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Abstract

Adaptive gradient methods such as AdaGrad, RMSprop and Adam have been opti-
mizers of choice for deep learning due to their fast training speed. However, it was
recently observed that their generalization performance is often worse than that of
SGD for over-parameterized neural networks. While new algorithms (such as Ad-
aBound) have been proposed to improve the situation, the provided analyses are
only committed to optimization bounds for the training objective, leaving critical
generalization capacity unexplored. To close this gap, we propose Stable Adaptive
Gradient Descent (SAGD) for non-convex optimization which leverages differen-
tial privacy to boost the generalization performance of adaptive gradient methods.
Theoretical analyses show that SAGD has high-probability convergence to a pop-
ulation stationary point. We further conduct experiments on various popular deep
learning tasks and models. Experimental results illustrate that SAGD is empiri-
cally competitive and often better than baselines.

1 Introduction

In this work, we consider the stochastic non-convex optimization [40] problem which approximately
minimizes the population loss given n i.i.d. samples z4,...,z,. Mathematically speaking, we
consider the following optimization problem:
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where z € Z is a data sample in domain Z following an unknown sample distribution P, w rep-
resents the parameter of the underlying learning model, ¢ : W x Z — R is a certain loss function
associated with the learning problem, and the loss function f defined by the population risk is
non-convex as with most deep learning tasks. Since finding the global minimum for non-convex
functions is NP-hard, the utility of a parameter is usually measured by the ¢5-norm of the gradient.

Due to the unavailability of distribution P, the challenge of a learning algorithm is to search for an
approximate minimizer of f(w) based on only n samples z1, ..., Z,. A natural approach toward
solving the problem stated in (1) is empirical risk minimization (ERM) [33], which minimizes the

empirical risk: minyeyy f(w) 2 1 >y U(w,z;) , where f(w) is referred to as empirical risk.

Stochastic gradient descent (SGD) [32] which iteratively updates the parameter of a model by de-
scending in the direction of the negative gradient, computed on a single sample or a mini-batch of
samples, has been the most dominant algorithm for solving the ERM problem, e.g., training deep
neural networks. Since the learning rate has a crucial impact on the convergence and performance
of SGD algorithms, there have been studies (e.g., [5]) which automatically tune the learning rate by
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reducing it each time a stationarity is detected. A different (and popular) strategy for automatically
tuning the learning-rate decay is to use adaptive gradient methods, such as AdaGrad [10], RM-
Sprop [35], and Adam [19], which have emerged leveraging the curvature of the objective function
resulting in adaptive coordinate-wise learning rates for faster convergence.

However, the generalization ability of these adaptive methods is often worse than that of SGD
for over-parameterized neural networks, e.g., convolutional neural network (CNN) for image clas-
sification and recurrent neural network (RNN) for language modeling [39]. To mitigate this is-
sue, several recent algorithms were proposed to combine adaptive methods with SGD. For exam-
ple, AdaBound [24] and SWAT [18] switch from Adam to SGD as the training proceeds, while
Padam [6, 41] unifies AMSGrad [31] and SGD with a partially adaptive parameter. Despite
much efforts on deriving theoretical convergence results of the objective function [40, 38, 43, 8],
these newly proposed adaptive gradient methods are often misunderstood regarding their general-
ization abilities, which is the ultimate goal. On the other hand, current adaptive gradient meth-
ods [10, 19, 35, 31, 38, 7] follow a typical stochastic optimization (SO) oracle paradigm [32, 15]
which uses stochastic gradients to update the parameters. The SO oracle requires new samples at
every iteration to get the stochastic gradient such that, in expectation, it equals the population gra-
dient. In practice, however, only finite training samples are available and reused by the optimization
oracle for a certain number of times (i.e., epochs). [16] found that the generalization error increases
with the number of times the optimization oracle passes over the training data. It is thus expected
that gradient descent algorithms will be much more well-behaved if we have access to an infinite
number of fresh samples. Re-using data samples is therefore a caveat for the generalization of a
given algorithm.

To tackle the above issues, we propose Stable Adaptive Gradient Descent (SAGD) which aims at
improving the generalization of general adaptive gradient descent algorithms. SAGD behaves sim-
ilarly to the aforementioned ideal case of infinite fresh samples borrowing ideas from adaptive data
analysis [11] and differential privacy [14]. The main idea of our method is that, at each iteration,
SAGD accesses the training set through a differentially private mechanism and computes an es-
timated gradient of the objective function V f(w). It then uses the estimated gradient to perform
a descent step with adaptive stepsize. We prove that the reused data points in SAGD nearly pos-
sess the statistical nature of fresh samples yielding to high concentration bounds of the population
gradients through the iterations. Our contributions can be summarized as follows:

e We derive a novel adaptive gradient method, namely SAGD, leveraging ideas of differen-
tial privacy and adaptive data analysis aiming at improving the generalization of current
baseline methods. A mini-batch variant is also introduced for large-scale learning tasks.

o Our differentially private mechanism, embedded in the SAGD, explores the idea of Laplace
Mechanism (adding Laplace noises to gradients) and SPARSE VECTOR TECHNIQUE [14]
leading to DPG-LAP and DPG-SPARSE methods saving privacy cost. In particular, we
show that differentially private gradients stay close to the population gradients with high
probability.

e We establish various theoretical guarantees for our algorithm. We derive a concentration
bound on the generalization error and show that the ¢/5-norm of the population gradient,

i.e., |V.f(w)| obtained by the SAGD converges in O(1/n?/?) with high probability.

e We conduct several experimental applications based on training neural networks for image
classification and language modeling indicating that SAGD outperforms existing adaptive
gradient methods in terms of the generalization and over-fitting performance.

Roadmap: The SAGD algorithm, including the differentially private mechanisms, and its mini-
batch variant are described in Section 3. Numerical experiments are presented Section 4. Section 5
concludes our work. Due to space limit, most of the proofs are relegated to supplementary material.

Notations: We use g; and V f(w) interchangeably to denote the population gradient such that

g: = Vf(wi) = Epep[VU(Wy,2)]. S = {z1,...,2,} denotes the n available training samples.
g: denotes the sample gradient evaluated on S such that g = Vf(w) = %Z?Zl Vi(wy,z;).
For a vector v, v represents that v is element-wise squared. We use v* or [v]; to denote the i-th
coordinate of v. We use ||v||2 and ||v|| alternatively to denote the ¢3-norm of v. We write ||v||; as

the ¢1-norm of v and denote [d] = {1,...,d}.



2 Preliminaries

Adaptive Gradient Methods: In the non-convex setting, existing work on SGD [15] and adaptive
gradient methods [40, 38, 43, 8] show convergence to a stationary point with a rate of O(1/v/T)
where T' is the number of stochastic gradient computations. Given n samples, a stochastic oracle can
obtain at most n stochastic gradients, which implies convergence to the population stationarity with
arate of O(1/+/n). In addition, [21, 30, 16, 27, 28, 8, 23] study the generalization of gradient-based
optimization algorithms using the generalization property of stable algorithms [2]. In particular, [30,
27, 23, 28] focus on noisy gradient algorithms, e.g., SGLD, and provide a generalization error
(population risk minus empirical risk) bound in O(v/T/n). This type of bounds usually has a
dependence on the training data and has a polynomial dependence on 7.

Differential Privacy and Adaptive Data Analysis: Differential privacy [14] was originally studied
for preserving the privacy of individual data in the statistical query. Recently, differential privacy has
been widely used for stochastic optimization. Some pioneering work [4, 1, 37] introduce differential
privacy to empirical risk minimization (ERM) to protect sensitive information of the training data.
The popular differentially private algorithms include the gradient perturbation that adds noise to the
gradient in gradient descent algorithms [4, 1, 36]. Moreover, in Adaptive Data Analysis ADA [11,
12, 13], the same holdout set is used multiple times to test the hypotheses which are generated based
on previous test results. It has been shown that reusing the holdout set via a differentially private
mechanism ensures the validity of the holdout set. In other words, the differentially private reused
dataset maintains the statistical nature of fresh samples and improves generalization [42].

3 Stable Adaptive Gradient Descent Algorithm

Beforehand, we recall the definition of an (e, §)-differentially private algorithm:

Definition 1. (Differential Privacy [14]) A randomized algorithm M is (e, §)-differentially private
if
P{M(D) € ¥} < exp(e)P{M(D1) € Y} +

holds for all Y C Range(M) and all pairs of adjacent datasets D, D! that differ on a single sample.

Intuitively, differential privacy means that the outcomes of two nearly identical datasets should be
nearly identical such that an analyst will not be able to distinguish any single data point by monitor-
ing the change of the output. One of the general approaches for achieving (e, §)-differential privacy
when estimating a deterministic real-valued function ¢ : Z® — R¢ is Laplace Mechanism [14],
which adds Laplace noise calibrated to the function ¢, i.e., M (D) = ¢(D) + b, where for all i € [d],
b ~ Laplace(0, 02). The value of o is decided by the privacy parameter € and 6. We present SAGD
with two different Differential Private Gradient (DPG) computing methods that provide an estimate
of the gradient V f(w), namely DPG-LAP based on the Laplace Mechanism [14], see Section 3.1
and an improvement named DPG-SPARSE motivated by sparse vector technique [14] in Section 3.2.

3.1 SAGD with DGP-LaAp

In most deep learning applications, a training set .S of size n is observed. Then, at each iteration
t € [T], SAGD, described in Algorithm 1, calls DPG-LAP (Line 5 in Algorithm 1), that computes

Algorithm 1 SAGD with DGP-LAP

1: Input: Dataset S, certain loss (), initial point w( and noise level o.
2: Set noise level o, iteration number 7', and stepsize 7;.
3: fort=0,....,7T —1do
4:  DPG-LAP: Compute full batch gradient on S:
gt = % Z;’lzl Vﬁ(wt, Zj)

5. Setg; = g + by, where b} is drawn i.i.d from Lap (o) for all i € [d].
6: m; = gt and Vi = (1 — 62) 22:1 6;71g3

7: Wip1 = W — ntmt/(\/\Tt + V).

8: end for




the empirical gradient noted g; and updates the model parameter w;,; using adaptive stepsize.
Note that the noise variance o2, step-size 1, iteration number 7', (o are parameters and play an
important role for our theoretical study presented in the sequel. We first consider DPG-LAP which
adds Laplace noise b; € R? to the empirical gradient g; = % Z;;l V{(wy,z;) and returns a noisy
gradient g; = g; + by to the optimization oracle Algorithm 1. Throughout this paper, we assume:

Al. The objective function f : R¢ — R is bounded from below by f* and is L-smooth (L-Lipschitz
gradients), i.e., |V f(w) — Vf(w')|| < L||w — w'||, for all w,w' € W.

A2. The gradient of £ and its noisy approximation are bounded: For all w € W, z € Z
IVe(w,2z)|| < G, forallt € [T), ||&:]] < G, and ||VL(w,2)|1 < G;.

To analyze the convergence of SAGD in terms of {5 norm of the population gradient, we need to
show that g; approximate the population gradient g; with high probability, i.e., the estimation error
||g: — g¢|| is small at every iteration. To make such an analysis, we first present the generalization
guarantee of any differentially private algorithm in Lemma 1, and then show that SAGD is dif-
ferentially private in Lemma 2. It is followed by establishing SAGD’s generalization guarantee in
Theorem 1, i.e., estimated g; approximates the population gradient g; with high probability.

High-probability bound: We first show that the noisy gradient g; approximates the population gra-
dient g; with high probability. A general approach for analyzing the estimation error of sample
gradient to population gradient is Hoeffding’s bound, i.e., given training set S € Z”, and a fixed wy
chosen to be independent of the dataset S, denote the empirical gradient gy = E.csV£(wy, z) and
population gradient go = E,.p[VI(wy, 2)], Hoeffding’s bound implies for ¢ € [d] and p > 0:

o i —2np?
Pilgo — el Zu}§2exp< 102 ) : )
Generally, if w is updated using the gradient computed on training set S, i.e., wi; = wg — 18,
concentration inequality (2) will not hold for g1 = E.csV,¢(w,2), because w is no longer

independent of S. However, Lemma | shows that if w,Vt¢ € [T] is generated by reusing S un-
der a differentially private mechanism, concentration bounds similar to Eq. (2) will hold for all
w1, Wo, ..., W that are adaptively generated on the same dataset S.

Lemma 1. Letr A be an (e, d)-differentially private gradient descent algorithm with access to train-
ing set S of size n. Let wy = A(S) be the parameter generated at iteration t € [T) and &; the
empirical gradient on S. For any o > 0, B > 0, if the privacy cost of A satisfies ¢ < o /13,
§ < 0B/(261n(26/0)), and sample size n > 21n(8/6) /€2, we then have

P{lg; —gi| > Go} < B, VieldandVte[T].
Lemma 1 is an instance of Theorem 8 from [11] and illustrates that, if the privacy cost € is bounded
by the estimation error, the differential privacy mechanism enables the reused training sample set to

maintain statistical guarantees as if they were fresh samples. Then, we establish in Lemma 2, that
SAGD with DPG-LAP is a differentially private algorithm with the following privacy cost:

Lemma 2. SAGD with DPG-LAP (Alg. 1) is (7&&/6)@, 0)-differentially private.

In order to achieve a gradient concentration bound for SAGD with DPG-LAP as described in
Lemma 1, we set \/T'In(1/0)G1/(no) < o¢/13, 6 < 0/3/(261n(26/0)), and sample size
n > 21n(8/6) /2. Then, the following result shows that across all iterations, gradients produced by
SAGD with DPG-LAP maintain high probability concentration bounds.

Theorem 1 Given o > 0, let g1, ..., g1 be gradients computed by DPG-LAP in SAGD. Set the
number of iterations 2no? /G2 < T < n?0c*/(169In(1/(0B))G?), then for t € [T), B > 0,
w>0:

P{lg — gl > Vdo(G+ )} < df+dexp(—p).

Note that given the concentration error bound of v/do (G + 1), Theorem 1 indicates that a higher
noise level o, implying a better privacy guarantee and a larger number of iterations 7",would mean-
while incur a larger concentration error. Thus, there is a trade-off between noise and accuracy illus-
trated by the positive numbers /3 and . A larger p brings a larger concentration error but a smaller



probability. A larger /5 implies a larger upper bound on 7', yet also a larger probability bound. We
optimize the choice of 5 and y for analyzing the convergence to the population stationary point.

Non-asymptotic convergence rate: We derive the optimal values of o and 7" to improve the trade-
off between the statistical rate and the optimization rate and we obtain a novel finite-time bound in
Theorem 2. Denote p,, 4 £ O (Inn + Ind), we prove that SAGD with DPG-LAP converges to a
population stationary point with high probability at the following rate:

Theorem 2 Given training set S of size n, for v > 0, if n; = nwithn < v/(2L), ¢ = 1/n'/3,

iteration number T = n*?/ (169G3(Ind + 7lnn/3)), p = In(1/B) and B = 1/(dn?),
then SAGD with DPG-LAP algorithm yields:

min ||V f(w.)|? <O (M) Lo (dpn,d) |

1<t<T n2/3 n2/3

with probability at least 1 — O (1/(py,an)).

Theorem 2 shows that, given n samples, SAGD converges to a stationary point at a rate of
@(1 /n?/3) where we use the £, norm of the gradient of the objective function as a convergence
criterion. Particularly, the first term of the bound corresponds to the optimization error O(1/T) with
T = O(nz/ 3), while the second is the statistical error depending on available sample size n and
dimension d. The current optimization analyses [40, 38, 43, 8] show that adaptive gradient descent
algorithms converge to the stationary point of the objective function with a rate of O(1/ VT ) with T’
stochastic gradient computations. Given n samples, their analyses yield a rate of O(1/+/n). Thus,
the SAGD achieves a sharper bound compared to the previous analyses.

3.2 SAGD with DPG-SPARSE

In this section, we consider the SAGD with an advanced version of DPG named DPG-SPARSE
motivated by the sparse vector technique [14] aiming to provide a sharper result on the privacy
cost ¢ and §. Lemma 2 shows that the privacy cost of SAGD with DPG-LAP scales with O(v/T).
In order to guarantee the generalization of SAGD as stated in Theorem 1, we need to control the
privacy cost below a certain threshold i.e., /T In(1/0)G1/(no) < ¢/13. However, it limits the
iteration number 7" of SAGD, leading to a compromised optimization term in Theorem 2. In order
to relax the upper bound on 7', we propose the SAGD with DPG-SPARSE in Algorithm 2. Given
n samples, Algorithm 2 splits the dataset evenly into two parts S7 and S2. At each iteration ¢,
Algorithm 2 computes gradients on both datasets: gg, ; = \Silll sze s Vi(wy,z;) and g, + =
Is—lz‘ sz €Sy Vi(wy,z;). It then validates &g, ; with gg, ;, i.e., if the norm of their difference is
greater than a random threshold 7 — v, it returns g; = gg, + + by, otherwise g; = gg, .

Algorithm 2 SAGD with DPG-SPARSE

1: Input: Dataset S, certain loss £(-), initial point wy.
2: Set noise level o, iteration number 7', and stepsize 7;.
3: Split S randomly into S; and .S5.
4: fort =0,...,T7 —1do
5:  DPG-SPARSE: Compute full batch gradient on .S and S5:
851t = 9] Lmyesy VWL 2Z))s 850 = 1557 2ouyes, VAW Z)).

6:  Sample v ~ Lap(20), 7 ~ Lap(40).

T if||g51,t _gSLtH +> 7 then

8: g: = £5,.t + bs, where bl is drawn i.i.d from Lap(o), for all i € [d].
9: else
10: gt = gSz,t
11:  endif

12: m; — gt and Vi = (1 — 62) 22:1 ,6;_lg12
13: Wip1 = W — ntmt/(\/\Tt + V).

14: end for

15: Return: g;.




Following THRESHOLDOUT, a sparse vector technique for adaptive data analysis, [42] propose a
stable gradient descent algorithm which uses a similar framework as DPG-SPARSE to compute an
estimated gradient by validating each coordinate of gg, ; and gg, ;. Thus, their method is computa-
tionally expensive in high-dimensional settings such as deep neural networks.

High-probability bound: To analyze the privacy cost of DPG-SPARSE, let C be the number of
times the validation fails, i.e., ||s, .+ — &s,.¢|| + v > 7 is true, over T iterations in SAGD. The
following Lemma establishes the privacy cost of the SAGD with DPG-SPARSE algorithm.
Lemma 3. SAGD with DPG-SPARSE (Alg. 2) is (VL0251 5y difterentially private.
Lemma 3 shows that the privacy cost of SAGD with DPG-SPARSE scales with O(y/C) where
Cs < T. In other words, DPG-SPARSE procedure improves the privacy cost of the SAGD algo-
rithm. Indeed, in order to achieve the generalization guarantee of SAGD with DPG-SPARSE, stated
in Lemma 1 and by considering the result of Lemma 3, we only need to set 1/C In(1/§)G1/(no) <
o /13, which potentially improves the upper bound on 7. We derive the generalization guarantee of
g: generated by the SAGD with DPG-SPARSE algorithm in the following result:

Theorem 3 Given o > 0, let g1, ..., g1 be the gradients computed by DPG-SPARSE in SAGD.
With a budget no? /(2G?) < Cy < n20* /(676 In(1/(0B))G?), thenfort € [T), > 0, u > 0:

P{Ilé;t — gl > Vdo(1+ u)} < df + dexp(—p) .

In the worst case C; = T', we recover the bound of T < n20* /(676 In(1/(c3))G?) of DPG-LAP.

Non-asymptotic convergence rate: The finite-time upper bound on the convergence criterion of
interest for the SAGD with DPG-SPARSE algorithm (Algorithm 2) is stated as follows:

Theorem 4 Given training set S of size n, for v > 0, if n, = n which are chosen with n <
v/(2L), noise level ¢ = 1/n'/?, and iteration number T = n?/3/ (676G3(Ind + % Inn)),
then SAGD with DPG-SPARSE algorithm yields:

min [V /(we)|* < O (M) +0 (d’)i’d> ,

1<¢<T n2/3 n2/3

with probability at least 1 — O (1/(pp,an)).

Theorem 4 displays a similar rate of O(1/n%/3) for the SAGD with DGP-SPARSE as Theorem 2.
A sharper bound can be achieved when the number of validation failures C is smaller than T". For

example, if C; = O(v/T), the upper bound of T can be improved from 7' < O(n?) to T < O(n?).

3.3 Mini-batch Stable Adaptive Gradient Descent Algorithm

For large-scale learning we derive the mini-batch variant of SAGD in Algorithm 3. The training set
S is first partitioned into B batches with m samples for each batch. At each iteration ¢, Algorithm 3
uses any DPG procedure to compute a differential private gradient g; on each batch and updates wy.

Algorithm 3 Mini-Batch SAGD

1: Input: Dataset S, certain loss (), initial point wy.
2: Set noise level o, epoch number 7', batch size m, and stepsize 7.
3: Split S into B = n/m batches: {s1,...,s5}.
4: for epoch =1,....,T do
5. fork=1,..,Bdo
6: Call DPG-LAP or DPG-SPARSE to compute g;.
7: m; = g; and vy = (1 — o) Z§=1 é_lg?.
8: Wiy = Wy — ey /(\/Ve + 1),
9: end for
10: end for




Theorem 5 describes the convergence rate of the mini-batch SAGD algorithm in terms of batch size
m and sample size n, i.e., O(1/(mn)'/3).

Theorem 5 Consider the mini-batch SAGD with DPG-LAP. Given S of size n, with
v > 0, 5 = n < v/(2L), noise level ¢ = 1/(mn)'/®, and epoch T =
m*/3/ (n?/3169G3 (Ind + 2Inn)), then:

min_[|Vf(wo)|* <O (M) +o( dp},.a ) ’

t=1,..., (mn)1/3 (mn)1/3

with probability at least 1 — O (1/(pp,an)).

When m = \/n, mini-batch SAGD achieves the convergence of rate O(1/y/n). When m = n,
i.e., in the full batch setting, Theorem 5 recovers SAGD’s convergence rate O(1/n?/3). In terms of
computational complexity, the mini-batch SAGD requires O(m*/3n'/3) stochastic gradient com-
putations for O(m*/3/n?/3) passes over n samples, while SAGD requires O (n°/3) stochastic gra-
dient computations. Thus, the mini-batch SAGD has the advantage of decreasing the computation
complexity, but displays a slower convergence than SAGD.

4 Numerical Experiments

In this section, we evaluate our proposed mini-batch SAGD algorithm on various deep learn-
ing models against popular optimization methods: SGD with momentum [29], Adam [19], RM-
Sprop [35], and Adabound [24]. We consider three tasks: the classification tasks on MNIST [22] and
CIFAR-10 [20], and the language modeling task on Penn Treebank [25] and the SNLI dataset [3],
corpus of 570 000 human-written English sentence pairs where the goal is to predict if an hypothesis
is an entailment, contradiction or neutral with respect to a given text.

The setup of each task is given in the following table:

Dataset Network Type Architectures

MNIST Feedforward 2-Layer with ReLLU and 2-Layer with Sigmoid
CIFAR-10 Deep Convolutional VGG-19 and ResNet-18

Penn Treebank Recurrent 2-Layer LSTM and 3-Layer LSTM

SNLI Recurrent bidirectional LSTM

4.1 Environmental Settings

Datasets and Evaluation Metrics: The MNIST dataset has a training set of 60000 examples and
a test set of 10000 examples. The CIFAR-10 dataset consists of 50000 training images and 10000
test images. The Penn Treebank dataset contains 929589, 73760, and 82430 tokens for training,
validation, and test, respectively. To better understand the generalization ability of each optimization
algorithm with an increasing training sample size n, for each task, we construct multiple training
sets of different size by sampling from the original training set. For MNIST, training sets of size n €
{50,100, 200, 500, 103, 2.10%,5.10%, 10%,2.10%, 5.10*} are constructed. For CIFAR10, training sets
of size n € {200, 500, 10%,2.10%,5.10%,10%,2.10%, 3.10%, 5.10*} are constructed. For each n, we
train the model and report the loss and accuracy on the test set. For Penn Treebank and SNLI,
all training samples are used to train the model and we report the training perplexity and the test
perplexity across epochs. Cross-entropy is used as the loss function throughout experiments. The
mini-batch size is set to be 128 for CIFAR10 and MNIST, 20 for Penn Treebank and SNLI. We
repeat each experiment 5 times and report the mean of the results.

Hyper-parameter setting: Optimization hyper-parameters affect the quality of solutions. Particu-
larly, [39] highlight that the initial stepsize and the scheme of decaying stepsizes have a considerable
impact on the performance. We use grid search method to tune the step size for each optimizer. We
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Figure 1: Test loss and test accuracy of ReLU neural network and Sigmoid neural network on
MNIST. In both cases, SAGD obtains the best test accuracy among all the methods. Test loss and
accuracy of ResNet-18 and VGG-19 on CIFAR10. SAGD achieves the lowest test loss. For VGG-
19, SAGD achieves the best test accuracy among all the methods. The x-axis is the number of train
samples, and the y-axis is the testing loss/accuracy.

specify the strategy of decaying step sizes and the noise parameter o in the subsections of each task.
Parameters v, 33, and T follow the default settings as adaptive algorithms such as RMSprop.

4.2 Numerical results

Feedforward Neural Network. For image classification on MNIST, we focus on two 2-layer fully
connected neural networks with either ReLU or Sigmoid activation functions. We run 100 epochs
and decay the learning rate by 0.5 every 30 epochs. We use 0 = 0.8 for ReLU and ¢ = 1.0
for Sigmoid. Figure 1 presents the loss and accuracy on the test set given different training set
sizes. Since all algorithms attain the 100% training accuracy, the performance on the training set
is omitted. Figure | shows that, for ReLU neural network, SAGD performs slightly better than
the other algorithms in terms of test accuracy. Figure 1 also presents the results on Sigmoid neural
network where SAGD achieves the best test accuracy among all the algorithms.

Convolutional Neural Network. We use ResNet-18 [17] and VGG-19 [34] for the CIFAR-10 image
classification task. We run 200 epochs and decay the learning rate by 0.1 every 30 epochs. We use
o = 0.01 for both ResNet-18 and VGG-19. Figure 1 shows that SAGD has higher test accuracy
than the other algorithms. Figure 1 also reports the results on VGG-19. SAGD performs similarly to
SGD and achieves a higher test loss than the other adaptive gradient methods. Adam and our method
performs better than the other adaptive gradient algorithms when sample size is large regarding the
test accuracy.

Recurrent Neural Network. An experiment on Penn Treebank is conducted for the language mod-
eling task with 2-layer Long Short-Term Memory (LSTM) [26] network and 3-layer LSTM. We use
o = 0.01 for both models. We train them for a fixed budget of 500 epochs and omit the learning-rate
decay. Perplexity is used as the metric to evaluate the performance and learning curves are plotted
in Figure 2. For a 2-layer LSTM, we observe in Figure 2 that RMSprop and Adam achieve a lower
training perplexity than SAGD. However, SAGD performs the best in terms of the test perplexity.
In particular, we observe that after 200 epochs, the test perplexity of RMSprop and Adam starts
increasing, but the training perplexity continues decreasing (over-fitting occurs). For the 3-layer
LSTM, Figure 2 shows that the perplexity of Adam and RMSprop start increasing significantly after
150 epochs (over-fitting) while the perplexity of SAGD keeps decreasing. SAGD, SGD and Ad-
aBound perform better than Adam, and RMSprop in terms of over-fitting. Table 1 shows the best
test perplexity of 2-layer LSTM and 3-layer LSTM for all the algorithms.
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Figure 2: Train (upper panels) and test (bottom panels) perplexity of 2-layer LSTM (2LSTM), 3-
layer LSTM (3BLSTM) and biLSTM. Even though some baseline optimizers achieve better training
performance than SAGD, the latter performs the best in terms of test perplexity among all methods.

Table 1: Test Perplexity of LSTMs on Penn Treebank. Bold number indicates the best result.

RMSprop Adam AdaBound SGD SAGD
2-layer LSTM  62.87 £0.05 66.02+£0.05 65.82+0.08 65.96+0.23 60.66 + 0.05
3-layer LSTM 6397 £018 6323 £004 6233 £0.07 62.51 £0.11 59.43 + 0.24

Bidirectional LSTM. We use a bi-directional LSTM architecture, as the concatenation of a forward
LSTM and a backward LSTM as described in [9]. We use 300 dimensions as fixed word embeddings
and set the learning rate following the method described above. We set noise parameter o = 0.01.
In Figure 2, we compare mini-batch SAGD to the following baselines: Adam [19], RMSprop [35],
and Adabound [24]. As in the language modeling task on PTB, we observe that whilst SAGD
displays a worse loss perplexity than baseline methods, it keeps a low testing perplexity through the
epochs. This phenomena has been observed in all of our experiments and highlights the advantage
of our proposed method to present reused samples to the model as if they were fresh ones. Thus,
over-fitting is less likely to happen and testing loss will remain low. For instance, Adam achieves
the best training perplexity, yet displays an increasing testing perplexity after a few epochs, which
leads to low test accuracy.

5 Conclusion

In this paper, we focus on the generalization ability of adaptive gradient methods. Concerned with
the observation that adaptive gradient methods generalize worse than SGD for over-parameterized
neural networks and given the limited theoretical understanding of the generalization of those meth-
ods, we propose Stable Adaptive Gradient Descent (SAGD) methods, which boost the general-
ization performance in both theory and practice through a novel use of differential privacy. The
proposed algorithms generalize well with provable high-probability convergence bounds of the pop-
ulation gradient. Experimental studies highlight that the proposed algorithms are competitive and
often better than baseline algorithms for training deep neural networks and demonstrate the aptitude
of our method to avoid over-fitting through a differential privacy mechanism.



Broader Impact

We believe that our work stands in the line of several papers towards improving generalization
and avoiding over-fitting. Indeed, the basic principle of our method is to fit any given model, in
particular deep model, using an intermediate differentially-private mechanisms allowing the model
to fit fresh samples while passing over the same batch of n observations. The impact of such work
is straightforward and could avoid learning, and thus reproducing at testing phase, the bias existent
in the training dataset.
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