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Abstract

In this paper, we study Contextual Unsupervised Sequential Selection (USS), a
new variant of the stochastic contextual bandits problem where the loss of an arm
cannot be inferred from the observed feedback. In our setup, arms are associated
with fixed costs and are ordered, forming a cascade. In each round, a context is
presented, and the learner selects the arms sequentially till some depth. The total
cost incurred by stopping at an arm is the sum of fixed costs of arms selected and
the stochastic loss associated with the arm. The learner’s goal is to learn a decision
rule that maps contexts to arms with the goal of minimizing the total expected loss.
The problem is challenging as we are faced with an unsupervised setting as the
total loss cannot be estimated. Clearly, learning is feasible only if the optimal arm
can be inferred (explicitly or implicitly) from the problem structure. We observe
that learning is still possible when the problem instance satisfies the so-called
‘Contextual Weak Dominance’ (CWD) property. Under CWD, we propose an
algorithm for the contextual USS problem and demonstrate that it has sub-linear
regret. Experiments on synthetic and real datasets validate our algorithm.

1 Introduction

Industrial systems, such as those found in medical, airport security, and manufacturing, utilize a suite
of tests or classifiers for monitoring patients, people, and products. Tests have costs with the more
intrusive and informative ones resulting in higher monetary costs and higher latency. For this reason,
they are often organized as a classifier cascade (Chen et al., 2012; Trapeznikov and Saligrama, 2013;
Wang et al., 2015), so that new input is first probed by an inexpensive test then a more expensive one.
The goal of a cascaded system is to resolve easy to handle examples early so that the overall system
maintains high accuracy at low average costs.

Over time, due to environmental changes or test calibrations, sequential testing protocols (STP) may
no longer be accurate, resulting in higher costs. While one can leverage off-line methods such as
supervised training of cascades (Wang et al., 2015), they require new annotated data collection. In
many scenarios, new data cannot be collected in-situ, and system shutdown is not an option. In the
absence of annotated data, we face a dilemma. While we can observe test outcomes, we cannot
ascertain their reliability due to the absence of ground truth, necessitating unsupervised sequential
selection (USS) methods, where an arm represents a test/classifier. Recent works (Hanawal et al.,
2017; Verma et al., 2019a, 2020a) propose methods for solving the USS problem; however, they
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focus exclusively on the non-contextual setting, which in essence requires inputs (people, objects, or
products) to be homogeneous, and as such, these methods are unrealistic since contexts (high vs. low
risk) can guide the arm selection.

In this context, we propose the contextual USS. In our setup, inputs arrive sequentially, and the learner
observes a continuous-valued context as input. While the learner knows the costs of each arm, he
does not know the associated stochastic loss. Furthermore, the learner does not benefit from feedback
from his arm selection, in contrast to the conventional contextual bandit works (Beygelzimer et al.,
2011). Thus, while being agnostic to the true loss, the learner must sequentially choose the arm that
leads to the smallest total loss, where the total loss is the sum of the cost of using an arm and the
mean loss associated with the arm. As such, our proposed problem is a special case of the stochastic
partial monitoring problem with contextual inputs (Lattimore and Szepesvári, 2020, Chapter 37).
Most of the prior work on partial monitoring problem is restricted to cases where observed feedback
can identify the losses for selected actions. However, in many areas like crowd-sourcing (Bonald and
Combes, 2017; Kleindessner and Awasthi, 2018), resource allocation (Verma et al., 2019b), medical
diagnosis (Verma et al., 2020b), and many others, feedback from actions may not even be sufficient
to identify the losses.

While we draw upon several concepts introduced in earlier work (Hanawal et al., 2017), there are
additional challenges in the contextual case due to the unsupervised nature of the problem. First,
unlike vanilla-USS, the loss here is context-dependent. We propose notions of contextual weak
dominance as a means to relate observed disagreements to differences in losses between any two arms.
We then propose a parameterized Generalized Linear Model (GLM) to model the context-conditional
disagreement probability between any two arms and validate the model empirically.

A fundamental technical challenge is in the estimation of disagreement probabilities uniformly across
all contexts in the finite time while ensuring sufficient exploration between different arm selection
protocols, required for honing in on the optimal selection strategy. In particular, since contexts are
continuous-valued, and because we have no control over inputs, the contextual observations, in the
finite time, may not persistently span the whole space, and estimates are often unreliable. To this
end, we adapt techniques from parameterized contextual bandits (Chu et al., 2011; Li et al., 2017) for
our unsupervised setting. We propose an algorithm based on the principle of optimism, namely, the
larger indexed arm in cascade is chosen when uncertain. We show that our algorithm navigates the
exploration-exploitation tradeoffs in different ways and lead to sub-linear cumulative regret. We then
validate it on several problem instances derived from synthetic and real datasets.

Related Work. Stochastic Contextual multi-armed Bandits (SCB): In each round, the learner
observes the context and decides which arm, among a finite number of arms, to apply (Beygelzimer
et al., 2011). By playing an arm, the learner observes a stochastic reward that depends on the context
and the arm selected. The most commonly studied model assumes that each arm is parameterized, and
the mean reward of an arm is the inner product of the context and an unknown parameter associated
with the arm. Contextual bandits have been applied to problems ranging from online advertising (Li
et al., 2010; Chu et al., 2011) and recommendations (Langford and Zhang, 2008) to clinical trials
(Woodroofe, 1979) and mobile health (Tewari and Murphy, 2017). Generalized linear models (GLM)
assume that the mean reward is a non-linear link function of the inner product between the context
vector and the unknown parameter vector (Filippi et al., 2010; Li et al., 2017). GLMs are also useful
models for the classification problems where rewards, in the context of online learning problems,
could be binary (Zhang et al., 2016; Jun et al., 2017). A more challenging non-parameterized version
of the stochastic contextual bandits is studied in (Agarwal et al., 2014).

Another framework that is closely related to SCB is stochastic linear bandits (SLB) (Auer, 2002;
Dani et al., 2008; Rusmevichientong and Tsitsiklis, 2010; Abbasi-Yadkori et al., 2011). In this setup,
the environment is parameterized, and there could be uncountably many arms (within some bounded
radius), also referred to as decision set. The arms are characterized into their feature vectors, and the
mean reward for playing an arm is given as the inner product of the parameter (unknown) and the
feature vector associated with the arm. In situations where the decision set is allowed to vary in each
round and are finite, SLBs are equivalent to SCBs, where feature vectors correspond to context-arm
pairs (Li et al., 2010, 2017). For our work, we leverage GLMs as models for disagreement probability
between any two arms. While it is tempting to reduce contextual USS to SCBs, note that, unlike
prior works, we do not observe loss for our action choices, and so conventional algorithms such as
LinUCB and UCB-GLM (Li et al., 2010; Agarwal et al., 2014; Li et al., 2017) cannot be applied.
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Most of the prior work (Hanawal et al., 2017; Verma et al., 2019a, 2020a) considered the problem
of learning an optimal action but ignored the contextual information. In this work, we incorporated
contextual information, which is readily available in many applications. Exploiting the real-valued
contextual information (features) for improving the arm selection strategy is non-trivial due to the
unsupervised nature of the problem where the standard analysis of contextual bandits does not apply.
We made necessary modeling assumptions to leverage GLMs to parameterize the disagreement
probability between two arms and extended the existing definitions to address the new setup’s
learnability issues. However, the problem still requires new ideas and analysis methods to derive an
efficient algorithm, which poses new technical challenges for analysis.

2 Problem Setting

We consider a stochastic contextual bandits problem with K arms. The set of arms is denoted as [K]
where [K]

.
= {1, 2, . . . ,K}. In each round t, the environment generates a vector

(
Xt, Yt, {Y it }i∈[K]

)
.

The vector Xt denotes the context in round t and forms an independent and identically distributed
(IID) sequence drawn from a bounded set X ⊂ Rd according to an unknown but fixed distribution
ν. The binary reward for context Xt is denoted by Yt ∈ {0, 1}, which is hidden from the learner.
The vector

(
{Y it }i∈[K]

)
∈ {0, 1}K represents observed feedback at time t, where Y it denotes the

feedback observed after playing arm i with Xt as input1. We denote the cost for using arm i as ci ≥ 0
that is known and the same for all contexts.

In contextual USS, the arms are assumed to be ordered and form a cascade. When the learner selects
an arm i ∈ [K], the feedback from all arms till arm i in the cascade are observed. The expected
loss of playing the arm i for a given context xt is denoted as γi(xt)

.
= E

[
1{Y it 6=Yt|X=xt}

]
=

P
{
Y it 6= Yt|X = xt

}
, where 1{A} denotes indicator of event A. For soundness, we assume that the

probability density function of context distribution is strictly positive on X such that the conditional
probabilities are well defined. The total expected loss incurred by playing arm i for context xt is
defined as γi(xt) + λiCi, where Ci

.
= c1 + . . .+ ci and λi is a trade-off parameter that normalizes

the incurred cost and the loss of playing arm i.

Since the true rewards are hidden from the learner, the expected loss of an arm cannot be inferred
from the observed feedback. We thus have a version of the stochastic partial monitoring problem
(Cesa-Bianchi et al. (2006); Bartók and Szepesvári (2012); Bartók et al. (2014), and we refer to it
as contextual unsupervised sequential selection (USS). Let Q be the unknown joint distribution of
(X,Y, Y 1, Y 2 . . . , Y K). Henceforth we identify a contextual USS instance as P .

= (Q, c) where
c
.
= (c1, c2, . . . , cK) is the known cost vector of arms. We denote the collection of contextual USS

instances as PUSS. For instance P ∈ PUSS, the optimal arm for a context xt is given as follows:

i?t ∈ max

{
arg min

i∈[K]
(γi(xt) + λiCi)

}
, (1)

where the choice of i?t is risk-averse as we prefer the arm with lower error among the optimal arms.

The interaction between the environment and a learner is given in Algorithm 1.

Algorithm 1 Learning on contextual USS instance (Q, c)

For each round t:
1. Environment chooses a vector (Xt, Yt, {Y it }i∈[K]) ∼ Q.

2. Learner observes a context Xt = xt and selects an arm It ∈ [K] to stop in cascade.

3. Feedback and Loss: The learner observes feedback (Y 1
t , Y

2
t , . . . , Y

It
t ) and incurs a total

loss 1{Y it 6=Yt|X=xt} + λItCIt .

1In our setup, an arm i could be a classifier that outputs label Y i. The classifier’s input could be a context and
any combinations of feedback observed from classifiers coming before the arm i in the cascade. For example,
consider a case where each arm represents a crowd-sourced worker. After using the first i crowd-sourced workers,
the final label can be a function of predicted labels of the first i crowd-sourced workers.
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The learner’s goal is to find an arm for each context such that the cumulative expected loss is
minimized. Specifically, for T contexts, we measure the performance of a policy that selects an arm
It for a context xt in terms of regret given by

RT =

T∑
t=1

(
γIt(xt) + λItCIt −

(
γi?t (xt) + λi?tCi?t

))
. (2)

We seek policies that yield sub-linear regret, i.e., RT /T → 0 as T →∞. It implies that the learner
collects almost as much reward in the long run as an oracle collects that knew the optimal arm for
every context. We say that a problem instance P ∈ PUSS is learnable if there exists a policy such that
lim
T→∞

RT /T = 0.

In the sequel, we discuss the selection criteria for optimal arm for a given context and the conditions
under which instances of PUSS are learnable.

2.1 Contextual Weak Dominance

Next, we introduce the contextual weak dominance property of a problem instance.
Definition 1 (Contextual Weak Dominance (CWD)). Let i?t denote optimal arm for context xt. Then
the context xt is said to satisfy weak dominance (WD) property if

∀j > i?t : Cj − Ci?t > P
{
Y
i?t
t 6= Y jt |X = xt

}
. (3)

A problem instance P ∈ PUSS is said to satisfy the CWD property if all contexts of P satisfy WD
property. We denote the set of all instances in PUSS that satisfies CWD property by PCWD.

In the following, we use an alternative characterization of the CWD property, given as

ξ(xt)
.
= min
j>i?t

{
Cj − Ci?t − P

{
Y
i?t
t 6= Y jt |X = xt

}}
> 0. (4)

We define ξ .
= infx∈X ξ(x) and assume that ξ > 0. The larger the value of ξ, ‘stronger’ is the CWD

property, and easier it is to identify an optimal arm for given contexts. We later characterize the
regret upper bounds of proposed algorithms in terms of ξ. We also discuss the case when a fraction
of contexts satisfies WD property in the supplementary material.

2.2 Selection Criteria for Optimal Arm

Without loss of generality, we set λi = 1 for all i ∈ [K] as their value can be absorbed into the costs.
Since i?t = max

{
arg min

i∈[K]
(γi(xt) + Ci)

}
, it must satisfy following equation:

∀j < i?t : Ci?t − Cj ≤ γj(xt)− γi?t (xt) , (5a)

∀j > i?t : Cj − Ci?t > γi?t (xt)− γj(xt) . (5b)

As the loss of an arm is not observed, the above equations can not lead to a sound arm selection criteria.
We thus have to relate the unobservable quantities in terms of the quantities that can be observed. In
our setup, we can compare the feedback of two arms, which can be used to estimate the disagreement
probabilities between them. For notation convenience, we define p(t)

ij
.
= P

{
Y it 6= Y jt |X = xt

}
for

i < j. The value of p(t)
ij can be estimated as it is observable. Our next result bounds unobserved error

rates differences in terms of their observable disagreement probabilities for a given context.

Lemma 1. For any i, j, and xt ∈ X , γi(xt)− γj(xt) = p
(t)
ij − 2P

{
Y it = Yt, Y

j
t 6= Yt|X = xt

}
.

The detailed proof of Lemma 1 and all other missing proofs appear in the supplementary material.

Now, using Lemma 1, we can replace Eq. (5a) by

∀j < i?t : Ci?t − Cj ≤ p
(t)
ji?t
, (6)
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which only has observable quantities. For j > i?t , using the CWD property, we replace Eq. (5b) by

∀j > i?t : Cj − Ci?t > p
(t)
i?t j
. (7)

Using Eq. (6) and Eq. (7), our next result gives the optimal arm for a given context xt.

Lemma 2. Let P ∈ PCWD and Bt =
{
i : ∀j > i, Cj − Ci > p

(t)
ij

}
∪ {K}. Then the arm It =

min(Bt) is the optimal arm for a context xt.

By construction, the optimal arm lies in set Bt. Because of Eq. (6), any sub-optimal arm having
smaller index than optimal arm do not satisfy Eq. (7), hence it can not be in set Bt. Therefore, the
smallest arm of set Bt is the optimal arm.

Theorem 1. The set PCWD is maximal learnable.

The proof establishes that under the CWD property, there exists a ‘sound’ arm selection policy that
identifies the optimal arm for each context. The sound policy only uses conditional disagreement
probabilities between pairs of arms that can be estimated from the feedback of arms.

3 Parameterization of Pairwise Disagreement Probability

Since the number of contexts could be much larger (can be infinite) than the learning horizon, in
stochastic contextual bandits, a correlation structure is assumed between the reward (loss) and the
contexts (Auer, 2002; Li et al., 2010, 2017). It is often realized via parameterization of the arms
such that expected rewards (or losses) observed from an arm depend on the unknown parameter. In
our setting, we cannot observe a loss for any arm. Hence parameterization of an expected loss of
the arms is not useful. However, we can obtain feedback of two arms for a given context and can
compare them. For example, we can check whether two arms’ feedback agrees or disagrees for a
given context. Thus, we assume a correlation structure on the disagreement probability for a pair of
arms across the contexts and parameterize it using generalized linear models. For i < j and context
xt, the disagreement probability for (i, j) pair of arms is given via a function µ as follows:

P
{
Y it 6= Y jt |X = xt

}
= µ(Φij(xt)

>θ?ij), (8)

where xt ∈ Rd, Φij : Rd → Rd′ is a feature map for some d′ ≥ d,2 and θ?ij ∈ Rd
′

is the unknown
parameter for (i, j) pair.

We assume the following assumptions on context distribution ν and function µ, which is standard in
the GLM bandit literature (Filippi et al., 2010; Li et al., 2017):

Assumption 1 (GLM). • For all x ∈ X and (i, j) pairs, ‖Φij(x)‖2 ≤ 1.

• κ .
= inf‖x‖2≤1,‖θ−θ?ij‖2≤1 µ̇(Φij(x)>θ) > 0 for all (i, j) pairs.

• There exists a constant λΣ > 0 such that λmin
(
E
[
Φij(X)Φij(X)>

])
≥ λΣ for all (i, j) pairs.

• The function µ : R→ [0, 1] is continuously differentiable and Lipschitz with constant kµ.

For our setting, the function µ is defined as µ(z) = 1/(1 + e−z), which is the logistic function. The
logistic function is widely used function for binary classification model and has kµ ≤ 1/4.

In contextual USS setup, we can compare the arms’ feedback and check whether they agree or not for
a given context. These binary observations (agree or disagree) can be treated as noisy samples of the
disagreement probability. The noise in the binary observation obtained by comparing the feedback of
(i, j) pair of arms in round t, is given by

ε
(t)
ij =

{
1− µ(Φij(xt)

>θ?ij), with probability µ(Φij(xt)
>θ?ij)

−µ(Φij(xt)
>θ?ij), with probability

(
1− µ(Φij(xt)

>θ?ij)
)

2Let Rdij be the space where Eq. (8) holds for (i, j) pair of arms, and Φij is the feature map that lift xt from
Rd space to Rdij space. For simplicity, we take d′ = max∀i<j≤K dij .
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where ε(t)
ij is Ft-measurable with E

[
ε

(t)
ij |Ft

]
= 0. Here Ft denotes sigma algebra generated by

history
{(
Xs, Is,

{
Y is
}
i∈[Is]

)}
s∈[t]

till time t. Since ε(t)
ij is a zero-mean shifted Bernoulli random

variable, ε(t)
ij satisfies the following sub-Gaussian condition with parameter σ ∈ (0, 1):

E
[
exp(λε

(t)
ij )|Ft

]
≤ exp

(
λ2σ2

2

)
, ∀λ ∈ R.

Let dij(t)
.
= 1{Y it 6=Y jt |X=xt} be the disagreement indicator for a context xt and Stij be the set of

indices of contexts for which disagreements are observed for (i, j) pair of arms till round t. In round t,
we estimate θ?ij , denoted by θ̂tij , using the following equation adapted from the maximum likelihood
estimator (MLE) used for GLM bandits (Filippi et al., 2010; Li et al., 2017):∑

s∈Stij

(
dij(s)− µ(Φij(xs)

>θ)
)

Φij(xs) = 0. (9)

In the next section, we develop an algorithm that exploits Lemma 2 for selecting the optimal arm to
each context. The algorithm replaces the terms p(t)

ij in Lemma 2 by their optimistic estimates.

4 Algorithm for Contextual USS: USS-PD

Our algorithm, named USS-PD, is based on the optimism-in-the-face-of-uncertainty (OFU) principle.
USS-PD works as follows: It takes δ and m as inputs, where δ is the confidence in the
estimated parameters and used for computing confidence bound for θ?ij as given by Lemma 4.
The choice of m ensures that with probability at least (1 − δ), the sample correlation matrix
V tij =

∑
s∈Stij

Φij(xs)Φij(xs)
> for each (i, j) pair where i < j, is invertible. A high probability

upper bound on m is computed using Lemma 3. The algorithm collects feedback from all arms by
selecting the arm K irrespective of the context received for first m rounds. After m rounds, the
sample correlation matrix and the estimate of θ?ij are computed for each (i, j) pair where i < j.

For t > m, the learner receives a context xt and plays the arm i = 1 and then observe its feedback.
For each (i, j) pair and context xt, the upper bound on disagreement probability p̃(t)

ij is computed
using θ̂tij and confidence bonus αtij ‖Φij(xt)‖(V tij)−1 . Here the notation ‖x‖2A

.
= x>Ax denotes

the weighted l2-norm of vector x ∈ Rd with respect to a positive definite matrix A ∈ Rd×d. The
confidence bonus has two terms. The first term αtij is a slowly increasing function in t whose value is
specified in Lemma 4, and the second term ‖Φij(xt)‖(V tij)−1 decreases to zero as t increases.

USS-PD Algorithm for Contextual USS using Pairwise Disagreement

1: Input: Tuning parameters: δ ∈ (0, 1) and m > 0
2: Select arm K for first m contexts
3: ∀i < j ≤ K : set V mij ←

∑m
t=1 Φij(xt)Φij(xt)

> and update θ̂mij by solving Eq. (9)
4: for t = m+ 1,m+ 2, . . . do
5: Receive context xt. Set i = 1 and It = 0
6: do
7: Play arm i

8: ∀j ∈ [i+ 1,K] : compute p̃(t)
ij ← µ

(
Φij(xt)

>θ̂t−1
ij + αt−1

ij ‖Φij(xt)‖(V t−1
ij )

−1

)
9: If ∀j ∈ [i+ 1,K] : Cj − Ci > p̃

(t)
ij or i = K then set It = i else set i = i+ 1

10: while It = 0
11: Select arm It and observe Y 1

t , Y
2
t , . . . , Y

It
t

12: ∀i < j ≤ It : update V tij ← V t−1
ij + Φij(xt)Φij(xt)

> and θ̂tij by solving Eq. (9)
13: end for
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After computing p̃(t)
ij , the algorithm checks whether the arm i is the best arm using Eq. (7) with p̃(t)

ij

in place of p(t)
ij . If the arm i is not the best, then the algorithm plays the next arm, and then the same

process is repeated. If the arm i is the best arm for context, then the algorithm stops at that arm
with It = i for that context. After selecting arm It, the feedback from arms 1, . . . , It are observed.
After that, the values of V tij are updated, and θ̂tij are re-estimated. The same process is repeated for
subsequent contexts.

Remark 1. GLM bandits are well studied but require reward or loss information. In the USS setup,
loss of selected arm can not be observed; hence finding the optimal arm is challenging. Due to binary
disagreement, USS-PD uses the MLE estimator for θ?ij as used in GLM bandits (Filippi et al., 2010;
Li et al., 2017). However, the feedback structure and the way arms are selected in the USS setup
differ from that in the GLM bandits. Further, our analysis needs carefully connecting the regret with
the bad events that make USS-PD selects non-optimal arms.

Remark 2. We force the algorithm to explore until the correlation matrix V tij is invertible for all
(i, j) pairs. The invertibility can also be ensured by adding a regularization term (Abbasi-Yadkori
et al., 2011; Zhang et al., 2016; Jun et al., 2017) to avoid forced exploration. However, the analysis of
USS-PD with regularization term still required to the non-regularized part of the sample correlation
matrix becomes invertible. See the supplementary material for the algorithm and its analysis.

4.1 Regret Analysis of USS-PD

The following definition is useful in our regret analysis.

Definition 2 (Arm Preference (�t)). USS-PD prefers an arm i over j for context xt if

i �t j
.
=

{
Ci − Cj < p̃

(t)
ji , if j < i (10a)

Cj − Ci > p̃
(t)
ij , if j > i . (10b)

Our next result bounds the number of disagreement observations required from a pair of arms say
(i, j), such that the smallest eigenvalue of its sample correlation matrix Vij matrices is larger than a
fixed value. This result uses the standard results from random matrix theory (Vershynin, 2012).

Lemma 3. Let V tij =
∑
s∈Stij

Φij(xs)Φij(xs)
>, Σij = E

[
Φij(X)Φij(X)>

]
, Ψ and δ ∈ (0, 1)

be two positive constants. Then, there exist positive universal constants C1 and C2 such that the
minimum eigenvalue of λmin(V tij) ≥ Ψ with probability at least 1− 2δ/K2, iff

|Stij | ≥

(
C1

√
d′ + C2

√
log(K2/2δ)

λmin(Σij)

)2

+
2Ψ

λmin(Σij)
.

The next result is adapted to our setting from the confidence bounds for maximum likelihood estimator
used in GLM bandits (Li et al., 2017).

Lemma 4 (Confidence Ellipsoid). Let m be such that λmin(V m+1
ij ) ≥ 1 for any pair (i, j). Then

the following event holds with probability at least 1− 2δ/K2 for USS-PD:∥∥∥θ̂tij − θ?ij∥∥∥
V tij

≤ αtij , ∀t > m

where αtij = 2σ
κ

√
d′

2 log
(
1 + 2t

d′

)
+ log

(
K2

2δ

)
.

The regret analysis of GLM bandits hinges on bounding the instantaneous regret in each round, which
is tied to the estimation error of the GLM parameters. Due to the unsupervised setting and cascade
structure, this way of bounding regret does not work in our setup. Our analysis goes by bounding the
number of pulls of the sub-optimal arms. However, unlike standard bandits, we have to distinguish
whether the sub-optimal arm pulled by USS-PD is on the ‘left’ or ‘right’ of the optimal arm in the
cascade. It requires our analysis to handle both the cases carefully. Since USS-PD uses a similar
MLE estimator for parameter estimation as in GLM bandits, we only adapt their asymptotic normality
results. Our next results give conditions when USS-PD prefers a sub-optimal arm for a context.
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Lemma 5. Let θ ∈ ΘCWD. Then USS-PD prefers any sub-optimal arm l < i?t for context xt with
probability at most δ/2.

Lemma 6. Let θ ∈ ΘCWD. If USS-PD prefers a sub-optimal arm h > i?t for context xt then

2kµα
t
i?th

> ξi?th(xt)
√
λmin(V ti?th

).

where ξi?th = Ch − Ci?t − p
(t)
i?th

and αtij is given by Lemma 4.

Let m .
= Cλ−2

Σ

(
d′ + log(k2/2δ)

)
+ 2λ−1

Σ , where C > 0 is the universal constant and Rmax
.
=

maxi∈[K],x∈X [Ci + γi(x)− (Ci? + γi?(x))], where i? is the optimal arm for context x. Now we
state the regret upper bound of USS-PD.
Theorem 2 (Regret Upper Bound). Let θ ∈ ΘCWD, δ ∈ (0, 1), Assumption 1 holds, and ξh =
min
t≥1

ξi?th(xt). Then with probability at least 1− 2δ, the regret of USS-PD for T > m contexts is

RT ≤ Rmax

[
m+

K∑
h=2

((
C1

√
d′ + C2

√
log
(
K2

2δ

)
λΣ

)2

+
16

λΣ(
kµσ

ξhκ

)2(
d′

2
log

(
1 +

2T

d′

)
+ log

(
K2

2δ

)))]
.

Corollary 1. Let technical conditions stated in Theorem 2 hold. Then with probability at least 1− 2δ

RT ≤ O
(
Kd′ log(T )/ξ2

)
.

The regret of USS-PD for instance θ ∈ ΘCWD is logarithmic in T and grows linearly with d′ and
K. The regret is inversely dependent on the value of ξ .

= min
h≥2

ξh (measure how well CWD holds),

which implies the problem instance with smaller ξ has more regret and vice-versa. The value of ξ is
analogous to the minimum sub-optimality gap in the standard Multi-Armed Bandits setting. With a
large context set, ξ can be small, and its inverse relation in the regret captures the difficulty of the
USS problem.

5 Experiment

We evaluate the performance of USS-PD on different problem instances derived from synthetic and
real datasets. In our experiments, the data samples are treated as contexts. The labels of contexts
are known but are never revealed to the algorithm. We use the labels to train classifiers offline that
act as arms. Arm i represents a logistic classifier with trained parameter θi. A context (data sample)
x is assigned label 1 from the i-th classifier with probability µ(x>θi) and label 0 with probability
1 − µ(x>θi). The disagreement labels for (i, j) pair is computed using the labels of classifier i
and j. To satisfy Eq. (8), we use the polynomial kernel of degree two for mapping context into
higher-dimensional space. Unlike other kernels, the polynomial kernel uses a well-defined feature
map to lift the contexts into fixed, higher-dimensional space. The details of the used problem instances
are as follows.

Synthetic Dataset: We consider 3-dimensional synthetic dataset with 5000 data samples. Each
sample is represented by x = (x1, x2, x3), where the value of xj is drawn uniformly at random from
(−1, 1). A sample x is labeled 0 if the value of (x1 + x1x2 + x2

3) is negative otherwise it is labeled 1.
We train five logistic classifiers on this synthetic dataset by varying the regularization parameter. We
then assign a positive cost to each classifier and order them by their increasing cost. We vary the cost
of using classifiers to get different problem instances (see details in the supplementary material).

Real Datasets: We applied our algorithm on PIMA Indian Diabetes (Kaggle, 2016) dataset. Each
sample has 8 features related to the conditions of the patient. We split the features into three subsets
and train a logistic classifier on each subset. We associate 1st classifier with the first 6 features as
input. These features include patient history/profile. The 2nd classifier, in addition to the 6 features,
utilizes the feature on the glucose tolerance test, and the 3rd classifier uses all the previous features
and the feature that gives values of insulin test. Due to space constraints, the experiment results
on Heart Disease dataset (Detrano, 1998; Dheeru and Karra Taniskidou, 2017) are given in the
supplementary material.

8



5.1 Experiments Results

We compare the performance of USS-PD on four problem instances derived from the synthetic dataset.
The instances vary based on the cost of arms. All contexts in Instance 1 do not satisfy WD property;
hence it suffers linear regret as shown in Fig. 1a. For the remaining instances, we set costs such that
the value of ξ increasing from Instance 2 to 4. As expected, the regret decreases from Instance 2 to 4,
as seen in Fig. 1a. We also compare USS-PD against an algorithm where the learner receives true
labels as feedback. In particular, the learner knows whether the classifier’s output is correct or not
and can estimate their error rates. We implement this ‘supervised’ setting by replacing disagreement
probability in Eq. (7) with estimated error rates. As expected, the regret with supervision has lower
than the USS-PD regret (unsupervised) in Fig. 1b. It is qualitatively interesting because these plots
demonstrate that, in typical cases, our unsupervised algorithm can eventually learn to perform as
good as an algorithm with knowledge of true labels.

(a) Synthetic dataset: Regret for
different instance

(b) Supervised Setting (Instance
3 of Synthetic Dataset)

(c) Total cost for PIMA Indian
Diabetes dataset

Figure 1: Performance of USS-PD on different problem instances derived from synthetic and real datasets.

We derive three problem instances from PIMA Indian Diabetes dataset by varying the costs of using
classifies. Since all contexts of these problem instances do not satisfy WD property (see details in the
supplementary material), we used cumulative total expected cost as a performance measure, where
the cumulative total expected cost is given by

∑T
t=1(γIt(xt) +CIt). We compare the performance of

USS-PD with three baseline policies – the first baseline policy uses the third classifier irrespective of
contexts, and it is denoted as policy ‘It = 3’ (plays arm 3 in each round). The second baseline policy
uses the second classifier for all contexts, and it is denoted as policy ‘It = 2’. The third baseline
policy is ‘Random,’ which selects an arm uniformly at random in each round. In all three problem
instances, we observe that USS-PD performs better than the baselines, as shown in Fig. 1c.

We repeat each of the above experiments 100 times, and then the average regret is presented with a
95% confidence interval. The vertical line on each plot shows the confidence interval.

6 Conclusion and Future Directions

We studied the unsupervised sequential selection problem with contextual information. It is a partial
monitoring stochastic contextual bandit problem, where the loss of an arm can not be inferred from
the observed feedback. But one can compare the feedback of two arms to see if they agree or disagree.
We modeled the disagreement probability between each pair of the arms as linearly parameterized
and developed an algorithm named USS-PD that achieves O(log T ) regret with high probability.

We exploited the contextual information but ignored the inherent side observations due to the arms’
cascade structure. By using the side observations, one can tighten the regret bounds. Another
interesting future direction is to develop algorithms that decide whether it needs to go further down
in the cascade when more information about context is revealed along the cascade.

7 Broader Impact

The work considered the unsupervised sequential selection problem with contextual information.
While we are not targeting any specific applications, the work has many potential civilian applications.
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As usual, these can improve societal conditions, but of course, with any technology, specific
deployments need care. However, this is outside of the scope of the present work, which is aimed at
improving the basic algorithms and understand the fundamental challenges in this problem setting.
Of course, the authors hope that their work will have an altogether positive impact, both by deepening
our understanding of challenging sequential decision making under uncertainty and by potential
future (careful) applications of the algorithms developed here. Having said this, we do not foresee
any immediate negative impact of this work.
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Supplementary Material: ‘Online Algorithm for Unsupervised
Sequential Selection with Contextual Information’

A Missing proofs from Section 2

A.1 Proof of Lemma 1

Lemma 1. For any i, j, and xt ∈ X , γi(xt)− γj(xt) = p
(t)
ij − 2P

{
Y it = Yt, Y

j
t 6= Yt|X = xt

}
.

Proof. Using definition of γi(xt)
.
= P

{
Y it 6= Yt|X = xt

}
, we get

γi(xt)− γj(xt) = P
{
Y it 6= Yt|X = xt

}
− P

{
Y jt 6= Yt|X = xt

}
.

As the observed feedback is binary, if Y it = Y jt and Y it 6= Yt then Y jt 6= Yt,

γi(xt)− γj(xt) =
((((((((((((((
P
{
Y it 6= Yt, Y

i
t = Y jt |X = xt

}
+ P

{
Y it 6= Yt, Y

i
t 6= Y jt |X = xt

}
−
((((((((((((((
P
{
Y jt 6= Yt, Y

i
t = Y jt |X = xt

}
− P

{
Y jt 6= Yt, Y

i
t 6= Y jt |X = xt

}
.

Adding and subtracting P
{
Y it = Yt, Y

i
t 6= Y jt |X = xt

}
,

γi(xt)− γj(xt) = P
{
Y it 6= Yt, Y

i
t 6= Y jt |X = xt

}
+ P

{
Y it = Yt, Y

i
t 6= Y jt |X = xt

}
− P

{
Y jt 6= Yt, Y

i
t 6= Y jt |X = xt

}
− P

{
Y it = Yt, Y

i
t 6= Y jt |X = xt

}
.

If Y it 6= Y jt and Y jt 6= Yt then Y it = Yt,

γi(xt)− γj(xt) = P
{
Y it 6= Y jt |X = xt

}
− P

{
Y it = Yt, Y

i
t 6= Y jt |X = xt

}
− P

{
Y it = Yt, Y

i
t 6= Y jt |X = xt

}
= P

{
Y it 6= Y jt |X = xt

}
− 2P

{
Y it = Yt, Y

j
t 6= Yt|X = xt

}
.

=⇒ γi(x
i
t)− γj(x

j
t ) = p

(t)
ij − 2P

{
Y it = Yt, Y

j
t 6= Yt|X = xt

}
.

A.2 Proof of Lemma 2

Lemma 2. Let P ∈ PCWD and Bt =
{
i : ∀j > i, Cj − Ci > p

(t)
ij

}
∪ {K}. Then the arm It =

min(Bt) is the optimal arm for a context xt.

Proof. Let i?t be an optimal arm for a context xt. As p(t)
ij = P{Y it 6= Y jt |X = xt} and i?t is an

optimal arm, we have ∀j < i?t : Ci?t − Cj ≤ P{Y
i?t
t 6= Y jt |X = xt} =⇒ Ci?t − Cj ≯ P{Y

i?t
t 6=

Y jt |X = xt} =⇒ ∀j < i?t /∈ Bt. If any sub-optimal arm h ∈ Bt then h > i?t i.e.,

Bt = {i?t , h1, . . . , hn,K},

where i?t < h1 < · · · < hn < K. By construction of set Bt, the minimum indexed arm in set Bt is
only the optimal arm.
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A.3 Proof of Theorem 1

We need the following results to proof of Theorem 1.
Lemma 7. Let i < j and xt ∈ X be any context. Assume

Cj − Ci /∈
(
γi(xt)− γj(xt),P

{
Y it 6= Y jt |X = xt

}]
. (11)

Then, Cj − Ci > γi(xt)− γj(xt) iff Cj − Ci > P
{
Y it 6= Y jt |X = xt

}
.

Proof. Assume that Cj − Ci > γi(xt) − γj(xt). As Cj − Ci /∈
(
γi(xt) − γj(xt),

P
{
Y it 6= Y jt |X = xt

}]
, we get Cj − Ci > P

{
Y it 6= Y jt |X = xt

}
. The proof of other direction

follows by noting that P
{
Y it 6= Y jt |X = xt

}
≥ γi(xt)− γj(xt).

Lemma 8. Let i > j and xt ∈ X be any context. Assume

Ci − Cj /∈
(
γj(xt)− γi(xt),P

{
Y it 6= Y jt |X = xt

}]
. (12)

Then, Ci − Cj ≤ γj(xt)− γi(xt) iff Cj − Ci ≤ P
{
Y it 6= Y jt |X = xt

}
.

Proof. Let Ci − Cj ≤ γj(xt) − γi(xt). As γj(xt) − γi(xt) ≤ P
{
Y it 6= Y jt |X = xt

}
, we get

Ci − Cj ≤ P
{
Y it 6= Y jt |X = xt

}
.

The condition Ci − Cj ≤ P
{
Y it 6= Y jt |X = xt

}
along with Ci − Cj /∈

(
γj(xt) − γi(xt),

P
{
Y it 6= Y jt |X = xt

}]
implies the other direction, i.e., Ci − Cj ≤ γj(xt)− γi(xt).

Lemma 9. Let i?t be an optimal arm for a context xt. Any problem instance P ∈ PUSS is learnable if
for every context in P following holds:

∀j > i?t , Cj − Ci?t > P
{
Y
i?t
t 6= Y jt |X = xt

}
.

The proof of Lemma 9 follows from Lemma 7 and Lemma 8. Now we give proof for Theorem 1.
Theorem 1. The set PCWD is maximal learnable.

Proof. Let i?t be an optimal arm for a context xt. It is enough to prove that any problem instance
P ∈ PUSS is learnable if

∀j > i?t , Cj − Ci?t > P
{
Y
i?t
t 6= Y jt |X = xt

}
. (definition of CWD property)

From Lemma 7 and Lemma 8, if the optimal arm satisfies following conditions,

∀j > i?t , Cj − Ci?t /∈
(
γi?t (xt)− γj(xt),P

{
Y
i?t
t 6= Y jt |X = xt

}]
and

∀j < i?t , Ci? − Cj /∈
(
γj(xt)− γi?t (xt),P

{
Y
i?t
t 6= Y jt |X = xt

}]
,

then, for j > i?t , Cj − Ci?t > γi?t (xt) − γj(x) iff Cj − Ci?t > P
{
Y
i?t
t 6= Y jt |X = xt

}
and for

j < i?t , Ci? − Cj ≤ γj(x) − γi?t (xt) iff Cj − Ci?t ≤ P
{
Y
i?t
t 6= Y jt |X = xt

}
. Hence we can use

P
{
Y it 6= Y jt |X = xt

}
as a proxy for γi?t (x)− γj(x) to make decision about the optimal arm. Now

notice that for j < i?t , Ci? − Cj ≤ γj(x)− γi?t (xt). Hence,

∀j < i?t , Ci? − Cj /∈
(
γj(xt)− γi?t (xt),P

{
Y
i?t
t 6= Y jt |X = xt

}]
and
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∀j > i?t , Cj − Ci?t /∈
(
γi?t (xt)− γj(xt),P

{
Y
i?t
t 6= Y jt |X = xt

}]
(13)

are sufficient for learnability. Note that Eq. (13) is equivalent to

∀j > i?t , Cj − Ci?t > P
{
Y
i?t
t 6= Y jt |X = xt

}
. (14)

Note that if Eq. (14) does not hold, then knowing P
{
Y
i?t
t 6= Y jt |X = xt

}
is not sufficient for finding

the optimal arm.

A.4 Regret decomposition when contexts satisfy WD with some known probability

Without knowing the disagreement probability, it is impossible to check whether a context satisfies
WD property or not. Hence we consider a case where a context can satisfy WD property with some
fixed probability. For such cases, we can decompose the regret into two parts: regret due to the
contexts that satisfy WD property and regret due to the contexts that do not satisfy WD property.
Note that the regret can be linear due to the contexts that do not satisfy the WD condition.

Our next result gives the upper bound on the regret where the contexts satisfy WD property with a
known fixed probability.
Lemma 10. Let ρ be the probability of context that it does not satisfy the WD property and Rmax
be the maximum regret incurred for any context. If RT is the regret incurred when all contexts satisfy
WD property then, the regret incurred when contexts satisfy WD with probability (1− ρ) is given by

R′T ≤ (1− ρ)RT + ρRmaxT.

Proof. Let ρ be the probability of context that it does not satisfy the WD property and rt(It, i?t )
be the regret incurred for selecting sub-optimal arm It for the context xt. Then the regret can be
decomposed into two parts as follows:

R′T = E

[
T∑
t=1

[
1{xt satisfies WD}rt(It, i

?
t ) + 1{xt does not satisfy WD}rt(It, i

?
t )
]]

= E

[
T∑
t=1

1{xt satisfies WD}rt(It, i
?
t )

]
+ E

[
T∑
t=1

1{xt does not satisfy WD}rt(It, i
?
t )

]

=

T∑
t=1

P {xt satisfies WD} rt(It, i?t ) +

T∑
t=1

P {xt does not satisfy WD} rt(It, i?t ). (15)

First, we will bound the regret due to the contexts that do not satisfy WD property (second term
of Eq. (15)). Note that the context that does not satisfy WD property, the learner can not make the
correct decision hence always incurs regret. Since the maximum regret is upper bounded by Rmax,
we have

T∑
t=1

P {xt does not satisfy WD} rt(It, i?t ) ≤
T∑
t=1

P {xt does not satisfy WD}Rmax

Since ρ is the probability of context that it does not satisfy the WD property, we get

=

T∑
t=1

ρRmax

=⇒
T∑
t=1

P {xt does not satisfy WD} rt(It, i?t ) ≤ ρRmaxT. (16)

Now we will bound the regret due to the contexts which satisfy WD property (first term in Eq. (15)).
Since any context satisfies WD with 1− ρ probability, we have

T∑
t=1

P {xt satisfies WD} rt(It, i?t ) =

T∑
t=1

(1− ρ)rt(It, i
?
t ) = (1− ρ)

T∑
t=1

rt(It, i
?
t ). (17)
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By assuming that all contexts are satisfying WD property, we have regret RT =
∑T
t=1 rt(It, i

?
t ).

Using it with Eq. (16) in Eq. (17), we get

R′T ≤ (1− ρ)RT + ρRmaxT.

B Missing proofs from Section 4

B.1 Proof of Lemma 3

Lemma 3. Let V tij =
∑
s∈Stij

Φij(xs)Φij(xs)
>, Σij = E

[
Φij(X)Φij(X)>

]
, Ψ and δ ∈ (0, 1)

be two positive constants. Then, there exist positive universal constants C1 and C2 such that the
minimum eigenvalue of λmin(V tij) ≥ Ψ with probability at least 1− 2δ/K2, iff

|Stij | ≥

(
C1

√
d′ + C2

√
log(K2/2δ)

λmin(Σij)

)2

+
2Ψ

λmin(Σij)
.

Proof. The result is adapted from (Li et al., 2017, Proposition 1), which uses the standard random
matrix theory result from (Vershynin, 2012, Theorem 5.39). We need to carefully construct the
sample complexity bound for our case as the observations are only observed for a pair of arms.

The following result is needed to prove Lemma 4.

Lemma 11. Let V
t

ij = λId′+a
∑
s∈Stij

Φij(xs)Φij(xs)
> for any (i, j) pair of arms, and ntij = |Stij |.

Then
det(V

t

ij) ≤
(
λ+ antij/d

′)d′ .
Proof. The proof is adapted from Lemma 10 of Abbasi-Yadkori et al. (2011). By using inequality of
arithmetic and geometric means, we have det(V

t

ij) ≤ (trace(V
t

ij)/d
′)d
′
. As the trace of matrix is a

linear mapping i.e. trace(A+B) = trace(A) + trace(B), hence, we get

trace(V
t

ij) = trace(λId′) + a
∑
s∈Stij

trace
(
Φij(xs)Φij(xs)

>)
= λd′ + a

∑
s∈Stij

‖Φij(x)‖22

≤ λd′ + antij .
(
as ‖Φij(x)‖2 ≤ 1 and ntij = |Stij |

)
Using upper bound of trace(V

t

ij) for bounding det(V
t

ij), we get

det(V
t

ij) ≤ (trace(V
t

ij)/d
′)d
′
≤
(
(λd′ + antij)/d

′)d′ ≤ (λ+ antij/d
′)d′ .

B.2 Proof of Lemma 4

Lemma 4 (Confidence Ellipsoid). Let m be such that λmin(V m+1
ij ) ≥ 1 for any pair (i, j). Then

the following event holds with probability at least 1− 2δ/K2 for USS-PD:∥∥∥θ̂tij − θ?ij∥∥∥
V tij

≤ αtij , ∀t > m

where αtij = 2σ
κ

√
d′

2 log
(
1 + 2t

d′

)
+ log

(
K2

2δ

)
.

Proof. Let V
t

ij = λId′ + V tij . If Eq. (9) is used for estimation of unknown parameter θ?ij then by
using Eq. (26) and Lemma 8 of Li et al. (2017) with λmin(V m+1

ij ) ≥ 1, we have

∥∥∥θ̂tij − θ?ij∥∥∥
V tij

≤ 1

κ

∥∥∥∥∥∥
∑
s∈Stij

εsΦij(xs)

∥∥∥∥∥∥
(V tij)

−1

≤ (1− λ)
−1
2

κ

∥∥∥∥∥∥
∑
s∈Stij

εsΦij(xs)

∥∥∥∥∥∥
(V

t
ij)
−1

.
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Using upper bound of
∥∥∥∑s∈Stij

εsΦij(xs)
∥∥∥

(V
t
ij)
−1

as given in Theorem 1 of Abbasi-Yadkori et al.

(2011) where εs is σ−subGaussian random variable, the following inequality holds with at least
probability 1− 2δ/K2

≤ (1− λ)
−1
2

κ

√√√√2σ2 log

(
det(V

t

ij)
1/2det(λId′)−1/2

2δ/K2

)

=
σ(1− λ)

−1
2

κ

√√√√√2 log

(
det(V

t

ij)

det(λId′)

) 1
2

+ 2 log

(
K2

2δ

)
.

Upper bounding det(V
t

ij) with a = 1, λ = 1/2, and ntij ≤ t by using Lemma 11, we get

=⇒
∥∥∥θ̂tij − θ?ij∥∥∥

V tij

≤ 2σ

κ

√
d′

2
log

(
1 +

2ntij
d′

)
+ log

(
K2

2δ

)

≤ 2σ

κ

√
d′

2
log

(
1 +

2t

d′

)
+ log

(
K2

2δ

)
.

B.3 Proof of Lemma 5

Lemma 5. Let θ ∈ ΘCWD. Then USS-PD prefers any sub-optimal arm l < i?t for context xt with
probability at most δ/2.

Proof. If sub-optimal arm l < i?t is preferred by USS-PD then using Eq. (10b), we get

1{l�ti?t ,i?t=i} = 1{
Ci−Cl>p̃(t)li ,It=l,i

?
t=i

}
≤ 1{

Ci−Cl>p̃(t)li
}. (as A ∩B ∩ C ⊆ A)

Using Ci − Cl = pli(xt)− ξli(xt) for l < i, we have

=⇒ 1{l�ti?t ,i?t=i} = 1{
pli(xt)−ξli(xt)>p̃(t)li

} = 1{
pli(xt)−p̃(t)li >ξli(xt)

}.

Using definition of pli(xt) and p̃(t)
li ,

=⇒ 1{l�ti?t ,i?t=i} = 1{
µ(Φli(xt)>θ?li)−µ

(
Φli(xt)>θ̂tli+α

t
li‖Φli(xt)‖(V t

li
)−1

)
>ξli(xt)

}.
Since µ(·) is an increasing function and using αtli as defined in Lemma 4,

µ
(

Φli(xt)
>θ̂tli + αtli ‖Φli(xt)‖(V tli)−1

)
is the upper bound on µ(Φli(xt)

>θ?li) for all (l, i)

pairs with probability at least 1− δ/2. We show it as follows:

Φli(xt)
>θ?li = Φli(xt)

>θ̂tli + Φli(xt)
>(θ?li − θ̂tli)

= Φli(xt)
>θ̂tli + ‖Φli(xt)‖(V tli)−1

∥∥∥θ?li − θ̂tli∥∥∥
V tli

=⇒ Φli(xt)
>θ?li ≤ Φli(xt)

>θ̂tli + αtli ‖Φli(xt)‖(V tli)−1 .

(
using

∥∥∥θ?li − θ̂tli∥∥∥
V tli

≤ αtli
)

Since µ(·) is an increasing function,

=⇒ µ(Φli(xt)
>θ?li) ≤ µ

(
Φli(xt)

>θ̂tli + αtli ‖Φli(xt)‖(V tli)−1

)
.

Hence, any sub-optimal arm smaller than the optimal arm is selected by USS-PD with probability at
most δ/2. It completes the proof of the lemma.
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B.4 Proof of Lemma 6

Lemma 6. Let θ ∈ ΘCWD. If USS-PD prefers a sub-optimal arm h > i?t for context xt then

2kµα
t
i?th

> ξi?th(xt)
√
λmin(V ti?th

).

where ξi?th = Ch − Ci?t − p
(t)
i?th

and αtij is given by Lemma 4.

Proof. If sub-optimal arm h > i?t is preferred by USS-PD then using Eq. (10a), we get
1{h�ti,i?t=i} = 1{

Ch−Ci<p̃(t)ih ,h�ti
?
t ,i

?
t=i

}
≤ 1{

Ch−Ci<p̃(t)ih
}. (as A ∩B ∩ C ⊆ A)

Using Ch − Ci = pih(xt) + ξih(xt) for h > i, we get
=⇒ 1{h�ti,i?t=i} = 1{

pih(xt)+ξih(xt)<p̃
(t)
ih

} = 1{
p̃
(t)
ih −pih(xt)>ξih(xt)

}.
Using definition of pih(xt) and p̃(t)

ih ,
=⇒ 1{h�ti,i?t=i} = 1{

µ
(

Φih(xt)>θ?ih+αtih‖Φih(xt)‖(V t
ih

)−1

)
−µ(Φih(xt)>θ̂tih)>ξih(xt)

}.
As µ is Lipschitz, |µ(z1)− µ(z2)| ≤ kµ|z1 − z2| where kµ is Lipschitz constant, we have

≤ 1{
kµ|Φih(xt)>θ?ih+αtih‖Φih(xt)‖(V t

ih
)−1−Φih(xt)>θ̂tih|>ξih(xt)

}
≤ 1{

kµ|Φih(xt)>θ?ih−Φih(xt)>θ̂tih|+kµα
t
ih‖Φih(xt)‖(V t

ih
)−1>ξih(xt)

}
= 1{

kµ|Φih(xt)>(θ?ih−θ̂
t
ih)|+kµαtih‖Φih(xt)‖(V t

ih
)−1>ξih(xt)

}.
Using Cauchy-Schwartz inequality and ‖x‖2A = x>Ax, we get

≤ 1{
kµ‖Φih‖(V t

ih
)−1‖θ?ih−θ̂tih‖V t

ih

+kµαtih‖Φih(xt)‖(V t
ih

)−1>ξih(xt)

}.

As
∥∥∥θ?ih − θ̂tih∥∥∥

V tih

≤ αtih, we get

≤ 1{
kµαtih‖Φih(xt)‖(V t

ih
)−1+kµαtih‖Φih(xt)‖(V t

ih
)−1>ξih(xt)

}
= 1{

2kµαtih‖Φih(xt)‖(V t
ih

)−1>ξih(xt)
}.

As ‖Φih(xt)‖(V tih)−1 ≤ ‖Φih(xt)‖2 /
√
λmin(V tih) where λmin(V tih) is the smallest eigenvalue of

matrix V tih and ‖Φih(xt)‖2 ≤ 1, we get
=⇒ 1{h�ti,i?t=i} ≤ 1{

2kµαtih>ξih(xt)
√
λmin(V tih)

}. (18)

The event on LHS is subset of event of RHS in Eq. (18). By changing i to i?t completes the proof of
the lemma.

B.5 Proof of Theorem 2

Theorem 2 (Regret Upper Bound). Let θ ∈ ΘCWD, δ ∈ (0, 1), Assumption 1 holds, and ξh =
min
t≥1

ξi?th(xt). Then with probability at least 1− 2δ, the regret of USS-PD for T > m contexts is

RT ≤ Rmax

[
m+

K∑
h=2

((
C1

√
d′ + C2

√
log
(
K2

2δ

)
λΣ

)2

+
16

λΣ(
kµσ

ξhκ

)2(
d′

2
log

(
1 +

2T

d′

)
+ log

(
K2

2δ

)))]
.
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Proof. The regret for T rounds in the Contextual USS problem is given by

RT =

T∑
t=1

(
CIt + γIt(xt)− (Ci?t + γi?t (xt))

)
.

As Rmax denote the maximum regret incurred for any context, we get

RT ≤ Rmax
T∑
t=1

1{It 6=i?t }. (19)

As 1{It 6=i?t } has two random quantities It and i?t , we can re-write it as follows:

1{It 6=i?t } =
∑
l<i

1{It=l,i?t=i} +
∑
h′>i

1{It=h′,i?t=i}.

Note that if USS-PD selects l < i?t then l must be preferred over i?t whereas if h′ > i?t is selected
then there exists an arm h > i?t which is preferred over i?t . Hence, we have

1{It 6=i?t } =
∑
l<i

1{l�ti?t ,i?t=i} +
∑
h′>i

1{It=h′,h�ti?t ,i?t=i}

≤
∑
l<i

1{l�ti?t ,i?t=i} +
∑
h>i

1{h�ti?t ,i?t=i}. (20)

Using above bound in Eq. (19), we get

RT ≤ Rmax
T∑
t=1

[∑
l<i

1{l�ti?t ,i?t=i} +
∑
h>i

1{h�ti?t ,i?t=i}

]
.

From Lemma 5, 1{l�ti?t ,i?t=i} = 0 for any l < i with probability at least 1 − δ/2, then the regret
becomes

RT ≤ Rmax
T∑
t=1

∑
h>i

1{h�ti?t ,i?t=i} = Rmax
∑
h>i

T∑
t=1

1{h�ti?t ,i?t=i} ≤ Rmax
K∑
h=2

T∑
t=1

1{h�ti?t ,i?t<h}.

Note that αtih is slowly increasing value with t that implies αtih ≤ αTih for all t ≤ T . Using Lemma 3

with Ψ =
(

2kµα
T
ih

ξih

)2

, Σih = E
[
Φih(Xs)Φih(Xs)

T
]

where s ∈ Stih, after

nTih
.
=

(
C1

√
d′ + C2

√
log(K2/2δ)

λmin(Σih)

)2

+
2

λmin(Σih)

(
2kµα

T
ih

ξih

)2

observations for arm pair (i, h) the λmin(V tih) ≥
(

2kµα
T
ih

ξih

)2

with probability at least 1 − 2δ/K2.

Therefore, after having nTih observations, the sub-optimal arm h(> i) will not be preferred over
optimal arm i with probability at least 1− 2δ/K2. Therefore, with probability at least 1− 2δ/K2,
following equations also hold

1{It=h,i?t=i,|Stih|≥n
T
ih} = 0 =⇒

T∑
t=1

1{It=h,i?t=i,h>i} ≤ nTih.

Due to the problem structure, whenever an arm h is selected, disagreement labels for all arm pair
(i, j) where i < j ≤ h are observed. Therefore, with probability at least 1− 2δ/K (by union bound),
the maximum number of times an arm h is selected when the optimal arm’s index is smaller than h is
nTh such that

nTh =

(
C1

√
d′ + C2

√
log(K2/2δ)

λΣ

)2

+
2

λΣ

(
2kµαT
ξh

)2
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=

(
C1

√
d′ + C2

√
log(K2/2δ)

λΣ

)2

+
8

λΣ

(
kµαT
ξh

)2

where ξh = min
i<h,t≥1

ξih(xt), λΣ = min
i<j≤K

λmin
(
E
[
Φij(Xs)Φij(Xs)

>]) and αT ≥ max
i<h

αTih. By

using union bound, we get following bound with probability at least 1− δ/2K
T∑
t=1

1{It=h,i?t<h} ≤ n
T
h . (21)

From Eq. (21), using
∑T
t=1 1{It=h,i?t<h} ≤ n

T
h and value of nTh , we get following upper bound on

regret that holds with probability at least 1− δ by union bound

RT ≤ Rmax
K∑
h=2

nTh = Rmax

K∑
h=2

(C1

√
d′ + C2

√
log(K2/2δ)

λΣ

)2

+
8

λΣ

(
kµαT
ξh

)2
 .

Using αT = 2σ
κ

√
d′

2 log (1 + 2T/d′) + log (K2/2δ) from Lemma 4 that ensures parameter θ?ij
bounds for all pairs (i, j) holds with probability at least 1 − δ/2K (by union bound) for T > m
where m = Cλ−2

Σ

(
d+ log(k2/2δ)

)
+ 2λ−1

Σ such that λmin(V m+1
ij ) ≥ 1 for all pair (i, j), we have

RT ≤ Rmax

(
m+

K∑
h=2

nTh

)

=⇒ RT ≤ Rmax

[
m+

K∑
h=2

((
C1

√
d′ + C2

√
log
(
K2

2δ

)
λΣ

)2

+
16

λΣ

(
kµσ

ξhκ

)2(
d′

2
log

(
1 +

2T

d′

)
+ log

(
K2

2δ

)))]
.

B.6 Algorithm with Regularization Term

USS-PD uses forced exploration by selecting arm K until the correlation matrix V tij is not invertible
for all (i, j) pairs of arms. Further, the minimum eigenvalue of V tij for all (i, j) pairs is needed to be
larger than 1 so that bound given in Lemma 4 holds. Alternatively, V tij can be initialized by adding a
regularization term (Abbasi-Yadkori et al., 2011; Zhang et al., 2016; Jun et al., 2017) to avoid forced
exploration and then apply OFUL type analysis. We have given an algorithm named USS-PD-λI
which uses regularization term λId′ . However, its analysis still needed the minimum eigenvalue of
the non-regularized part of the correlation matrix to become larger than some positive value (depends
on λ value), as shown in our next result.

USS-PD-λI Algorithm for Contextual USS using Pairwise Disagreement with λI Initialization

1: Input: Tuning parameters: δ ∈ (0, 1) and λ > 0
2: Select arm K for first context x1

3: ∀i < j ≤ K : set V
1

ij ← λId′ + Φij(x1)Φij(x1)
> and update θ̂1

ij by solving Eq. (9)
4: for t = 2, 3, . . . do
5: Receive context xt. Set i = 1 and It = 0
6: do
7: Play arm i

8: ∀j ∈ [i+ 1,K] : compute p̃(t)
ij ← µ

(
Φij(xt)

>θ̂t−1
ij + αt−1

ij ‖Φij(xt)‖(V t−1
ij

)−1

)
9: If ∀j ∈ [i+ 1,K] : Cj − Ci > p̃

(t)
ij or i = K then set It = i else set i = i+ 1

10: while It = 0
11: Select arm It and observe Y 1

t , Y
2
t , . . . , Y

It
t

12: ∀i < j ≤ It : update V
t

ij ← V
t−1

ij + Φij(xt)Φij(xt)
> and θ̂tij by solving Eq. (9)

13: end for
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Lemma 12. Let V
t

ij = λId′ + V tij for any λ > 0 and ‖θij‖2 ≤ S for all (i, j) pair. Then for
any t > min{s : ∀i < j 3 λmin(Vij(s)) ≥ 2λ}, the following event holds for USS-PD-λI with
probability at least 1− 2δ/K2, ∥∥∥θ̂tij − θ?ij∥∥∥

V
t
ij

≤ βtij ,

where βtij = 2σ
κ

√
d′

2 log
(

1 +
ntij
d′λ

)
+ log

(
K2

2δ

)
+ 2λ1/2S.

Proof. By using ‖Z‖A+B ≤ ‖Z‖A + ‖Z‖B , we have∥∥∥θ̂tij − θ?ij∥∥∥
V
t
ij

≤
∥∥∥θ̂tij − θ?ij∥∥∥

V tij

+
∥∥∥θ̂tij − θ?ij∥∥∥

λId′
. (as V

t

ij = λId′ + V tij)

When Eq. (9) is used for estimation of unknown parameter θ?ij then by using Eq. (26) and Eq. (27) of
Lemma 8 of Li et al. (2017), we have

≤ 1

κ

∥∥∥∥∥∥
∑
s∈Stij

εsΦij(xs)

∥∥∥∥∥∥
(V tij)

−1

+ 2λ1/2S. (as ‖θij‖2 ≤ S)

Sherman Morrison formula gives ‖Z‖(V tij)−1 ≤
(

1− λ
λmin(V tij)

)− 1
2 ‖Z‖

(V
t
ij)
−1 . Using it, we have

∥∥∥θ̂tij − θ?ij∥∥∥
V
t
ij

≤

(
1− λ

λmin(V tij)

)− 1
2

κ

∥∥∥∥∥∥
∑
s∈Stij

εsΦij(xs)

∥∥∥∥∥∥
(V

t
ij)
−1

+ 2λ1/2S.

Using upper bound on
∥∥∥∑s∈Stij

εsΦij(xs)
∥∥∥

(V tij)
−1

as given in Theorem 1 of Abbasi-Yadkori et al.

(2011), where εs is σ−subGaussian random variable and holds with probability at least 1− 2δ/K2,
we get

∥∥∥θ̂tij − θ?ij∥∥∥
V
t
ij

≤

(
1− λ

λmin(V tij)

)− 1
2

κ

√√√√2σ2 log

(
det(V

t

ij)
1/2det(λId′)−1/2

2δ/K2

)
+ 2λ1/2S

=
σ
(

1− λ
λmin(V tij)

)− 1
2

κ

√√√√√2 log

(
det(V

t

ij)

det(λId′)

) 1
2

+ 2 log

(
K2

2δ

)
+ 2λ1/2S.

By using Lemma 11 to upper bound det(V
t

ij), where t > s with a = 1, and ntij ≤ t, we get

∥∥∥θ̂tij − θ?ij∥∥∥
V
t
ij

≤
σ
(

1− λ
λmin(V tij)

)− 1
2

κ

√
d′ log

(
1 +

ntij
d′λ

)
+ 2 log

(
K2

2δ

)
+ 2λ1/2S. (22)

As t > s such that λmin(Vij(s)) ≥ 2λ, we have∥∥∥θ̂tij − θ?ij∥∥∥
V
t
ij

≤ 2σ

κ

√
d′

2
log

(
1 +

ntij
d′λ

)
+ log

(
K2

2δ

)
+ 2λ1/2S = βtij .

Note that if λmin(Vij(s)) < λ then
(

1− λ
λmin(V tij)

)− 1
2

is not well defined and the bound given

in Lemma 12 does not hold. Therefore, λmin(Vij(s)) need to be at least greater than λ. Let
m′

.
= Cλ−2

Σ

(
d+ log(k2/2δ)

)
+ 4λ−1

Σ λ where C > 0 is the universal constant. Recall Rmax
.
=

maxi∈[K],x∈X [Ci + γi(x)− (Ci? + γi?(x))], where i? is the optimal arm for a context x. Now we
state the regret bounds for USS-PD-λI.
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Theorem 3. Let θ ∈ ΘCWD, λ > 0, δ ∈ (0, 1), Assumption 1 holds, and ξh = min
t≥1

ξi?th(xt). Then

with probability at least 1− 2δ, the regret of USS-PD-λI for T > m′ contexts is upper bounded as

RT ≤ Rmax

(
m′ +

K∑
h=2

((
C1

√
d′ + C2

√
log
(
K2

2δ

)
λΣ

)2

+
32λ

λΣ

(
kµσ

ξhκ

)2

(√
d′

2
log

(
1 +

T

d′λ

)
+ log

(
K2

2δ

)
+ 2λ1/2S

)2))
.

Proof. The proof follows similar steps as Theorem 2 by replacing m by m′ and αTij by βTij . Using

βTij =
√

d′

2 log
(
1 + T

d′λ

)
+ log

(
K2

2δ

)
+ 2λ1/2S completes the proof.

C Leftover details from Section 5

Since the parameter of each arm (classifier) is known to us (but not to the algorithm), the optimal arm
i?t can be computed for every context. Therefore, we can also calculate the fraction of contexts for
which WD property holds to a given cost vector. To verify WD property for a given context xt, we
first compute disagreement probability for each (i, j) pair of classifiers as3

p
(t)
ij = µ(x>t θi)(1− µ(x>t θj)) + µ(x>t θj)(1− µ(x>t θi)).

When all p(t)
ij values and i?t are known, we can check whether a context xt satisfies WD property or

not by using Eq. (3). For all problem instances derived from the synthetic dataset, the cost vector and
the fraction of contexts for which WD property holds are given in Table 1.

PI/Classifiers Clf. 1 Clf. 2 Clf. 3 Clf. 4 Clf. 5 WD fraction

Costs for PI 1 0.01 0.02 0.032 0.05 0.55 0.997

Costs for PI 2 0.01 0.02 0.032 0.05 0.6 1.0

Costs for PI 3 0.01 0.02 0.032 0.05 0.65 1.0

Costs for PI 4 0.01 0.02 0.032 0.05 0.7 1.0

Table 1: Details of different problem instances (PIs) derived from synthetic datasets.

Heart Disease dataset: Each sample of the Heart Disease dataset has 12 features. We split the
features into three subsets and train a logistic classifier on each subset. We associate 1st classifier
with the first 7 features as input that include cholesterol readings, blood-sugar, and rest-ECG. The
2nd classifier, in addition to the 7 features, utilizes the thalach, exang, and oldpeak features; and the
3rd classifier uses all the features. For performance evaluation, the different values of costs are used
in three problem instances for both real datasets, as given in Table 2. The PIMA diabetes dataset has
768 samples, whereas the Heart Disease dataset has only 297 samples. As 5000 contexts are used in
our experiments, we select a sample in a round-robin fashion and give it as input to the algorithm.

Values/
Classifiers

PIMA Indian Diabetes Dataset Heart Disease Dataset
Clf. 1 Clf. 2 Clf. 3 WD Fraction Clf. 1 Clf. 2 Clf. 3 WD Fraction

Costs for PI 1 0.01 0.25 0.5 0.0692 0.01 0.25 0.5 0.1384

Costs for PI 2 0.01 0.3 0.5 0.1192 0.01 0.3 0.5 0.1454

Costs for PI 3 0.01 0.35 0.5 0.2204 0.01 0.35 0.5 0.2426

Table 2: Details of different problem instances (PIs) derived from real datasets.

3For computing disagreement probability, we assume that the feedback of any arm is independent of the
feedback of other arms. Note that USS-PD does not need such an assumption.
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Experiments Results: Through our experiments, we show that the stronger the CWD property
(large value of ξ) for the problem instance, it is easier to identify the optimal arm and, hence, has
lower regret, as shown in Fig. 2a. We also compare the performance of USS-PD with three baseline
policies on problem instances derived from the Heart Disease dataset (same as the PIMA Indian
Diabetes dataset). As expected, we observe that USS-PD outperforms the baseline policies, as shown
in Fig. 2b. Note that we used δ = 0.05 and σ = 0.1 in all experiments.

(a) Regret v/s CWD property (ξ). (b) Total cost for PIMA Indian Diabetes dataset.

Figure 2: Performance of USS-PD.

C.1 Realizable Setting

We consider the realizable case where all contexts satisfy Eq. (8) (by fixing θij for each (i, j) pair
of arms) and WD property. Since WD holds, we can use Lemma 2 for finding the optimal arm.
Note that the mean loss cannot be computed for this setting as we set parameters of disagreement
probabilities instead of setting parameters for individual arms. We use an upper bound on the regret
to evaluate the performance of USS-PD on the Synthetic dataset, as shown in Fig. 3. We repeat
experiments 500 times to get a tighter confidence interval.

(a) Synthetic dataset with 4 classifiers where cost of
using classifier i in problem instance j is

0.1 + (i− 1)(0.09 + (j − 1)0.01).

(b) Synthetic dataset with 5 classifiers where cost of
using classifier i for problem instance j is

0.1 + (i− 1)(0.06 + (j − 1)0.01).

Figure 3: Performance of USS-PD for realizable setting where regret on y-axis is
∑T
t=1 |CIt −Ci?t |+

p
(t)
i?t It

, and it is an upper bound on the regret RT defined in Eq. (2). The value of ξ largest for Case 1,
and it decreases for subsequent cases.

Regret used for Empirical Evaluation in Realizable Setting
Since the error-rate of arms is unknown, the regret defined in Eq. (2) can not be computed. Hence we
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define an alternative regret, which we call pseudo regret, as follows:

Rs
T =

T∑
t=1

[
CIt − Ci?t + p

(t)
i?t It

]
.

It is easy to verify that the actual regret RT is upper bounded by above regret Rs
T as shown follows:

RT =

T∑
t=1

[
CIt + γIt(xt)−

(
Ci?t + γi?t (xt)

)]
=

T∑
t=1

[
CIt − Ci?t +

(
γIt(xt)− γi?t (xt)

)]
≤

T∑
t=1

[
CIt − Ci?t + p

(t)
i?t It

]
(Using Lemma 1)

=⇒ RT ≤ Rs
T .

C.2 Contextual Strong Dominance

We next introduce contextual strong dominance property of the problem instance.
Definition 3 (Contextual Strong Dominance (CSD) property). A problem instance is said to satisfy
CSD property if for all contexts following is true:

Y i = Y for some i ∈ [K] =⇒ Y j = Y, ∀j ∈ [K] \ [i].

We represent the set of all instances satisfies CSD property by ΘCSD.

The CSD property implies that if the feedback of an arm is the same as the true reward of a given
context then, the feedback of all the arms in the subsequent stages of the cascade is also the same as
the true reward of a given context.

When any problem instance satisfies CSD property, the value of P
{
Y it = Yt, Y

i
t 6= Y jt |X = xt

}
= 0

for j > i. Therefore, for any (i, j) pair of arms and context xt the following is true:

∀j > i, γi(xt)− γj(xt) = P
{
Y it 6= Y jt |X = xt

}
.

The above equation implies that CWD property holds trivially for the problem instances that satisfy
CSD property as the difference of mean losses is the same as the probability of disagreement between
two arms(fix arm i = i?t for given context xt).

C.3 Effect of adding more arms on WD property

The performance of USS-PD can deteriorate as we increases as the number of arms. This is because
the fraction of contexts that satisfy WD property can decrease with the increase in the number of
arms. To see that, consider a contextual USS problem instance with three arms where arm 1 has
cost 0.1, arm 2 has cost 0.2, and arm 3 has cost 0.3. Let there be two contexts x1 and x2 such that
classifier 2 is an optimal classifier for context x1 and classifier 3 for the context x2, and both contexts
satisfy WD property. When a new arm is added at the end of the classifiers cascade without changing
the optimal arm for the contexts, let p(1)

24 be the disagreement probability for classifier 2 and 4 for
context x1 and p(2)

34 be the disagreement probability for classifier 3 and 4 for context x2. It is easy to
verify that if cost of using classifier 4 is less than min{0.2 + p

(1)
24 , 0.3 + p

(2)
34 } then both contexts will

not satisfy WD property.
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