computer simulations. Often, chaotic systems exhibit multiple ergodic
invariant measures [26], but if the absolutely continuous measure with respect to Lebesgue measure
exists, the averages of a given observable (function) along the orbits obtained from the computer
simulations will be equal to the integral of this observable with respect to our measure [11]. Thus,
the theoretical measure and the computational measure coincide in this work.

B Main Figures

B.1 Potential function, cobweb diagrams and time evolution

Figure 2: Population increase drives period-doubling instability and chaos. See discussion in SM B.1.

Although our congestion game has an associated convex potential function �a,b(x) =
N2

2

�
↵x2 + �(1� x)2

�
= a2

2

�
(1� b)x2 + b(1� x)2

�
whose unique global minimum is the Nash
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equilibrium b (without loss of generality, we set ↵ + � = 1 and ✏ = 1 � 1/e so that a = N
and b = �), MWU at large a, or equivalently large N with a fixed ✏, do not converge to the
equilibrium, unlike a gradient-like update with a small step size. A line connecting �a,b(xn) to
�a,b(xn+1) = �a,b(fa,b(xn)) in the left column of Figure 2 is encoded with the color representing
the timestep n. Later times are shown in red, while earlier times are shown in blue. Cobweb diagrams
of the map fa,b are shown in the middle column, while the dynamics of the map are shown on the
right column. From top to bottom, values of a increase while b remains fixed at 0.7, demonstrating
population size-driven instability. At these parameter values, the map fa,b is bimodal (blue curves in
the middle column). For small a (top row), the dynamics converge to the Nash equilibrium b. As
a increases, the dynamics converge to a period 2 attractor (second row), a period 4 attractor (third
row), and a chaotic attractor (bottom row). As shown in Section 3, however, the time average of
these orbits is exactly the Nash equilibrium b, represented by the horizontal green dashed lines on the
right column. The initial condition here is set to x0 = 0.2. The bifurcation diagram associated with
b = 0.7 is shown in Fig. 3.

B.2 Bifurcation diagram, regret and social cost (asymmetric case b 6= 0.5)

Figure 3: Bifurcation diagram, regret and social cost when the equilibrium b 6= 0.5. See discussion in
SM B.2.

The top figure in Figure 3 demonstrates instability of the routing game driven by the increase in total
demand N. The Nash equilibrium here is set to b = 0.7. As usual, we fix the learning rate ✏ = 1�1/e
so that a = N for simplicity. At small N , the dynamics converges toward the fixed point b, which is
the Nash equilibrium. However, as N exceeds the carrying capacity of N⇤

b = 2/b(1� b), the Nash
equilibrium becomes repelling and the dynamics no longer converge to it. The period-doubling route
to chaos begins. Remarkably, the time-average of all orbits is exactly b, (the green line that tracks the
center of masses of the blue orbits).

The middle figure shows the time-average regret 1
T RT in purple. It suddenly becomes strictly positive

at the first bifurcation, consistent with the prediction of (8) which states that the time-average regret
is proportional to the fluctuations from the Nash equilibrium. The green line shows our upper bound
on the time-average regret from Equation (9).

The bottom figure shows the normalized time-average social cost (i.e., time average social cost
divided by optimum). It also suddenly becomes greater than 1 at the first bifurcation, consistent
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with the prediction of Equation (6). Hence, the Price of Anarchy bound (of 1) is only a valid upper
bound for the system inefficiency before the first bifurcation arises. The time average cost of the
non-equilibrating dynamics is proportional to its fluctuations away from the Nash equilibrium. The
rate at which the normalized time-average social cost increases above unity at the first bifurcation is
depicted by the tangent line (dashed blue), which is calculated from Equation (16).

B.3 Bifurcation diagram, regret and social cost (symmetric case b = 0.5)

Figure 4: Bifurcation diagram, regret and social cost when the equilibrium b = 0.5. See discussion in
SM B.3.

The top figure in Figure 4 demonstrates the instability of the routing game driven by the increase in
total demand N. Here, ✏ = 1� 1/e so a = N as usual. In this symmetric case, the capacity of the
network, under which long-time dynamics equilibrate, is N⇤

b = 8. Above the capacity, attracting
periodic orbits of period 2 emerges.

In the middle figure the time-average regret is shown in the purple. It suddenly becomes strictly
positive at the bifurcation. The regret bound also well approximates the actual values.

In the bottom figure the normalized time-average social cost also suddenly becomes greater than
1 at the bifurcation. Even in the symmetric case, the classic Price of Anarchy metric fails for
N > N⇤

b = 8.

C Model discussion

One of the most well-known learning models in behavioral game theory is the Experienced Weighted
Attraction (EWA) model [12, 29–31]. This is an extremely influential model in behavioral game
theory with thousands of citations. The EWA model includes as a special case the MWU algorithm.
EWA is effectively designed as a multi-parametric model that can incorporate a number of useful
features of pre-existing learning models. The core of the EWA model is two variables which are
updated after each round. The first variable N(t) captures abstractly the number of “observation-
equivalents" of past experience. This is not actually needed to capture MWU and it can be set equal
to 1 by setting the ⇢ parameter of EWA equal to zero. The second variable is Aj(t) and captures
the “attraction" of a strategy after period t. Although the details are not particularly important, this
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is allowed to capture the accumulated payoff of all actions for the agent (e.g. by setting � = 1 and
� = 1 in the EWA model whose full details are outside the scope of our paper). Finally, given these
“attractions" the choice probabilities allow for logit probability response which exactly captures MWU
where 1 + ✏ = e�. At least one empirical test seems to result into a model that is closely matching
MWU run with a large � = 14.830 (see last line of Table 5 in [30]). At this point it is important to
note that our main reasoning for pointing out these connections between EWA and MWU is to show
that standard normalizing assumptions for MWU that are indeed useful for proving regret bounds
may be a bit too restrictive if we wish to capture a representative range of human behavior. Moreover,
running MWU with large step sizes, although antithetical to the intuition coming from worst case
regret bounds may indeed be a reasonable model at least in some cases of games and at least for
some populations. It is perhaps not surprising that no single perfect value exists for any of the related
parameters and indeed different games and possibly different groups of people are better captured by
different parameters values (some large, some small). Although, we do not claim by any means that
MWU with unconstrained values is a perfect or even always plausible model of human behavior, its
analysis is an important step forward towards a theoretical treatment of much more detailed models
such as the complete EWA model. Moreover, we believe that the fact that we can analyze MWU in
this unconstrained setting using techniques that are orthogonal to the standard regret bounds can only
help us understand MWU even more thoroughly than before.

Next we will address directly the issue of cost normalization and discuss why normalizing costs
does not immediately address the issues in congestion games with many agents. Before doing so we
should note that it is not necessary for MWU to be executed with costs lying in the [0, 1] interval.
MWU can be analyzed to show regret bounds that directly depend on the range of costs in the game
which do not have to lie in [0, 1] (analogously in the language of online convex optimization regret
bounds that depend on the L-Lipschitz constants of the cost functions); see analysis of Normalized
Exponentiated Gradient, which is equivalent to MWU, in [50] corollaries 2.14, 2.16 for more details.

To see why normalizing costs does not immediately address the issues of learning in congestion
games with many agents, let’s take costs ct normalized to be in [0, 1] and then for any ✏ 2 (0, 1) we
have the standard regret bound:

TX

t=1

ct(xt) 
ln(n)

✏
+

1

1� ✏
min
x⇤2X

TX

t=1

ct(x
⇤). (11)

Let’s focus on the term ln(n)
✏ . This term is in units of maximum possible cost, e.g., what if all drivers

nonsensically chose the same road. In standard online learning applications such as multi-armed
bandits, Rock-Paper-Scissors, the intuition is that max unit cost per day is a penny and one can
effectively discard this "day zero" cost term (i.e., ln(n)

✏ ) as noise. Let’s call these low stakes games.

Congestion games with a large number of users are high stake games. As we keep increasing the
number of users N the maximum possible cost will inevitably become prohibitively large. In such
games bound (11) becomes impractical as there is no way to amortize this cost within a reasonable
time horizon.

Example: Let ✏ = 0.01 in a congestion game with n = 10 parallel edges/routes. Let the normalized
cost functions on each edge i be x4+d

N4+d in accordance to the standard quartic cost model. The max cost
of each agent is 1. The cost of each agent at the Nash equilibrium flow is approximately (1/n)4 as N
grows large since the effect of the constant term d dissipates. The ratio ln(n)

✏ Max Cost/Nash cost =
ln(n)
✏ n4 = 2.3 · 102 · 104 = 2.3 · 106 days are needed to cover "day zero" costs in (11), i.e., the term

ln(n)
✏ by paying an extra Nash equilibrium cost each day.

We are particularly interested in this regime. What would happen in the day-to-day behavior of a
modern congested city in the next few years? This requires the usage of new tools such as dynamical
systems analysis and experimental tests.

It is also important to note that the costs being in range [0,M ] instead of [0, 1] is not really restrictive.
One can always perform the following transformation that leaves MWU trajectories invariant. Scale
cost down by a multiplicative cost M , c0 = c/M , while using a new, larger ✏0 = 1� (1� ✏)M . This
transformation could of course lead to a value of ✏ close to 1, which seems bad for bound (11). This
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indeed would be an issue generally, but in our case we focus on high stakes settings where by design
(11) is not practically applicable as our example above shows. Surprisingly, our results, in fact, show
that this insistence on small learning rates is not even always necessary as we can exactly characterize
settings where we converge to equilibria, with vanishing regret and optimal social cost despite using
“large" ✏, where once again PoA techniques do not apply. Other recent papers have shown that this
phenomenon arises not only in potential games but much more generally. For example [4] establishes
finite regret with fixed step-sizes for alternating gradient descent dynamics in arbitrary two-agent
games.

Normalizing costs also leads to other problems with no easy solutions as well. Let’s for example
consider the alternative normalizing cost model. E.g., when a driver is experiencing 20 minutes delay
which lies in an interval [0,M ], then she should scale it down to [0, 1] and then plug it into MWU
with the original ✏, presumably something small and fixed/capped at e.g. 0.01. This indeed is one
possible model, but this is not the one we choose as in our setting this raises issues that cannot be
easily addressed.

The first issue is how is this cost normalization implemented in practice? When a driver experiences
20 minutes cost in New York, what does she has to divide it with before entering it to MWU?
Presumably her max cost to satisfy the [0, 1] constraint. How can a user know this normalization
factor?

A second issue has to do with the fact that the behavioral implications of the model are not always
natural. The behavioral model suggested above would have users in NYC that experience 20 min
delay divide this number with their maximum possible delay, which is some really large number in
minutes as it corresponds to the black swan worst case scenario where all drivers use the same street.
So effectively, the normalized costs that enter MWU are typically very small numbers e.g. 0.001.
With a fixed ✏ for instance at 0.01 the agents are for all practical purposes unresponsive to traffic
costs. Moreover, when an agent moves from a small city to a large city, they become more "relaxed"
when it comes to their experienced delays as they scale down their actual costs more sharply.

Finally, a model where agents scale down costs by a multiplicative constant, when applied in a PoA
setting, seems to be using simultaneously two conceptually inconsistent axioms. The first axiom is
that the cost of games are not amenable to affine transformations, particularly payoff shifts, since these
do not leave PoA invariant. As is well known, the PoA literature departs from the von Neumann and
Morgenstern model of utilities and assumes that utilities exist as specific numbers in their given units.
When it comes to learning, though, a second axiom is invoked and these utilities are automatically
rescaled to [0, 1]. This is despite the fact that the behavior of all online learning dynamics e.g. GD,
MWU, and even algorithms outside Follow-the-Regularized-Leader algorithms, such as Optimistic
MWU, logit learning, etc, are not invariant under this payoff transformation. So, the affine payoff
transformations that affect PoA analysis are not allowed, but the affine payoff transformations that
affect learning are automatically enforced (by whom?). We believe that the effects of the scale of
payoffs, learning rates should be carefully studied and our paper is an important step in this direction.
Finally, our behavioral model fully encompasses the alternative as a special case, when the max game
costs are indeed 1.

We end by making one final note about how in the case of increasing population size not even
shrinking step-sizes always suffice to avoid chaos. Our analysis for a fixed learning rate ✏ can easily
be extended to capture non-equilibrating phenomena for arbitrary sequences of shrinking step sizes,
as long as we allow for a dynamically evolving, increasing population. It should be already clear
that the step-size ✏ and the population size N (or equivalently the value of the maximum cost M )
are competing forces that control system’s stability. The larger population size implies the larger
maximum cost M , which in turn implies the larger time horizon for MWU with a shrinking step-size
algorithm to acquire smaller time-average regret, and for the classic equilibrium, Price of Anarchy,
analysis to restore its predictive power. Unfortunately, if the population increases at a sufficiently fast
rate to counter the shrinking step-size rate, the time-average regret will never vanish. Specifically,
from our analysis, we proved that the relevant parameter that controls the long-time dynamics (e.g.
equilibration, limit cycles, or chaos) and the social cost is a = N ln

⇣
1

1�✏

⌘
, see Equation 3. As

long as at every time step n, a(n) = N(n) ln
⇣

1
1�✏(n)

⌘
is greater than the chaotic threshold then the

system will always remain in the chaotic regime despite the step-size going to zero. For example,
for ✏(n) = 1/

p
n, it suffices that N � ab

ln
⇣

1
1�1/

p
n

⌘ where ab is the threshold of chaos defined in
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Theorem 3.9. Simple calculations show that it suffices N � ab
p
n � ab

ln
⇣

1
1�1/

p
n

⌘ , Namely, a slowly

(sublinearly) increasing population suffices for the system to remain forever in its non-equilibrating,
inefficient, chaotic regime.

D Proofs

D.1 Proof of Theorem 4.1

Theorem 4.1. The limit of the time-average regret is the total demand N times the limit of the

observable (x� b)2 (provided this limit exists). That is

lim
T!1

RT

T
= N

 
lim

T!1

1

T

TX

n=1

(xn � b)2
!
. (12)

Proof. Recall that the time-average regret is

1

T
RT =

1

T

TX

n=1

�
↵Nx2

n + �N(1� xn)
2
�
�min

(
1

T

TX

n=1

↵Nxn,
1

T

TX

n=1

�N(1� xn)

)
(13)

Consider

1

T

 
TX

n=1

↵xn �
TX

n=1

�(1� xn)

!
=

1

T

TX

n=1

[(↵+ �)xn � �] = (↵+�)

 
1

T

TX

n=1

xn � �

↵+ �

!
. (14)

The quantity �
↵+� is the system equilibrium b. Without loss of generality we assume as mentioned

earlier ↵+ � = 1. Then, b = � and limT!1

⇣
1
T

PT
n=1 xn

⌘
= b, by Theorem 3.3.

Therefore, in the limit T ! 1, two terms in min-term of (13) coincide and we have by substituting
↵ = 1� � and remembering that � = b

lim
T!1

RT

T
= lim

T!1

N

T

TX

n=1

�
(1� �)x2

n + �(1� xn)
2 � �(1� �)

�

= lim
T!1

N

T

TX

n=1

�
x2
n � 2�xn + �2

�
= lim

T!1

N

T

TX

n=1

(xn � b)2.

D.2 Proof of Lemma 4.2

Lemma 4.2. For a > 1
b(1�b) the interval I = [ymin, ymax] is invariant and globally absorbing on

(0, 1).

Proof. Fix b 2 (0, 1). Simple calculations show that b 2 (xl, xr) if and only if a > 1/b(1 � b).7
From now we assume that a > 1/b(1 � b). Recall that b is a fixed point of fa,b so we have
b = fa,b(b) 2 fa,b([xl, xr]) = [ymin, ymax] = I . Therefore b 2 I \ (xl, xr) and I \ (xl, xr) 6= ;.
Because fa,b is decreasing between the critical points, we have f 0

a,b(b) = ab2�ab+1 < 0. The latter
and the uniqueness of a fixed point in (0, 1) implies that fa,b(x) > x for x 2 (0, b), and fa,b(x) < x
for x 2 (b, 1).

Obviously, if x 2 I \ (xl, xr), then fa,b(x) 2 fa,b([xl, xr]) = I . For x 2 [ymin, xl) we have
fa,b(x) < fa,b(xl) = ymax. Suppose that fa,b(x) < ymin, then fa,b(x) < ymin  x but it is
impossible because fa,b(x) > x for x 2 (0, b). Thus fa,b([ymin, xl]) ⇢ I . The same reasoning
shows that fa,b([xr, ymax]) ⇢ I . Thus fa,b(I) ⇢ I .

7Therefore b 2 (xl, xr) when x = b is repelling (for a > 2/b(1� b)).
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Now let x 2 (0, xl). Obviously fa,b(x) < ymax and because xl < b we have fa,b(x) > x for x < xl.
To show that the orbit of x falls eventually into I , it is sufficient to show that there exists n such
that fn

a,b(x) > ymin. Suppose that there is no such n, that is fn
a,b(x) < ymin for all n. The sequence

(fn
a,b(x))n�1 is increasing and bounded, so it has a limit. Denote the limit by c 2 (0, xl). Then

fa,b(c) has to be equal c, but this contradicts the fact that on (0, xl) there is no fixed point of fa,b.
Thus, orbits of every point from (0, xl) will eventually fall into the invariant set I . Similar reasoning
will show that orbits of every point from x 2 (xr, 1) will eventually fall into I .

D.3 Proof of Theorem 5.1

Theorem 5.1. For b = 0.5, the time-average social cost can be arbitrarily close to its worst possible

value for a sufficiently large a, i.e. for a sufficiently large population size
8
. Formally, for any

� > 0, there exists an a such that, for any initial condition x0, except countably many points, whose

trajectories eventually fall into the fixed point b we have

lim inf
T!1

1

T

TX

n=1

SC(xn) > max
x

SC(x)� �

Proof. For a symmetric equilibrium b = 0.5, the two cost functions increase with the loads at the
same rate ↵ = �. Recall from Section 2.2 that the social cost when fraction x of the population
adopts the first strategy is SC(x) = ↵N2x2 +↵N2(1� x)2. This strictly convex function attains its
minimum at the equilibrium x = b = 0.5, and its maximum of ↵N2 at x = 0 or x = 1. By Theorem
3.7 we know that for a > 8 there exists a periodic attracting orbit {�a, 1� �a}, where 0 < �a < 0.5.
This orbit attracts trajectories of all points of (0, 1), except countably many points, whose trajectories
eventually fall into the repelling fixed point 0.5. To establish that for all trajectories attracted by the
orbit {�a, 1� �a} the time-average limit of the social cost can become arbitrarily close to ↵N2, it
suffices to show that the distance of the two periodic points (of the unique attracting period-2 limit
cycle) to the nearest boundary goes to zero as a ! 1. Thus, it suffices to show that given any � > 0,
there exist an a such that �a < �.

For brevity, we denote the map fa,0.5 by fa. Then, since �a is a periodic point of a limit cycle of
period 2, we have f2

a (�a) = �a. The last equality implies fa(�a) = 1 � �a, which, after simple
calculations, implies

✓
�a

1� �a

◆2

= exp[a(�a � 0.5)].

Consider the function �(x) =
⇣

x
1�x

⌘2
� exp[a(x� 0.5)], then �(0) = � exp[�0.5a] < 0. On the

other hand, for any � 2 (0, 0.5), �(�) =
�

�
1��

�2� exp[a(��0.5)] > 1
2

�
�

1��

�2
> 0 for a sufficiently

large a > 0. The intermediate value theorem implies �a 2 (0, �), and the theorem follows.

E Analysis of variance spreading at the first period-doubling bifurcation

We study the behavior of the variance as a crosses the period doubling bifurcation point. We first
consider the model situation, where the map is g(x) = (�1 � 1)x+ �2x2 + �3x3. Note that �1 and
�2 here are not the coefficients of the cost functions. In this model situation, the bifurcation occurs
at �1 = 0. If �1 > 0 then the fixed point x = 0 is attracting, and as �1 < 0 then it is repelling, but
under some conditions on the coefficients there is an attracting periodic orbit of period 2. We are
interested only at the limit behavior as �1 goes to zero, in a small neighborhood of x = 0. Therefore
we may ignore all powers of x larger than 3 and all powers of �1 larger than 1. Period 2 points are
non-zero solutions of the equation

x = (�1�1)[(�1�1)x+�2x
2+�3x

3]+�2[(�1�1)x+�2x
2+�3x

3]2+�3[(�1�1)x+�2x
2+�3x

3]3.

8Recall from (3) that a = N ln
⇣

1
1�✏

⌘
.
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Ignoring higher order terms and dividing by x, we get the equation

(2�2
2�1 � 2�2

2 + 4�1�3 � 2�3)x
2 � �1�2x� 2�1 = 0.

Its discriminant is (after ignoring higher order terms in �1)

� = �16�1(�
2
2 + �3),

so

x =
�1�2 ± 4

p
��1(�2

2 + �3)

4(�2
2�1 � �2

2 + 2�1�3 � �3)
.

Assume now that �2
2 + �3 > 0. This is equivalent to Sg(0) < 0, so we will be able to apply it to our

map (see Proposition 3.1). If �1 is close to zero, in the numerator �1 is negligible compared to p
�1,

and in the denominator �1 is negligible compared to a constant. Thus, approximately we have

x = ±
s

��1
�2
2 + �3

.

Therefore, the variance is Var(X) = ��1

�2
2+�3

.

After Taylor expanding the map of Equation (4) around the fixed point b and comparing the coefficients
to those of g, we obtain �1 = 2 + ab(b� 1), �2 = a(b� 1

2 )(1 + ab(b� 1)) and �3 = a(1 + a( 16 +
b(b� 1))(3 + ab(b� 1))). Recalling the first bifurcation occurs at a⇤b = 2/b(1� b), we thus deduce
the (right) derivative of the variance with respect to a at the first period-doubling bifurcation:

dVar(X)

da

���
a=a⇤+

b

= �
d
⇣

�1

�2
2+�3

⌘

da

���
a=a⇤+

b

=
3b3(1� b)3

2� 6b(1� b)
, (15)

which is a unimodal function in the interval [0, 1] that is symmetric around b = 0.5, at which the
maximum 0.09375 is attained.

This allows us to deduce how fast the normalized time-average social cost increases at the first
bifurcation, signalling how equilibrium Price of Anarchy metric fails as we increase a, or equivalently
increase N . Namely, from Equation (6), one finds that the derivative of the normalized time-average
social cost with respect to a reads

d

da
(normalized time-average social cost)

���
a=a⇤+

b

=
1

b(1� b)

dVar(X)

da

���
a=a⇤+

b

=
3b2(1� b)2

2� 6b(1� b)
. (16)

When a < 2/b(1� b), the system equilibrates and the normalized time-average social cost is unity.
However, when a exceeds 2/b(1� b), the system is out of equilibrium, and normalized time-average
social cost suddenly increases with a finite rate, given by Equation (16). At the first period-doubling
bifurcation, the second-derivative with respect to a becomes discontinuous, akin to the second order
phase transition phenomena in statistical physics. Fig. 3 confirms the prediction of Equation (16).

Likewise, as the variance becomes positive, the time-average regret also becomes non-zero. At the
first period-doubling bifurcation, the time-average regret given by Equation (8) suddenly increases
with a at the rate (where we use our typical normalization a = N )

d

da
(time-average regret)

���
a=a⇤+

b

=
d (aVar(X))

da

���
a=a⇤+

b

=
3b2(1� b)2

1� 3b(1� b)
. (17)

Therefore, at the first period-doubling bifurcation, where the equilibrium analysis begins to break-
down, the following equality holds

d

da
(time-average regret)

���
a=a⇤+

b

= 2
d

da
(normalized time-average social cost)

���
a=a⇤+

b

. (18)

F Properties of attracting orbits

In this section, we investigate the properties of the attracting periodic orbits associated with the
interval map fa,b : [0, 1] ! [0, 1]

fa,b(x) =
x

x+ (1� x) exp (a(x� b))
. (19)
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We’ve argued in the main text that, when b = 0.5, the dynamics will converge toward the fixed
point b = 0.5 whenever a < 8. And for any a � 8, the long-time dynamics will converge toward
the attracting periodic orbits of period 2 located at {�a, 1 � �a}. The bifurcation diagram is thus
symmetric around b = 0.5 as shown in the top picture of Fig. 4. In this case, the time-average regret
is well-approximated by its upper bound, and the normalized time-average social cost asymptotes to
the maximum value of 2.

When b differs from 0.5, we have argued in the main text that the emergence of chaos is inevitable,
provided a is sufficiently large. The period-doubling bifurcations route to chaos is guaranteed to
arise. Fig. 1 of the main text shows chaotic bifurcation diagrams when b = 0.7. In this asymmetric
case, standard equilibrium analysis only applies when the fixed point b is stable, which is when
|f 0

a,b(b)|  1, or equivalently when a  2/b(1� b).

Figure 5: Period diagrams of the small-period attracting periodic orbits associated with the map
(19). The colors encode the periods of attracting periodic orbits as follows: period 1 (fixed point)
= yellow, period 2 = red, period 3 = blue, period 4 = green, period 5 = brown, period 6 = cyan,
period 7 = darkgray, period 8 = magenta, and period larger than 8 = white. The equilibrium analysis
is only viable when the fixed point b is stable, i.e. when a  2/b(1 � b). In other region of the
phase-space, non-equilibrating dynamics arise and system proceeds through the period-doubling
bifurcation route to chaos in the white region. The picture is generated from the following algorithm:
20000 preliminary iterations are discarded. Then a point is considered periodic of period n if
|fn(x)�x| < 0.0000000001 and it is not periodic of any period smaller than n. Slight asymmetry is
caused by the fact that the starting point is the left critical point xl = 1/2�

p
1/4� 1/a. In addition,

for a fixed a, as we vary b and penetrate into the chaotic regimes (white) from the outer layers, we
numerically observe Feigenbaum’s universal route to chaos as discussed below.

Feigenbaum’s universal route to chaos: The period diagrams as a function of the two free-
parameters a and b are shown in Fig. 5. It’s interesting to report numerical observations of Feigen-
baum’s route to chaos for our bimodal map fa,b. Although Feigenbaum’s universality is known
to apply among a one-dimensional unimodal interval map with a quadratic maximum [20, 35, 55],
we also observe the Feigenbaum’s period-doubling route to chaos for our bimodal interval map.
Specifically, by fixing a and varying b, we numerically measure the ratios

�n ⌘ bn+1 � bn
bn+2 � bn+1

, ↵n ⌘ dn
dn+1

, (20)

where bn denotes the value at which a period 2n-orbits appears, and dn = f2n�1

a,b (xl)� xl such that

the left critical point xl =
1
2

⇣
1�

q
1� 4

a

⌘
(the point at which fa,b attains its maximum) belongs to

the 2n-orbits9. As n grows large (we truncate our observation at n = 12), we find

�n=12 ⇡ 4.669 . . . , ↵n=12 ⇡ �2.502 . . . , (21)
9In this way, we can numerically approximate the signed second Feigenbaum constant ↵ [54].

23



which agree, to 4 digits, with the Feigenbaum’s universal constants, � = 4.669201609102990 . . .
and ↵ = �2.502907875 . . . , that appear, for example, in the period-doubling route to chaos in the
logistic map.

Coexistence of two attracting periodic orbits and non-uniqueness of regret and social cost: The
map fa,b has a negative Schwarzian derivative when a > 4, thus it has at most two attracting or
neutral periodic orbits. Although the time-average of every periodic orbits converges exactly to the
Nash equilibrium b, the variance limT!1

1
T

PT
n=1(xn � b)2 of the coexisting periodic orbits can

differ. Thus, the normalized time-average social cost and the time-average regret, which depend on
the variance, can be multi-valued. Which value is attained depends on the variance of the attracting
periodic orbits that the dynamics asymptotically reaches, which itself depends on the initial condition
x0. Period diagrams of Fig. 6 reveal how the two coexisting initial condition-dependent attracting
periodic orbits are intertwined, and Fig. 7 reports the evidence of two coexisting periodic orbits
whose variances differ, leading to multi-valued time-average regret and social cost.

Figure 6: Coexistence of two initial condition-dependent attracting periodic orbits. The pictures are
generated from the same procedure as explained in Fig.5, except that here the initial conditions for
the top and the bottom pictures are located at the left and the right critical points, respectively. Also,
b 2 [43/80, 51/80] and a 2 [4, 54]. The color schemes are the same as those of Fig. 5 : period 1
(fixed point) = yellow, period 2 = red, period 3 = blue, period 4 = green, period 5 = brown, period 6 =
cyan, period 7 = darkgray, period 8 = magenta, and period larger than 8 = white.

Stability of the orbits: In addition to the period diagrams, we investigate the stability of the attracting
orbits by considering the Lyapunov exponents E

⇣
log |f 0

a,b|
⌘

, where E (·) denotes time-average. Fig.
8 (bottom) shows the Lyapunov exponents associated with different attracting orbits, revealing that
extended-leg structures arise from the situations when the orbits become superstable, that is when one
of the two critical points is an element of the orbits10. Within the regime of the same period (same
color), there are situations when the two superstable extended-leg curves intersect. These scenarios
happen when both critical points are elements of periodic orbits.

10Recall that the orbit is superstable if one of the critical points is an element of the orbits, so that f 0
a,b(xc) = 0.

This means the Lyapunov exponents in principle is �1, visualized as a white bright color.

24



Figure 7: Coexistence of two attracting periodic orbits at b = 0.61 with two different variances
implies non-uniqueness of time-average regret and normalized time-average social cost. As usual, we
set ✏ = 1� 1/e so that N = a. (Top) The range of N in the shaded green region show coexistence
of two attracting periodic orbits. The blue (red) periodic orbits is selected if the initial condition
is the left (right) critical point xl (xr). There are at most 2 coexisting attracting periodic orbits, as
guaranteed by the negative Schwarzian derivative for our bimodal map fa,b. The variance of the
two periodic orbits are clearly different; thus, the time-average regret (middle) and the normalized
time-average social cost (bottom) which depend on the variance are multi-valued. Which values are
attained depend on initial conditions.

Also, note Fig. 5 reveals that the qualitatively similar extended-leg structures in the period diagrams
appear in layers, with a chaotic regime sandwiched between two layers. Notice also that the
consecutive layers have periods differ by 1. To understand why these layers with increasing periods
appear, we investigate superstable periodic orbits in these layers and found that, all elements of
the orbits, except for the left critical points xl = 1/2 �

p
1/4� 1/a and its image fa,b(xl), are

approximately 0, independent of the period of the orbits. With this observation, we now approximate
one of the superstable regions within each layer, using the time-average convergence to the Nash
equilibrium property of Corollary 3.4. Namely, let xl be an element of a periodic orbit of period p
such that only xl and fa,b(xl) are significantly larger than 0, then from Corollary 3.4 we have

xl + fa,b(xl) +
n
f2
a,b(xl) + · · ·+ fp�1

a,b (xl)
o

| {z }
⇡ 0

= pb. (22)

Numerical results show that the approximation that every elements of the periodic orbits except xl

and fa,b(xl) are close to 0 becomes better and better for periodic orbits with larger periods; hence,
we’re interested in the limit of a � 1. To leading order in 1

a , xl ⇡ 1
a and fa,b(xl) ⇡ 1

1+ae1�ab so
that (22) gives 1

a + 1
1+ae(1�ab) ⇡ pb.

Defining

S(a, b) =
1

ab
+

1

b+ (ab)e(1�ab)
, (23)

we obtain the condition
S(a, b) ⇡ p, (24)
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Figure 8: (Bottom) Lyapunov exponents E
⇣
log |f 0

a,b|
⌘

numerically approximated by
1
T

PT
n=1 log |f 0

a,b(xn)| with T = 2000, shown in gray scale, superposed on the period diagrams
(Top) adopted from Fig. 6 (Top). The color scheme of the Lyapunov exponents is such that
E
⇣
log |f 0

a,b|
⌘
< �1.5 is shown in white (very stable orbits) and E

⇣
log |f 0

a,b|
⌘
> 0 is shown in

black (unstable or chaotic). One can clearly see that the extended-leg structures arise from having
superstable orbits as the skeleton of each attracting periodic orbits regime. When both critical
points are elements of the attracting orbit, the two extended legs intersect. As expected, close to the
bifurcation boundaries and in the chaotic regime, the orbits becomes unstable, as represented by the
black color.

that should become more accurate as a � 1, for xl to be on the periodic orbit of period p with the
aforementioned property. Fig. 9 reveals that the level sets of S(a, b) for p = 2, 3, . . . , 10 accurately
tracks the extended-leg structures with increasing periods, showing that these superstable orbits are
the skeletons of the extended-leg layers shown in Fig. 5.

In addition, we can approximate the condition when both critical points xl and xr become the
elements of these superstable periodic orbits. In these specific permutations of the orbits, we require
xr = fa,b(xl). And from (22) we obtain xl + fa,b(xl) ⇡ pb. Since xl + xr = 1, we conclude that
both critical points will be on the periodic orbit of period p with the aforementioned property when

b ⇡ 1

p
, and

1

a
[2 ln(a� 1) + 1] ⇡ 1

p
, (25)

where the condition on a follows from (24) and b ⇡ 1
p . Therefore, if we plot the relationship

b = 1
a [2 ln(a� 1) + 1], the graph will encompass the situations when both critical points are on the

periodic orbits with the aforementioned property. This is illustrated by the dashed olive green line
of Fig. 9 that passes through the intersections between two superstable curves within each period-p
region.
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Figure 9: Layers of extended-leg structures with increasing periods arise from specific permutations
of superstable periodic orbits. See discussion in text.

Discussion about figure 9: As argued in the stability of the orbits section, S(a, b) = p defines the
superstable periodic orbits of period p with the property that only xl and f(xl) are the only two
elements of the periodic orbits that are not near 0. The level sets of S(a, b) at p = 2, 3, . . . , 10
are displayed in different colors (bottom), which accurately track extended-leg curves with large
negative Lyapunov exponents (top). The color scheme of the Lyapunov exponents is such that
E
⇣
log |f 0

a,b|
⌘
< �1.5 is shown in white (very stable orbits) and E

⇣
log |f 0

a,b|
⌘
> 0 is shown in

black (unstable or chaotic). The dashed olive green curve b = 1
a [2 ln(a� 1) + 1] obtained from (25)

encompasses the situations when both critical points are the only two non-near-zero elements of the
periodic orbits, i.e. when the two superstable curves in each region of the same period p intersect.
These results provide a reasonable answer to why layers of extended-leg structures with increasing
periods appear in the period diagram of Fig. 5.

G Extensions to congestion games with many strategies

In this section we extend our results on Li-Yorke chaos and time-average convergence to Nash
equilibrium to the case of many strategies.

We will consider a m-strategy congestion game with a continuum of players/agents, where all of them
use multiplicative weights update. Each of the players controls an infinitesimally small fraction of the
flow. We will assume that the total flow of all the agents is equal to N . We will denote the fraction of
the players using i one of the m strategies at time n as xi(n) where i 2 {1, . . . ,m}. Intuitively, this
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model captures how a large population of players chooses between multiple alternative, parallel paths
for going from point A to point B. If a large fraction of the players choose the same strategy, this
leads to congestion/traffic, and the cost increases. We will assume that the cost is proportional to the
load. If we denote by c(i) the cost of any player playing strategy number i, and the coefficients of
proportionality are ↵i, then we get

c(i) = ↵iNxi 8i 2 {1, . . . ,m}. (26)

At time n+ 1 the players know already the cost of the strategies at time n and update their choices.
Since we have a continuum of agents we will assume that the fractions of users using the first, second,
m-th path are respectively equal to the probabilities x1(n), . . . , xm(n). Once again we will update
the probabilities using MWU. The update rule in the case of m strategies is as follows:

xi(n+ 1) = xi(n)
(1� ✏)c(i)P

j2{1,...,m} xj(n)(1� ✏)c(j)
, (27)

The (Nash) equilibrium flow (b1, . . . , bm) of the congestion games is the unique flow such that the
cost of all paths are equal to each other. Specifically, the equilibrium is defined by bi =

1/↵iP
j{1,...,m} ↵j

.

The MWU dynamics introduced by (27) can be interpreted as the dynamics of the map f of the
simplex � = {(x1, . . . , xm) : xi � 0,

Pm
j=1 xj = 1} to itself, given by

f(x1, . . . , xm) =
⇣y1
Y
, . . . ,

ym
Y

⌘
, (28)

where

yi = xi exp(�aixi) with ai = N↵i ln
� 1

1� ✏

�
and Y =

mX

j=1

yj .

We set ai = Npi, pi = ↵i ln(1/(1� ")), and see what happens as N ! 1. We will show that if N
is sufficiently large then f is Li-Yorke chaotic, except when m = 2 and p1 = p2, that is ↵1 = ↵2.

G.1 Proof of the existence of Li-Yorke chaos

In this section we will provide a generalization of Theorem 3.9 showing that even in congestion
games with many strategies, increasing the population/flow will result to instability and chaos. Thus,
the emergence of chaos is robust both in the size of the game (holds in games with few as well
as many paths/strategies) as well as to the actual cost functions on the edges (chaos emerges for
effectively any tuple of linear cost functions).
Theorem G.1. Given any non-atomic congestion game with m actions as described by model

(26),(27), except for the case
11

of m = 2 with ↵1 = ↵2, then there exists a total system demand N0

such that for if N � N0 the system has periodic orbits of all periods, positive topological entropy

and is Li-Yorke chaotic.

Proof. Set

p =
1

Pm�1
k=1

1
pk

and consider the segment

I =

⇢
(x1, . . . , xm) 2 � : xi =

px

pi
for i < m, 0  x  1

�
.

We have

xm = 1�
m�1X

k=1

xk = 1� x,

11Given that the case m = 2 with ↵1 = ↵2 is analyzed in Theorem 3.7 (emergence of a periodic orbit of
period 2) we have a complete understanding of all cases.

28



so indeed, I ⇢ �.

We have yi =
px
pi

exp(�Npx) for i < m and

ym = (1� x) exp(�Npm(1� x)),

so
Y = x exp(�Npx) + (1� x) exp(�Npm(1� x)).

Therefore, for i < m we get

yi
Y

=
px
pi

exp(�Npx)

x exp(�Npx) + (1� x) exp(�Npm(1� x))

=
p

pi
· x

x+ (1� x) exp(�Npm(1� x) +Npx)
.

Thus, f(I) ⇢ I , and the map f on I (in the variable x) is given by the formula

x 7! x

x+ (1� x) exp(�Npm(1� x) +Npx)
.

This formula can be rewritten as

x 7! x

x+ (1� x) exp
⇣
N(p+ pm)

⇣
x� pm

p+pm

⌘⌘ ,

and we already know that this map is Li-Yorke chaotic and has positive topological entropy and
periodic orbits of all possible periods for sufficiently large N , provided pm

p+pm
6= 1

2 . Therefore, in this
case f is Li-Yorke chaotic and has positive topological entropy on the whole � for sufficiently large
N .

Let us now investigate the exceptional case pm

p+pm
= 1

2 . Then pm = p, so

1

pm
=

m�1X

k=1

1

pk
.

Therefore,
2

pm
=

mX

k=1

1

pk
.

However, our choice of m as a special index was arbitrary, so the only case when we do not get
Li-Yorke chaos and positive topological entropy is when

2

pi
=

mX

k=1

1

pk

for every i = 1, 2, . . . ,m. In this case, p1 = p2 = · · · = pm, so we get 2
pi

= m
pi

, so m = 2 and
p1 = p2. Eventually p1 = p2 if and only if ↵1 = ↵2.

G.2 Time average convergence to equilibrium

The goal in this section is to generalize Theorem 3.3 about the time-average of the flow converging
to the (Nash) equilibrium flow. We will start with a technical lemma showing that the all (interior)
initial conditions converge to an interior invariant set. We consider the map f given by (28). If
x = (x1, . . . , xm) 2 �, then we write ⇠(x) = min(x1, . . . , xm).
Lemma G.2. If x 2 � and ⇠(x) > 0 then

inf
n�0

⇠(fn(x)) > 0. (29)

Proof. We use notation from the definition of f . Set

A = max(a1, . . . , am), ↵ = min(a1, . . . , am).

29



Since for every i we have 0  xi  1, we get

yi � xi exp(�Axi) � xi exp(�A). (30)

There exists k such that xk � 1/m. Then yk  xk exp(�↵/m), so

xk � yk � 1

m

⇣
1� exp

⇣
� ↵

m

⌘⌘
.

Since xj � yj for all j, we get

1� Y � 1

m

⇣
1� exp

⇣
� ↵

m

⌘⌘
.

Set
C =

1

m

⇣
m� 1 + exp

⇣
� ↵

m

⌘⌘
.

Then Y  C and C < 1. By (30), for every i we get

yi
Y

� xi exp(�Axi)

C
� xi exp(�A)

C
.

We have
lim
t!0

exp(�At)

C
=

1

C
> 1,

so there is " > 0 such that xi  " then yi/Y � xi. Moreover, if xi � " then yi/Y � " exp(�A)/C.
This proves that (29) holds.

We are ready to prove that the time average of the flow converges to the equilibrium flow. The update
rule in the case of m strategies is given by (27).
Theorem G.3. Given any non-atomic congestion game with m actions as described by model

(26),(27), if x = (x1, . . . , xm) 2 �, and min(x1, . . . , xm) > 0, then

lim
T!1

1

T

T�1X

n=0

xi(n) = bi. (31)

where (b1, . . . , bm) is the (Nash) equilibrium flow of the congestion game, i.e., bi =
1/↵iP

j{1,...,m} ↵j
.

Proof. By dividing two equations of type (27) one for strategy i and one for strategy j we derive that:

xn+1(i)

xn+1(j)
=

xn(i)

xn(j)
(1� ✏)cn(i)�cn(j) (32)

By unrolling this relationship we derive:

xn+1(i)

xn+1(j)
=

x1(i)

x1(j)
(1� ✏)

Pn
⌧=1

�
c⌧ (i)�c⌧ (j)

�
(33)

By Lemma G.2, given any initial condition (x1(1), x1(2), . . . , x1(n)) such that mini x1(i) > 0 we
have that there exists � > 0 such that infn�0 minxn(i) > � and supn�0 maxxn(i) < 1� �. Then

�

1� �

x1(j)

x1(i)
< (1� ✏)

Pn
⌧=1

�
c⌧ (i)�c⌧ (j)

�
<

1� �

�

x1(j)

x1(i)
and

1

ln(1� ✏)
ln
� �

1� �

x1(j)

x1(i)

�
<

nX

⌧=1

�
c⌧ (i)� c⌧ (j)

�
<

1

ln(1� ✏)
ln
�1� �

�

x1(j)

x1(i)

�
.

Dividing all sides of the inequality by n we get
1

ln(1�✏) ln
�

�
1��

x1(j)
x1(i)

�

n
<

Pn
⌧=1

�
c⌧ (i)� c⌧ (j)

�

n
<

1
ln(1�✏) ln

�
1��
�

x1(j)
x1(i)

�

n
.
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By taking limits we have that for any i, j limn

Pn
⌧=1

�
c⌧ (i)�c⌧ (j)

�

n = 0. For any subsequence such
that the limits limn

Pn
⌧=1 c⌧ (i)

n exist for all i we have that:

lim
n!1

Pn
⌧=1 c⌧ (i)

n
= lim

n!1

Pn
⌧=1

�
c⌧ (i)� c⌧ (j)

�
+
Pn

⌧=1 c⌧ (j)

n
= lim

n!1

Pn
⌧=1 c⌧ (j)

n
(34)

Since the cost functions are linear, i.e., cn(j) = ajNxn, equation (34) implies that:

ai lim
n!1

Pn
⌧=1 x⌧ (i)

n
= aj lim

n!1

Pn
⌧=1 x⌧ (j)

n
(35)

and the point
�
limn

Pn
⌧=1 x⌧ (1)

n , . . . , limn

Pn
⌧=1 x⌧ (m)

n

�
is the unique equilibrium flow of the con-

gestion game. Clearly, the same argument can be made for any other subsequence such that
limn

Pn
⌧=1 c⌧ (i)

n exists by possibly defining its own subsequence so that all the other limits also
exist (which is always possible due to compactness). By (34), (35) the value must once again
agree with the unique equilibrium of the game. Hence, for any i, limn

Pn
⌧=1 c⌧ (i)

n exists and
�
limn

Pn
⌧=1 x⌧ (1)

n , . . . , limn

Pn
⌧=1 x⌧ (m)

n

�
is the unique equilibrium flow.

H Extensions to congestion games with polynomial costs

For simplicity, we will return to the case with exactly two actions/paths. As usual we will denote
by c(j) the cost of selecting the strategy number j (when x fraction of the agents choose the first
strategy). We will focus on cost functions which are monomials with the same degree12

c1(x) = ↵Npxp c2(x) = �Npxp, p 2 N. (36)

The (Nash) equilibrium flow corresponds to the unique split (x⇤
b , 1� x⇤

b) such that c1(x⇤
b) = c2(x⇤

b).

H.1 Multiplicative weights with polynomial costs

Once again, applying the multiplicative weights updates rule we get formula (2). By substituting
into (2) the values of the polynomial cost functions from (36) we get:

xn+1 =
xn(1� ✏)↵N

pxp
n

xn(1� ✏)↵Npxp
n + (1� xn)(1� ✏)�Np(1�xn)p

=
xn

xn + (1� xn)(1� ✏)Np(�(1�xn)p�↵xp
n)
.

(37)

We introduce the new variables

a = (↵+ �)Np ln

✓
1

1� ✏

◆
, b =

�

↵+ �
. (38)

Once again, we see that b = 1/2 if and only if the two paths are totally symmetric (same cost
function). In this case x⇤

b = 1/2 as well as the equilibrium flow splits the total demand equally in
both paths.

We will thus study the dynamical systems generated by the one-dimensional map:

fa,b(x) =
x

x+ (1� x) exp(aPb(x))
. (39)

12This is convenient as it immediately implies that the Price of Anarchy is equal to 1, since the potential is
equal 1

p+1 of the social cost function in these games and thus the equilibrium flow minimizes both the potential
and the social cost.
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Clearly fa,b : [0, 1] ! [0, 1], where 0 < b < 1, a > 0, and Pb(x) = (1 � b)xn � b(1 � x)n. We
have Pb(0) = �b, Pb(1) = 1 � b, and Pb is strictly increasing. Therefore, there exists the unique
point x⇤

b 2 (0, 1) such that Pb(x⇤
b) = 0. Observe that fa,b(x⇤

b) = x⇤
b is exactly the equilibrium flow.

Moreover

f 0
a,b(x) =

(1� ax(1� x)P 0
b(x)) exp(aPb(x))

(x+ (1� x) exp(aPb(x)))2
. (40)

From (40) we have that

f 0
a,b(0) = exp(�aPb(0)) = exp(ab) > 1 and f 0

a,b(1) = exp(aPb(1)) = exp(a(1� b)) > 1.

Thus 0 and 1 are repelling. This fact implies (the proof of this fact is the same as of Lemma 3.1 from
[14]) that there exists an invariant attracting subset Ia,b of the unit interval.

Although the time-average convergence of the flow does not necessarily converge to the equilibrium
flow, one can still prove a theorem analogous to Theorem 3.3 that reflects the time-average of the

costs of different paths. Informally, although the traffic flows through each path evolve chaotically
from day-to-day, if an outsider observer was to keep track of their time-average cost, all paths would
appear to be experience similar delays. It is due to this inability to learn a preferred path that chaos
(as we will argue next) is self-sustaining even under polynomial cost functions despite the application
of learning/optimizing dynamics.
Theorem H.1. If cost functions c1, c2 are given by (36), then

lim
n!1

1

n

n�1X

k=0

(c1(xk)� c2(xk)) = 0. (41)

Proof. There is a closed interval Ia,b ⇢ (0, 1) which is invariant and attracting for fa,b. Thus, there
is � 2 (0, 1) such that Ia,b ⇢ (�, 1� �).

Fix x = x0 2 [0, 1] and use our notation xn = fn
a,b(x0). By induction we get

xn =
x

x+ (1� x) exp
h
a
Pn�1

k=0(c1(xk)� c2(xk))
i . (42)

Assume that x = x0 2 Ia,b. Since � < xn < 1� �, we have

x

1� �
< x+ (1� x) exp

 
a
n�1X

k=0

(c1(xk)� c2(xk))

!
<

x

�
,

so

�2 < x
�

1� �
< (1� x) exp

 
a
n�1X

k=0

(c1(xk)� c2(xk))

!
< x

1� �

�
<

1

�
.

Therefore

�2 < exp

 
a
n�1X

k=0

(c1(xk)� c2(xk))

!
<

1

�2
, (43)

so �����a
n�1X

k=0

(c1(xk)� c2(xk))

����� < 2 log(1/�).

This inequality can be rewritten as
�����
1

n

n�1X

k=0

(c1(xk)� c2(xk))

����� <
2 log(1/�)

an
,

and (41) follows.

If x 2 (0, 1) \ Ia,b, then by the definition of Ia,b there is n0 such that fn0
a,b(x) 2 Ia,b, so (41) also

holds.

32



H.2 Proof of the existence of Li-Yorke chaos

Theorem H.2. For any b 2 (0, 1/2) [ (1/2, 1) there exists a0 such that if a > a0 then fa,b given

by (39) has a periodic orbit of period 3, and therefore it has periodic orbits of all periods, positive

topological entropy and is Li-Yorke chaotic.

Proof. Fix b 2 (0, 1/2). It is enough to show that if a is sufficiently large, then there exist
x0, x1, x2, x3 such that fa,b(xi) = xi+1 and x3 < x0 < x1.

Our points xi will depend on a. We start by taking

x1 = 1� 1

a
and y =

x⇤
b

2
.

Note that y does not depend on a and Pb(y) < 0. The inequality fa,b(y) > x1 is equivalent to

y > (a� 1)(1� y) exp(aPb(y)),

which holds for sufficiently large a. Moreover, for sufficiently large a we have fa,b(x⇤
b) < x1.

Therefore, for sufficiently large a there exists x0 2 (y, x⇤
b) such fa,b(x0) = x1. In particular, we

have x0 < x1.

Set
b⇤ =

3

4
� b

2
.

Since b < 1/2, we have b⇤ < 1� b, so if a is sufficiently large, then Pb(x1) > b⇤, and thus

x2 = fa,b(x1) =
x1

x1 +
1
a exp(aPb(x1))

 a

exp(ab⇤)
= a exp(�ab⇤).

Since Pb(x2) � �b, we get

x3 = fa,b(x2) =
x2

x2 + (1� x2) exp(aPb(x2))
 x2

x2 + (1� x2) exp(�ab)

=
x2 exp(ab)

x2 exp(ab) + 1� x2
 x2 exp(ab)  a exp(a(b� b⇤)).

Since

b� b⇤ = b� 3

4
+

b

2
=

3(b� 1
2 )

2
< 0,

we have lima!1 a exp(a(b � b⇤)) = 0, and therefore if a is sufficiently large, then x3 < y < x0.
Hence, fa,b has a periodic orbit of period 3.

We have fa,1�b(1� x) = 1� fa,b(x), so fa,1�b is conjugate to fa,b. Therefore, the theorem holds
also for b 2 (1/2, 1).

We did not use too many properties of Pb, so the theorem holds for a larger class of those functions.
Corollary H.3. Given any non-atomic congestion game with polynomial cost functions described by

model (37), except for the symmetric case with ↵ = �, then there exists a total system demand N0

such that for if N � N0 the system has periodic orbits of all periods, positive topological entropy

and is Li-Yorke chaotic.

I Extensions to congestion games with heterogeneous users

This is the model for the case of heterogeneous population. We will start with the simplest possible
case where there are only two subpopulations. We will consider a two-strategy congestion game with
two continuums of players/agents, where all of them use multiplicative weights update. Each of the
players controls an infinitesimal small fraction of the flow. Out of the total flow/demand N of the
first population has size N⌘1 whereas the total flow of the second population is N⌘2. A canonical
example would be ⌘1 = ⌘2 = 0.5.

We will denote the fraction of the players of the first (resp. second) population using the first strategy
at time n as xn (resp. yn). The second strategy is chosen by 1� xn (resp. 1� yn) fraction of the
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players. Intuitively, this model captures how two large population of players/cars (e.g. taxis versus
normal cars) chooses between two alternative, parallel paths for going from point A to point B. If a
large fraction of the players choose the same strategy, this leads to congestion/traffic, and the cost
increases. We will assume that the cost is proportional to the load. If we denote by c(j) the cost of
the player playing the strategy number j, and the coefficients of proportionality are ↵,�, then we get

c(1) = ↵N(⌘1x+ ⌘2y), c(2) = �N(⌘1 + ⌘2 � ⌘1x� ⌘2y) (44)

For multiplicative weights update (MWU), for the first (resp. second), there is a parameter ✏1 2 (0, 1),
(resp. ✏2 2 (0, 1)) which can be treated as the common learning rate of all players of that population.
Thus, we get

xn+1 =
xn(1� ✏1)c(1)

xn(1� ✏1)c(1) + (1� xn)(1� ✏1)c(2)
,

yn+1 =
yn(1� ✏2)c(1)

yn(1� ✏2)c(1) + (1� yn)(1� ✏2)c(2)
.

(45)

By combining equations (44) and (45),

xn+1 =
xn

xn + (1� xn)(1� ✏1)N(�(⌘1+⌘2)�(↵+�)(⌘1xn+⌘2yn))
,

yn+1 =
yn

yn + (1� yn)(1� ✏2)N(�(⌘1+⌘2)�(↵+�)(⌘1xn+⌘2yn))
.

(46)

After a similar change of variables as in the homogeneous case formula (46) becomes

xn+1 =
xn

xn + (1� xn) exp(a1(⌘1xn + ⌘2yn � b))
,

yn+1 =
yn

yn + (1� yn) exp(a2(⌘1xn + ⌘2yn � b))
.

(47)

In the simplest case of the equal shares/mixtures (i.e. ⌘1 = ⌘2 = 0.5) we have:

xn+1 =
xn

xn + (1� xn) exp(a1(0.5(xn + yn)� b))
,

yn+1 =
yn

yn + (1� yn) exp(a2(0.5(xn + yn)� b))
.

(48)

Dimensional reduction: Although the heterogeneous model contains more independent variables
than the homogeneous case, the dynamics are constrained in a lower-dimensional manifold. That is,
we will show that the function I(x, y) = (1�x)a2ya1

(1�y)a1xa2
is an invariant function for population mixtures.

This means that the curves I(x, y) = c are invariant for any time step n, where c parametrizes the
family of invariant curves.

Lemma I.1. The function I(x, y) = (1�x)a2ya1

(1�y)a1xa2
is an invariant function (first integral) of the

dynamics.

Proof. It is easy to check that the set of equations (47) is equivalent to

xn+1

1� xn+1
=

xn

(1� xn) exp(a1(⌘1xn + ⌘2yn � b))
,

yn+1

1� yn+1
=

yn
(1� yn) exp(a2(⌘1xn + ⌘2yn � b))

.
(49)

By raising the first equation to power a2 and the second equation to power a1 and dividing them we
derive that:
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xa2
n+1(1� yn+1)a1

(1� xn+1)a2ya1
n+1

=
xa2
n (1� yn)a1

(1� xn)a2ya1
n

That is the function I(x, y) = (1�x)a2ya1

(1�y)a1xa2
is an invariant function (first integral) of the dynamics.

Time-average convergence of the mixture to Nash equilibrium b. For the considered heteroge-
neous model we can show a result similar to Theorem 3.3 for the homogeneous population, that is
that b is Cesàro attracting mixture of trajectories.
Theorem I.2. For every a1, a2 > 0, b 2 (0, 1) and (x0, y0) 2 (0, 1)2 we have

lim
T!1

1

T

T�1X

n=0

(⌘1xn + ⌘2yn) = b. (50)

Proof. Let f(xn, yn) = (xn+1, yn+1) be defined by (47) where ⌘1, ⌘2 2 (0, 1) and ⌘1 + ⌘2 = 1.

The map t 7! t
1�t is a homeomorphism of (0, 1) onto (0,1), and its inverse is given by t 7! t

1+t .
Thus, we can introduce new variables, z = x

1�x and w = y
1�y . In these variables our map will be

g : (0,1)2 ! (0,1)2, and if g(zn, wn) = (zn+1, wn+1), then

zn+1 = zn exp

✓
�a1

✓
⌘1

zn
1 + zn

+ ⌘2
wn

1 + wn
� b

◆◆
,

wn+1 = wn exp

✓
�a2

✓
⌘1

zn
1 + zn

+ ⌘2
wn

1 + wn
� b

◆◆
.

(51)

If wn = cza2/a1
n then wn+1 = cza2/a1

n+1 . This shows that if zn is close to 0 then also wn is close to 0,
and by (51) we get zn+1 > zn. Similarly, if zn is close to infinity, then also wn is close to infinity,
and by (51) we get zn+1 < zn. Together with another inequality obtained from (51),

zn exp(�a1(1� b)) < zn+1 < zn exp(a1b),
this proves that if z0, w0 2 (0,1) then infn�0 zn > 0 and supn�0 zn < 1.

The first equation of (51) can be rewritten as
zn+1 = zn exp(a1(⌘1xn + ⌘2yn � b)),

so by induction we get

zT = z0 exp

 
a1

 
T�1X

n=0

(⌘1xn + ⌘2yn)� Tb

!!
.

Therefore there exists a real constant M (depending on the parameters and the initial point (x0, y0)),
such that �����

T�1X

n=0

(⌘1xn + ⌘2yn)� Tb

�����  M

for every T . Dividing by T and passing to the limit, we get

lim
T!1

1

T

T�1X

n=0

(⌘1xn + ⌘2yn) = b. (52)

We end here with numerical results to demonstrate that, perhaps not surprisingly, this class of games
not only possesses complex non-equilibrium behavior, but also allows for an immediate generalization
to a more realistic, larger dimensional system, in which new and even more complex non-equilibrium
phenomena can arise. Developing a more complete theoretical understanding of these issues, will
likely require the introduction of new tools and techniques.

Figures (10) and (11) show attracting orbits generated from the map (48) (with ⌘1 = ⌘2 = 0.5) for
fixed values of a1, a2, b. There, 5000 random starting points are initialized. To approximate where
the attractors lie, the first 1000 iterates were made without plotting; the next 200 were visualized.
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Figure 10: Attractor for the map (48) in the two-subpopulation model with a1 = 20, a2 = 30, b = 0.8.
The white dots are the coordinates (x, y) generated from initializing 5000 (x0, y0)’s at random from
the unit square domain, iterating them with (48) 1000 times, then visualizing the next 200 iterates.

Figure 11: Attractor for the map (48) in the two-subpopulation model with a1 = 10, a2 = 30, b = 0.7.
The white dots are the coordinates (x, y) generated from initializing 5000 (x0, y0)’s at random from
the unit square domain, iterating them with (48) 1000 times, then visualizing the next 200 iterates.

J Chaos in large atomic congestion games via reductions to the non-atomic
case

In this paper we have focused on analyzing MWU in (mostly linear) non-atomic congestion games.
In these settings each individual agent is assumed to control an infinitesimal account of the overall
flow N . In the atomic setting each agent is controlling a discrete unsplittable amount of flow, i.e., a
packet of size 1. There are now N agents that need to choose amongst the different paths that are
available to them. In this section, we will show how to translate results from the case of non-atomic
congestion games to their atomic counterparts. To do so we will show that the MWU maps in the
case of linear atomic congestion games can be reduced to MWU maps of non-atomic games, which
we have already analyzed.
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We will study MWU in a linear congestion game under the easiest information theoretic model
of full information where on every day MWU receives as an input the expected cost of all ac-
tions/paths. Furthermore, we will assume that all N agents are initialized with the fully mixed
(interior) strategy x. This of course is not a generic initial condition but since we are working to-
wards negative/complexity/chaos type of results we can choose our initial condition in an adversarial
manner. Due to the symmetry of initial conditions, the payoff vectors that agents experience on
any day are common across all agents. Hence, the symmetry of initial conditions is preserved. For
such trajectories we only need to keep track of a single probability distribution (the same one for all
agents), which is already reminiscent of the non-atomic setting where we only have to keep track of
the ratios/split of the total demand along the different paths/strategies. Let’s denote by x this common
probability vector for all N agents. We are ready to define our model in detail.

Atomic model with N agents/players. We have N agents. Each agent can choose between m
strategies/paths. The cost function for each strategy/path is a linear function on the number of the
agents using that path i, i.e., a linear function of its load. Let ↵i be the respective multiplicative
constant for strategy i. Suppose all agents use the same probability distribution x. The expected cost
of any agent for using strategy i is

c(i) = ↵i(1 + (N � 1)xi) 8i 2 {1, . . . ,m}. (53)

Given this payoff vector, the MWU updates follow the same format as always. At time n + 1 the
players know already the expected cost of the strategies at time n and update their choices. The
update rule in the case of m strategies is as follows:

xi(n+ 1) = xi(n)
(1� ✏)c(i)P

j2{1,...,m} xj(n)(1� ✏)c(j)
, (54)

We are now ready to state two formal results. One for the case of games with two strategies and one
for the more general case with m strategies.
Theorem J.1. Let’s consider an atomic congestion game with N agents and two paths of linear cost

functions as described by equations (53), (54). Let x be an interior probability distribution that is a

common initial condition for all N agents. As long as the congestion game has a symmetric interior

Nash equilibrium where both agents play the distribution (p, 1 � p) with 0 < p < 113
the update

rule of the probability distribution x under MWU dynamics is as in the case of the non-atomic model

map (4) where a = (N � 1)(↵1 + ↵2) ln
�

1
1�✏

�
and b = p. Thus, as long as p 6= 0.5, there exists a

threshold capacity N0 such that if the number of agents N exceeds N0 the system has periodic orbits

of all possible periods, positive topological entropy and is Li-Yorke chaotic. If p = 0.5, although

the Price of Anarchy of the game converges to one as N ! 1, the time-average social cost can be

arbitrarily close to its worst possible value.

Proof. By substituting into (54) the values of the cost functions from (53) we get:

xn+1 =
xn(1� ✏)↵1(1+(N�1)xn)

xn(1� ✏)↵1(1+(N�1)xn) + (1� xn)(1� ✏)↵2(1+(N�1)(1�xn))

=
xn

xn + (1� xn)(1� ✏)↵2N�↵1�(↵1+↵2)(N�1)xn
.

(55)

We introduce the new variables

a = (N � 1)(↵1 + ↵2) ln
� 1

1� ✏

�
, b =

↵2N � ↵1

(↵1 + ↵2)(N � 1)
. (56)

Note that the symmetric strategy where all agents play according to (b, 1 � b) is an interior Nash
equilibrium. Given this new formulation we see that the map is the same as the one for the non-atomic
case (4). The claims about chaos follow by direct application of Corollary 3.10. In the case where
p = 0.5, we have that the uniform distribution is an interior Nash and this implies that ↵1 = ↵2(= ↵),

13The game has a symmetric interior Nash if and only if ↵2 < N↵1 and ↵1 < N↵2.
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i.e. both paths have the same cost function. In terms of Price of Anarchy, the expected cost of any
agent at a Nash equilibrium is at most ↵(1 + N�1

2 ) = ↵N+1
2 . Hence the social cost of any Nash

equilibrium is at most ↵N(N+1)
2 . On the other hand, the socially optimal state that divides the load as

equally as possible has cost at least ↵N2

2 and the ratio of the two converges to 1 as N ! 1. Finally,
the fact that there exist trajectories such that the time-average social cost can be arbitrarily close
to its worst possible value follows from a direct application of Theorem 5.1 given the equivalence
of the update rule for the atomic and non-atomic case and the fact for both systems (approximate)
worst case performance is experienced when (in expectation almost) all users/flow are using the same
strategy.

Theorem J.1 applies for atomic congestion games with numerous agents but only two paths. As we
show next, chaos is robust and emerges in atomic congestion games regardless of the number of
available paths.
Theorem J.2. Let’s consider an atomic congestion game with N agents and m paths of linear

cost functions as described by equations (53), (54). Let the cost functions of the all paths be ↵x
where x the load of the respective path and ↵ the common multiplicative constant. Let x be interior

probability distribution that is a common initial condition for all N agents. The update rule of the

probability distribution x under MWU dynamics is as in the case of the non-atomic model map (28)

where ai = (N � 1)↵ ln
�

1
1�✏

�
. Thus, for any such atomic congestion game there exists a threshold

capacity N0 such that if the number of agents N exceeds N0 the system has periodic orbits of all

possible periods, positive topological entropy and is Li-Yorke chaotic.

Proof. The reduction of the map described by equations (53), (54) to non-atomic model map (28)
follows easily once we observe that MWU, i.e. map (54) is invariant to shifts of the cost vector
by a constant value.14 That is, for any � if we apply the vector c0(i) = c(i) + � to map (54)
it remains unchanged. Hence instead of substituting into (54) the values of the cost functions
c(i) = ↵(1 + (N � 1)x), we instead substitute the values c0(i) = ↵(N � 1)x. However, this is
exactly map in the case of the non-atomic model map (28) with ai = (N � 1)↵ ln

�
1

1�✏

�
. The rest of

the theorem follows immediately by applying Theorem G.1.

K Other related work

Main precursors. [42] put forward the study of chaotic dynamics arising from Multiplicative
Weights Update (MWU) learning in congestion games. They established the existence of an attracting
limit cycle of period two and of Li-Yorke chaos for MWU dynamics in atomic congestion games with
two agents and two links with linear cost functions. Symmetry of the game (i.e., the existence of a
symmetric equilibrium where both agents select each path with probability 0.5) results in a limit cycle
of period two. They also showed for a specific instance of a game with an asymmetric equilibrium
that MWU leads to Li-Yorke chaos, provided that agents adapt the strategies with a sufficiently large
learning rate (step size) ✏ (equivalently, if agents use a fixed learning rate ✏ but their costs are scaled
up sufficiently large). Shortly afterwards, [14] established that Li-Yorke chaos is prevalent in any

two-agent atomic congestion games with two parallel links and linear cost functions, provided the
equilibrium is asymmetric. Namely, in any 2⇥ 2 congestion game with an asymmetric equilibrium,
Li-Yorke chaos emerges as the cost functions grow sufficiently large, but only if the initial condition
is symmetric, i.e., both agents start with the same initial conditions. Furthermore, [14] established
for the first time that, despite periodic or chaotic behaviors, the time-average strategies of both
agents always converge exactly to the interior Nash equilibrium. While our current work leverages
techniques from [14], it also investigates other definitions of chaos, e.g., positive topological entropy,
studies non-atomic congestion games, and relates the results to the Price of Anarchy and system
efficiency analysis. Moreover, whereas in [14, 42] chaotic behavior is contained in a one-dimensional
invariant subspace of the two dimensional space, in this paper the dimensionality of the system is
already equal to one and hence the chaotic results are relevant for the whole state space. Lastly, in
the appendices, we provide preliminary results for learning dynamics in larger and more complex
congestion games with many degrees of freedom.

14This invariance is also true for most standard regret minimizing dynamics, e.g. Follow-the-Regularized-
Leader.
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Chaos in game theory. Under the assumption of perfect rationality, it is not surprising that Nash
equilibria are central concepts in game theory. However, in reality, players do not typically play
a game following a Nash equilibrium strategy. The seminal work of [49] showed analytically by
computing the Lyapunov exponents of the system that even in a simple two-player game of rock-paper-
scissor, replicator dynamics (the continuous-time analogue of MWU) can lead to chaos, rendering the
equilibrium strategy inaccessible. For two-player games with a large number of available strategies
(complicated games), [25] argue that Experienced Weighted Attraction (EWA) learning, a behavioral
economics model of learning dynamics, exhibits also chaotic behaviors in a large parameter space.
The prevalence of these chaotic dynamics also persists in games with many players, as shown in the
recent follow-up work [48]. Thus, careful examinations suggest a complex behavioral landscape in
many games (small or large) for which no single theoretical framework currently applies. [53] and
[56] prove that fictitious play learning dynamics for a class of 3x3 games, including the Shapley’s
game and zero-sum dynamics, possess rich periodic and chaotic behavior. [13] prove that many online
learning algorithms, including MWU, with a constant step size is Lyapunov chaotic when applied to
zero-sum games. Finally, [43] has established experimentally that a variant of reinforcement learning,
Experience Weighted Attraction, leads to limit cycles and high-dimensional chaos in two agent games
with negatively correlated payoffs. This is strongly suggestive that chaotic, non-equilibrium results
can be further generalized for other games.

39


	Introduction
	Model
	Learning in congestion games with multiplicative weights
	Regret, Price of Anarchy and time average social cost

	Limit cycles and chaos, with time-average convergence to Nash equilibrium
	Time-average convergence to Nash equilibrium b
	Periodic orbits and chaotic behavior

	Analysis of time-average regret
	Analysis of time-average social cost
	Conclusion
	Background Material on Dynamical Systems
	Li-Yorke chaos and topological entropy
	Invariant measures and ergodic theorem

	Main Figures
	Potential function, cobweb diagrams and time evolution
	Bifurcation diagram, regret and social cost (asymmetric case b=0.5)
	Bifurcation diagram, regret and social cost (symmetric case b=0.5)

	Model discussion
	Proofs
	Proof of Theorem 4.1
	Proof of Lemma 4.2
	Proof of Theorem 5.1

	Analysis of variance spreading at the first period-doubling bifurcation
	Properties of attracting orbits
	Extensions to congestion games with many strategies
	Proof of the existence of Li-Yorke chaos
	Time average convergence to equilibrium

	Extensions to congestion games with polynomial costs
	Multiplicative weights with polynomial costs
	Proof of the existence of Li-Yorke chaos

	Extensions to congestion games with heterogeneous users
	Chaos in large atomic congestion games via reductions to the non-atomic case
	Other related work

