
A Appendix

A.1 Notation

Summary of notations used throughout the paper

Notation Description
[K] for integer K Set of indices [K] = {1, 2, . . . ,K}.
d, t Index for feature d in [D] , time step t
�d Set {1, 2, · · · , D} \ d
S ✓ {1, 2, · · · , D} Subset of observations
Sc Set {1, 2, · · · , D} \ S
Data
xi,t Observation i at time t.
xS,t Subset of observation S at time t.
xt 2 Rd Vector [x1,t, x2,t, · · · , xd,t]
X0:t 2 Rd⇥t Matrix [x0;x1; · · · ;xt]
p(yt|X0:t) , f(X0:t) Outcome of the model f , at time t

Table 4: Notation used in the paper.

A.2 Toy example explaining FIT scores

Consider a setup with D = 2 features, and the true outcome random variable yt = 2x1,t + 0x2,t +
✏t8t 2 {1, 2, · · · , T}, where ✏ is a noise variable independent of xt (no auto-regression). Assume
that all features are independent. Let x1,t=0 = 0 and x1,t=1 = 1. Finally let the distribution shift
from time-step 0 to 1 be KL(p(y|X0:1) k p(y|x0)) = C. Consider the setup of figuring out the best
observation to acquire at time step 1. The first term (T1) for all singleton sets is fixed and equal to
C. Since observing x2 has no effect on the outcome, T2=T1 or KL(p(y|X0:1) k p(y|x0, x2,t)) =
KL(p(y|X0:1) k p(y|x0)) and the score I(x2, t) = 0. Now consider feature 1. Since observing
x1,t=1 is sufficient to predict y at time t = 1, T2 in this case KL(p(y|X0:1) k p(y|x1)) = 0 and
I(x1, t) = C. That is, {1} completely explains the distributional shift. This example demonstrates
the following compelling properties of the score.

A.3 Generative Model for Conditional Distribution

We approximate the conditional distribution using a recurrent latent variable generator model G, as
introduced in [9]. The latent variable Zt is the representation of the history of the time series up to
time t, modeled with a multivariate Gaussian with a diagonal covariance. The conditional distribution
of xt is modeled as a multivariate Gaussian with full covariance, using the latent sample Zt.

Figure 2: Graphical model representation of the conditional generator. Zt is the latent representation
of the signal history up to time t. The counterfactual x̂t+1 will be sampled from the distribution
generated by the latent representation

B Simulated Data

B.1 Spike Data

To simulate these data, we generate D = 3 (independent) sequences as a standard non–linear auto-
regressive moving average (NARMA) time series. Note that we also add linear trends to features 1
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and 2 of the form:

x(t+ 1) = 0.5x(t) + 0.5x(t)
l�1X

i=0

x(t� l) + 1.5u(t� (l � 1))u(t) + 0.5 + ↵dt (4)

for t 2 [80], ↵ > 0 (0.065 for feature 2 and 0.003 for feature 1), and order l = 2, u ⇠ N (0, 0.03).
We add spikes to each sample (uniformly at random over time) and for every feature d following the
procedure below:

yd ⇠ Bernoulli(0.5);

⌘d =

⇢
Poisson(� = 2) if 1(yd == 1)
0 otherwise

gd ⇠ Sample([T ], ⌘d); xd,t = xd,t +  8t 2 gd

(5)

where  > 0 indicates the additive spike. The label yt = 1 8t > t1, where t1 = min gd, i.e. the label
changes to 1 when a spike is encountered in the first feature and is 0 otherwise. We sample our time
series using the python TimeSynth5 package.

FIT generator trained for this data Gi is a single layer RNN (GRU) with encoding size 50. The
total number of samples used is 10000 (80-20% split) and we use Adam optimizer for training on
250 epochs. Additional sample results for the Spike experiment are provided in Figures 3 for an
RNN-based prediction model. Each panel in the figure shows importance assignment results for a
baseline method.

B.2 State Data

In this dataset, the random states of the time series are generated using a two state HMM with
⇡ = [0.5, 0.5] and transition probability T :

T =


0.1 0.9
0.1 0.9

�

The time series data points are sampled from the distribution emitted by the HMM. The emission prob-
ability in each state is a multivariate Gaussian: N (µ1,⌃1) and N (µ2,⌃2) where µ1 = [0.1, 1.6, 0.5]
and µ2 = [�0.1,�0.4,�1.5]. Marginal variance for all features in each state is 0.8 with only
features 1 and 2 being correlated (⌃12 = ⌃21 = 0.01) in state 1 and only 0 and 2 on state 2
(⌃02 = ⌃20 = 0.01).

The output yt at every step is assigned using the logit in 6. Depending on the hidden state at time t,
only one of the features contribute to the output and is deemed influential to the output. In state 1, the
label y only depends on feature 1 and in state 2, label depends only on feature 2.

pt =

(
1

1+e�x1,t
st = 0

1
1+e�x2,t

st = 1

yt ⇠ Bernoulli(pt)

(6)

Our generator (Gi) is trained using a one layer, forward RNN (GRU) with encoding size 10. The
generator is trained using the Adam optimizer over 800 time series sample of length 200, for 100
epochs. Additional examples for state data experiment are provided in Figure 4.

B.3 Switch-Feature Data

In this dataset, the random states of the time series are generated using a two state HMM with
⇡ = [ 13 ,

1
3 ,

1
3 ] and transition probability T :

T =

"
0.95 0.02 0.03
0.02 0.95 0.03
0.03 0.02 0.95

#

5https://github.com/TimeSynth/TimeSynth
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Figure 3: Additional examples from the Spike data experiment
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Figure 4: Additional examples from the state data experiment
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The time series data points are sampled from the distribution emitted by the HMM. The emission
probability in each state is a Gaussian Process mixture with means µ1 = [0.8,�0.5,�0.2], µ2 =
[0,�1.0, 0], µ3 = [�0.2,�0.2, 0.8]. Marginal variance for all features in each state is 0.1. The
Gaussian Process mixture over time is governed by an RBF kernel with � = 0.2.

The output yt at every step is assigned using the logit in 7. Depending on the hidden state at time t,
only one of the features contribute to the output and is deemed influential to the output. In state 1, the
label y only depends on feature 1 and in state 2, label depends only on feature 2.

pt =

8
><

>:

1
1+e�x1,t

st = 0
1

1+e�x2,t
st = 1

1
1+e�x3,t

st = 2

yt ⇠ Bernoulli(pt)

(7)

The generator structure is similar to the one used in the State dataset. Additional examples for state
data experiment are provided in Figure 5.

Figure 5: Additional examples from the State data experiment
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B.4 Generator Quality

Figure 6: Conditional generator likelihood loss
during training

Generator AUROC AUPRC

Conditional 0.72±0.01 0.15±0.00
Carry-forward 0.53±0.00 0.03±0.00
Mean Imp 0.48±0.004 0.03±0.00

Table 5: Explanation performance of FIT using
different generator models.

We compare the performance of our generator with simpler approaches for approximating the
conditional, such as carry-forward or mean imputation (Table 5). FIT is flexible to the choice of any
generator, however, modelling proper conditional distribution is important when time-series data
shows significant shifts where carry-forward and mean imputation will result in noisy scores. To
demonstrate the quality of the conditional generator, we have also added the likelihood plots, which
show that the generator is not overfitting.

B.5 MIMIC-III Data

B.5.1 Feature selection and data processing:

For this experiment, we select adult ICU admission data from the MIMIC-III dataset. We use static
patients’ information (age, sex, etc.), vital measurements and lab result for the analysis. Table 6
presents a full list of clinical measurements used in this experiment.

MIMIC-III Mortality Prediction: The task in this experiment is to predict 48 hour mortality
based on 48 hours of clinical data. The predictor model takes in new measurements every hour, and
updates the mortality risk. We quantize the time series data to hour blocks by averaging existing
measurements within each hour block. We use 2 approaches for imputing missing values: 1) Mean
imputation for vital signals using the sklearn SimpleImputer 6, 2) forward imputation for lab results,
where we keep the value of the last lab measurement until a new value is evaluated. We also removed
patients who had all 48 quantized measurements missing for a specific feature. Overall, 22,988 ICU
admissions were extracted and training process was on a 65%,15%,20% train, validation, test set
respectively.

MIMIC-III Intervention Prediction: The predictor black-box model in this experiment is a
multilabel prediction that takes new measurements every hour and updates the likelihood of the
patient being on Non-invasive, Invasive ventilation, Vasopressor and Other intervention. All features
are processed as described above.

B.5.2 Implementation details:

The mortality predictor model is a recurrent network with GRU cells. All features are scaled to 0 mean,
unit variance and the target is a probability score ranging [0, 1]. The model achieves 0.7939± 0.007
AUC on test set classification task. Detailed specification of the model are presented in Table 7. The
conditional generator is a recurrent network with specifications shown in 8.

17



Data class Name
Static measurements Age, Gender, Ethnicity, first time admitted to the ICU?

Lab measurements LACTATE, MAGNESIUM, PHOSPHATE, PLATELET,
POTASSIUM, PTT, INR, PT, SODIUM, BUN, WBC

Vital measurements HeartRate, DiasBP, SysBP, MeanBP,
RespRate, SpO2, Glucose, Temp

Table 6: List of clinical features for the risk predictor model

Setting value (MIMIC-III Mortality) value (MIMIC-III Intervention)
epochs 80 30
Model GRU LSTM (2 layers)
batch size 100 256
Encoding size (m) 150 128
Loss Cross Entropy Multilabel Binary Cross entropy
Regressor Activation Sigmoid Sigmoid (4 heads)
Batch Normalization True True
Dropout True (0.5) True (0.4)
Gradient Algorithm Adam (lr = 0.001, �1 = 0.9, Adam (lr = 0.001, �1 = 0.9,

�2 = 0.999, weight decay = 0) �2 = 0.999, weight decay = 1e� 4)
Table 7: Mortality risk predictor model features.

Setting value
epochs 150
RNN cell GRU
batch normalization True
batch size 100
RNN encoding size 80
Regressor encoding size 300
Loss Negative Log-likelihood
Gradient Algorithm Adam (lr = 0.0001, �1 = 0.9,

�2 = 0.999, weight decay = 0)
Table 8: Training Settings for Feature Generators for MIMIC-III Data (Mortality and Intervention
task)

Method State data (sec) Switch feature data (sec) MIMIC data (sec)
t = 100, d = 3 t = 100, d = 3 t = 48, d = 27

FIT 101.05 101.16 352.65
AFO 75.614 75.4181 190.448
Deep Lift 12.551 12.9523 5.056
Integrated Grad. 295.44 297.205 126.161
RETAIN 0.2509 0.2426 0.4451

Table 9: Run-time results for simulated data and MIMIC experiment.
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B.6 Run-time analysis

In this section we compare the run-time across multiple baselines methods on a machine with Quadro
400 GPU and Intel(R) Xeon(R) CPU E5-1620 v4 @ 3.50GHz CPU. The results are reported in Table
9, and represent the time required for evaluating importance value of all feature over every time step
for a batch of samples of size 200.

B.7 Subset Importance

Assigning importance to a subset of features is a novel property of FIT. To provide results on this, we
identified subsets of correlated features using hierarchical clustering on Spearman correlations for
MIMIC-III (mortality prediction task) and used FIT to evaluate the scores assigned to these subsets.
Results for this analysis are provided in Table 10.

Subset AUROC drop

S1 ([’ANION GAP’, ’CREATININE’, ’LACTATE’, ’MAGNESIUM’, ’PLATELET’, ’SODIUM’]) 0.007±0.000
S2 ([’ALBUMIN’, ’BILIRUBIN’, ’POTASSIUM’, ’PTT’, ’INR’]) 0.005±0.002
S3 ([’HeartRate’, ’SysBP’, ’DiasBP’]) 0.004±0.003
S4 ([’GLUCOSE’, ’SpO2’]) 0.004±0.002
S5 ([’BICARBONATE’, ’CHLORIDE’, ’HEMATOCRIT’, ’HEMOGLOBIN’, ’PHOSPHATE’, 0.011±0.015
’PT’, ’BUN’, ’WBC’, ’MeanBP’, ’RespRate’, ’Glucose’, ’Temp’])

Table 10: Subset performance drop on MIMIC

B.8 Sanity Checks

Figure 7: Deterioration in Spearman rank order correlation between importance assignment of the
original model to a randomized model.

We further evaluate the quality of FIT using the parameter randomization test previously proposed
as a sanity check for explanations [1]. We use cascading parameter randomization by gradually
randomizing model weights. We measure the rank correlation of explanations generated on the
randomized model and the explanation of the original model. A method is reliable if its explanations
of the randomized model and original model are uncorrelated, with increased randomization further
reducing the correlation between explanations. Figure 7 shows that FIT passes this randomization
test.

6https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.
html
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