
A Differential Privacy and Generalization Analysis

A.1 Proof of Lemma 1

By applying Theorem 8 from [11] to gradient computation, we obtain Lemma 1.

Lemma 1. Let A be an (ε, δ)-differentially private gradient descent algorithm with access to train-
ing set S of size n. Let wt = A(S) be the parameter generated at iteration t ∈ [T ] and ĝt the
empirical gradient on S. For any σ > 0, β > 0, if the privacy cost of A satisfies ε ≤ σ/13,
δ ≤ σβ/(26 ln(26/σ)), and sample size n ≥ 2 ln(8/δ)/ε2, we then have

P
{
|ĝit − git| ≥ Gσ

}
≤ β , ∀i ∈ [d] and ∀t ∈ [T ] .

Proof Theorem 8 in [11] shows that in order to achieve generalization error τ with probability
1 − ρ for an (ε, δ)-differentially private algorithm (i.e., in order to guarantee for every function φt,
∀t ∈ [T ], we have P [|P [φt]− ES [φt]| ≥ τ ] ≤ ρ), where P [φt] is the population value, ES [φt] is
the empirical value evaluated on S and ρ and τ are any positive constant, we can set the ε ≤ τ

13 and
δ ≤ τρ

26 ln(26/τ) . In our context, τ = σ, β = ρ, φt is the gradient computation function ∇`(wt, z),
P [φt] represents the population gradient git/G, ∀i ∈ [p], and ES [φt] represents the sample gradient
ĝit/G, ∀i ∈ [p]. Thus we have P

{∣∣ĝit − git
∣∣ /G ≥ τ} ≤ ρ if ε ≤ σ

13 , δ ≤
σβ

26 ln(26/σ) .

A.2 Proof of Lemma 2

Lemma 2. SAGD with DPG-LAP (Alg. 1) is (

√
T ln(1/δ)G1

nσ , δ)-differentially private.

Proof At each iteration t, the algorithm is composed of two sequential parts: DPG to access the
training set S and compute g̃t, and parameter update based on estimated g̃t. We mark the DPG as
part A and the gradient descent as part B. We first show A preserves G1

nσ -differential privacy. Then
according to the post-processing property of differential privacy (Proposition 2.1 in [14]) we have
B ◦ A is also G1

nσ -differentially private.

The partA (DPG-Lap) uses the basic tool from differential privacy, the “Laplace Mechanism” (Def-
inition 3.3 in [14]). The Laplace Mechanism adds i.i.d. Laplace noise to each coordinate of the
output. Adding noise from Lap(σ) to a query of G1/n sensitivity preserves G1/nσ-differential
privacy by ( Theorem 3.6 in [14]). Over T iterations, we have T applications of a DPG-Lap. By the
advanced composition theorem (Theorem 3.20 in [14]), T applications of a G1

nσ -differentially private

algorithm is (

√
T ln(1/δ)G1

nσ , δ)-differentially private. So SAGD with DPG-Lap is (

√
T ln(1/δ)2G1

nσ , δ)-
differentially private.

A.3 Proof of Theorem 1

Theorem 1 Given σ > 0, let g̃1, ..., g̃T be gradients computed by DPG-LAP in SAGD. Set the
number of iterations 2nσ2/G2

1 ≤ T ≤ n2σ4/(169 ln(1/(σβ))G2
1), then for t ∈ [T ], β > 0,

µ > 0:
P
{
‖g̃t − gt‖ ≥

√
dσ(G+ µ)

}
≤ dβ + d exp(−µ) .

Proof The concentration bound is decomposed into two parts:

P
{
‖g̃t − gt‖ ≥

√
dσ(G+ µ)

}
≤ P

{
‖g̃t − ĝt‖ ≥

√
dσµ

}
︸ ︷︷ ︸

T1: empirical error

+P
{
‖ĝt − gt‖ ≥

√
dσ
}

︸ ︷︷ ︸
T2: generalization error

.

In the above inequality, there are two types of errors which we need to control. The first type of
error, referred to as empirical error T1, is the deviation between the differentially private estimated
gradient g̃t and the empirical gradient ĝt. The second type of error, referred to as generalization
error T2, is the deviation between the empirical gradient ĝt and the population gradient gt.
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The second term T2 can be bounded thorough the generalization guarantee of differential privacy.
Recall that from Lemma 1, under the condition in Theorem 3, we have for all t ∈ [T ], i ∈ [d]:

P
{
|ĝit − git| ≥ Gσ

}
≤ β .

So that we have

P
{
‖ĝt − gt‖ ≥

√
dGσ

}
≤ P {‖ĝt − gt‖∞ ≥ Gσ} ≤ dP

{
|ĝit − git| ≥ Gσ

}
≤ dβ . (3)

Now we bound the second term T1. Recall that g̃t = ĝt + bt, where bt is a noise vector with each
coordinate drawn from Laplace noise Lap(σ). In this case, we have

P
{
‖g̃t − ĝt‖ ≥

√
dσµ

}
≤ P

{
‖bt‖ ≥

√
dσµ

}
≤ P {‖bt‖∞ ≥ σµ} ≤ dP

{
|bit| ≥ σµ

}
= d exp(−µ) .

(4)

The second inequality comes from ‖bt‖ ≤
√
d‖bt‖∞. The last equality comes from the property

of Laplace distribution. Combine (3) and (4), we complete the proof.

A.4 Proof of Lemma 3

Lemma 3. SAGD with DPG-SPARSE (Alg. 2) is (

√
Cs ln(2/δ)2G1

nσ , δ)-differentially private.

Proof At each iteration t, the algorithm is composed of two sequential parts: DPG-Sparse (part A)
and parameter update based on estimated g̃t (part B). We first show A preserves 2G1

nσ -differential
privacy. Then according to the post-processing property of differential privacy (Proposition 2.1
in [14]) we have B ◦ A is also 2G1

nσ -differentially private.

The part A (DPG-Sparse) is a composition of basic tools from differential privacy, the “Sparse Vec-
tor Algorithm” (Algorithm 2 in [14]) and the “Laplace Mechanism” (Definition 3.3 in [14]). In
our setting, the sparse vector algorithm takes as input a sequence of T sensitivity G1/n queries,
and for each query, attempts to determine whether the value of the query, evaluated on the private
dataset S1, is above a fixed threshold γ + τ or below it. In our instantiation, the S1 is the private
data set, and each function corresponds to the gradient computation function ĝt which is of sen-
sitivity G1/n. By the privacy guarantee of the sparse vector algorithm, the sparse vector portion
of SAGD satisfies G1/nσ-differential privacy. The Laplace mechanism portion of SAGD satisfies
G1/nσ-differential privacy by ( Theorem 3.6 in [14]). Finally, the composition of two mechanisms
satisfies 2G1

nσ -differential privacy. For the sparse vector technique, only the query that fails the val-
idation, corresponding to the ‘above threshold’, release the privacy of private dataset S1 and pays
a 2G1

nσ privacy cost. Over all the iterations T , We have Cs queries fail the validation. Thus, by
the advanced composition theorem (Theorem 3.20 in [14]), Cs applications of a 2G

nσ -differentially

private algorithm is (

√
Cs ln(2/δ)2G1

nσ , δ)-differentially private. Therefore, SAGD with DPG-Sparse

is (

√
Cs ln(2/δ)2G1

nσ , δ)-differentially private.

A.5 Proof of Theorem 3:

Theorem 3 Given σ > 0, let g̃1, ..., g̃T be the gradients computed by DPG-SPARSE in SAGD.
With a budget nσ2/(2G2

1) ≤ Cs ≤ n2σ4/(676 ln(1/(σβ))G2
1), then for t ∈ [T ],β > 0, µ > 0:

P
{
‖g̃t − gt‖ ≥

√
dσ(1 + µ)

}
≤ dβ + d exp(−µ) .

Proof The concentration bound can be decomposed into two parts:

P
{
‖g̃t − gt‖ ≥

√
dσ(1 + µ)

}
≤ P

{
‖g̃t − ĝs1,t‖ ≥

√
dσµ

}
︸ ︷︷ ︸

T1: empirical error

+P
{
‖ĝs1,t − gt‖ ≥

√
dσ
}

︸ ︷︷ ︸
T2: generalization error

,
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which yields

P
{
‖ĝs1,t − gt‖ ≥

√
dσ
}
≤ P {‖ĝs1,t − gt‖∞ ≥ σ} ≤ dP

{
|ĝis1,t − git| ≥ σ

}
≤ dβ . (5)

Now we bound the second term T1 by considering two cases, by depending on whether DPG-3
answers the query g̃t by returning g̃t = ĝs1,t + vt or by returning g̃t = ĝs2,t. In the first case, we
have

‖g̃t − ĝs1,t‖ = ‖vt‖
and

P
{
‖g̃t − ĝs1,t‖ ≥

√
dσµ

}
= P

{
‖vt‖ ≥

√
dσµ

}
≤ d exp(−µ) .

The last inequality comes from the ‖vt‖ ≤
√
d‖vt‖∞ and properties of the Laplace distribution.

In the second case, we have

‖g̃t − ĝs1,t‖ = ‖ĝs2,t − ĝs1,t‖ ≤ |γ|+ |τ |
and

P
{
‖g̃t − ĝs1,t‖ ≥

√
dσµ

}
=P
{
|γ|+ |τ | ≥

√
dσµ

}
≤P
{
|γ| ≥ 2

6

√
dσµ

}
+ P

{
|τ | ≥ 4

6

√
dσµ

}
=2 exp(−

√
dµ/6) .

Combining these two cases, we have

P
{
‖g̃t − ĝs1,t‖ ≥

√
dσµ

}
≤max

{
P
{
‖vt‖ ≥

√
dσµ

}
,P
{
|γ|+ |τ | ≥

√
dσµ

}}
≤max

{
d exp(−µ), 2 exp(−

√
dµ/6)

}
=d exp(−µ) . (6)

We complete the proof by combining (5) and (6).

B Non-asymptotic Convergence analysis

In this section, we present the proofs for Theorems 2, 4 , 5.

B.1 Proof of Theorem 2 and Theorem 4

The proof of Theorem 2 consists of two parts: We first prove that the convergence rate of a gradient-
based iterative algorithm is related to the gradient concentration error α and its iteration time T .
Then we combine the concentration error α achieved by SAGD with DPG-Lap in Theorem 1 with
the first part to complete the proof of Theorem 2. To simplify the analysis, we first use α and ξ to
denote the generalization error

√
dσ(G + µ) and probability dβ + d exp(−µ) in Theorem 1 in the

following analysis. The details are presented in the following theorem.

Theorem 6 Let g̃1, ..., g̃T be the noisy gradients generated in Algorithm 1 through DPG oracle
over T iterations. Then, for every t ∈ [T ], g̃t satisfies

P{‖g̃t − gt‖ ≥ α} ≤ ξ ,

where the values of α and ξ are given in Section A.

With the guarantee of Theorem 6, we have the next theorem which shows the convergence of SAGD.
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Theorem 7 Let ηt = η. Further more assume that ν, β and η are chosen such that the following
conditions satisfied: η ≤ ν

2L . Under the Assumption A1 and A2, the Algorithm 1 with T

iterations, φt(g̃1, ..., g̃t) = g̃t and vt = (1− β2)
∑t
i=1 β

t−i
2 g̃2

i achieves:

min
t=1,...,T

‖∇f(xt)‖2 ≤ (G+ ν)×
(
f(w1)− f?

ηT
+

3α2

4ν

)
, (7)

with probability at least 1− Tξ.

We can now tackle the proof of our result stated in Theorem 7.

Proof Using the update rule of RMSprop, we have φt(g̃1, ..., g̃t) = g̃t and ψt(g̃1, ..., g̃t) =

(1− β2)
∑t
i=1 β

t−i
2 g̃2

i . Thus, we can rewrite the update of Algorithm 1 as:

wt+1 = wt − ηtg̃t/(
√
vt + ν) and vt = (1− β2)

t∑
i=1

βt−i2 g̃2
i .

Let ∆t = g̃t − gt, we obtain:

f(wt+1)

≤f(wt) + 〈gt,wt+1 −wt〉+
L

2
‖wt+1 −wt‖2

=f(wt)− ηt 〈gt, g̃t/(
√
vt + ν)〉+

Lη2t
2

∥∥∥∥ g̃t
(
√
vt + ν)

∥∥∥∥2
=f(wt)− ηt

〈
gt,

gt + ∆t√
vt + ν

〉
+
Lη2t

2

∥∥∥∥ gt + ∆t√
vt + ν

∥∥∥∥2
≤f(wt)− ηt

〈
gt,

gt√
vt + ν

〉
− ηt

〈
gt,

∆t√
vt + ν

〉
+ Lη2t

(∥∥∥∥ gt√
vt + ν

∥∥∥∥2 +

∥∥∥∥ ∆t√
vt + ν

∥∥∥∥2
)

=f(wt)− ηt
d∑
i=1

[gt]
2
i√

vit + ν
− ηt

d∑
i=1

git∆
i
t√

vit + ν
+ Lη2t

(
d∑
i=1

[gt]
2
i

(
√

vit + ν)2
+

d∑
i=1

[∆t]
2
i

(
√
vit + ν)2

)

≤f(wt)− ηt
d∑
i=1

[gt]
2
i√

vit + ν
+
ηt
2

d∑
i=1

[gt]
2
i + [∆t]

2
i√

vit + +ν
+
Lη2t
ν

(
d∑
i=1

[gt]
2
i√

vit + ν
+

d∑
i=1

[∆t]
2
i√

vit + ν

)

=f(wt)−
(
ηt −

ηt
2
− Lη2t

ν

) d∑
i=1

[gt]
2
i√

vit + ν
+

(
ηt
2

+
Lη2t
ν

) d∑
i=1

[∆t]
2
i√

vit + ν
.

Given the parameter setting from the theorem, we see the following condition hold:

Lηt
ν
≤ 1

4
.

Then we obtain

f(wt+1) ≤ f(wt)−
η

4

d∑
i=1

[gt]
2
i√

vit + ν
+

3η

4

d∑
i=1

[∆t]
2
i√

vit + ν

≤ f(wt)−
η

G+ ν
‖gt‖2 +

3η

4ε
‖∆t‖2 .

The second inequality follows from the fact that 0 ≤ vit ≤ G2. Using the telescoping sum and
rearranging the inequality, we obtain

η

G+ ν

T∑
t=1

‖gt‖2 ≤ f(w1)− f? +
3η

4ε

T∑
t=1

‖∆t‖2 .
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Multiplying with G+ν
ηT on both sides and with the guarantee in Theorem 1 that ‖∆t‖ ≤ α with

probability at least 1− ξ, we obtain

min
t=1,...,T

‖gt‖2 ≤ (G+ ν)×
(
f(w1)− f?

ηT
+

3α2

4ν

)
,

with probability at least 1− Tξ.

We now present the proof of our Theorem 2.

Theorem 2 Given training set S of size n, for ν > 0, if ηt = η with η ≤ ν/(2L), σ = 1/n1/3,
iteration number T = n2/3/

(
169G2

1(ln d+ 7 lnn/3)
)
, µ = ln(1/β) and β = 1/(dn5/3),

then SAGD with DPG-LAP algorithm yields:

min
1≤t≤T

‖∇f(wt)‖2 ≤ O
(
ρn,d (f(w1)− f?)

n2/3

)
+O

(
dρ2n,d

n2/3

)
,

with probability at least 1−O (1/(ρn,dn)).

Proof First consider the gradient concentration bound achieved by SAGD (Theorem 1 and Theo-
rem 3) that if 2nσ2

G2
1
≤ T ≤ n2σ4

169 ln(1/(σβ))G2
1

, we have

P
{
‖g̃t − gt‖ ≥

√
dσ(G+ µ)

}
≤ dβ + d exp(−µ), ∀t ∈ [T ].

Then bring the setting in Theorem 2 that σ = 1/n1/3, let µ = ln(1/β) and β = 1/(dn5/3), we have

‖g̃t − gt‖2 ≤ d(1 + ln d+
5

3
lnn)2/n2/3 ,

with probability at least 1− 1/n5/3, when we set T = n2/3/
(
169G2

1(ln d+ 7
3 lnn)

)
.

Connect this result with Theorem 7, so that we haveα2 = d(1+ln d+ 5
3 lnn)2/n2/3 and ξ = 1/n5/3.

Bring the value α2, ξ and T = n2/3/
(
169G2

1(ln d+ 7
3 lnn)

)
into (7), with ρn,d = O (lnn+ ln d),

we have

min
t=1,...,T

‖∇f(wt)‖2 ≤ O
(
ρn,d (f(w1)− f?)

n2/3

)
+O

(
dρ2n,d
n2/3

)
,

with probability at least 1−O
(

1
ρn,dn

)
which concludes the proof.

Theorem 4 Given training set S of size n, for ν > 0, if ηt = η which are chosen with η ≤
ν/(2L), noise level σ = 1/n1/3, and iteration number T = n2/3/

(
676G2

1(ln d+ 7
3 lnn)

)
,

then SAGD with DPG-SPARSE algorithm yields:

min
1≤t≤T

‖∇f(wt)‖2 ≤ O
(
ρn,d (f(w1)− f?)

n2/3

)
+O

(
dρ2n,d

n2/3

)
,

with probability at least 1−O (1/(ρn,dn)).

Proof The proof of Theorem 4 follows the proof of Theorem 2 by considering the caseCs = T .
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B.2 Proof of Theorem 5

Theorem 5 Consider the mini-batch SAGD with DPG-LAP. Given S of size n, with
ν > 0, ηt = η ≤ ν/(2L), noise level σ = 1/(mn)1/6, and epoch T =
m4/3/

(
n2/3169G2

1(ln d+ 7
3 lnn)

)
, then:

min
t=1,...,T

‖∇f(wt)‖2 ≤ O
(
ρn,d (f(w1)− f?)

(mn)1/3

)
+O

(
dρ2n,d

(mn)1/3

)
,

with probability at least 1−O (1/(ρn,dn)).

Proof When mini-batch SAGD calls DPG to access each batch sk with size m for T times, we

have mini-batch SAGD preserves (

√
T ln(1/δ)G1

mσ , δ)-deferential privacy for each batch sk. Now
consider the gradient concentration bound achieved by DPG-Lap (Theorem 1) that if 2mσ2

G2
1
≤ T ≤

m2σ4

169 ln(1/(σβ))G2
1

, we have

P
{
‖g̃t − gt‖ ≥

√
dσ(G+ µ)

}
≤ dβ + d exp(−µ), ∀t ∈ [T ] .

Then bring the setting in Theorem 5 that σ = 1/(nm)1/6, let µ = ln(1/β) and β = 1/(dn5/3), we
have

‖g̃t − gt‖2 ≤ d(1 + ln d+
5

3
lnn)2/n2/3 ,

with probability at least 1− 1/n5/3, when we set epoch T = m4/3/
(
n2/3169G2

1

(
ln d+ 7

3 lnn
))

.

Connect this result with Theorem 7, so that we have α2 = d(1 + ln d + 5
3 lnn)2/(mn)1/3

and ξ = 1/n5/3. Bring the value α2, ξ and total iteration number to be T × n/m with
T = (mn)1/3/

(
169G2

1(ln d+ 7
3 lnn)

)
into (7), with ρn,d = O (lnn+ ln d), we have

min
t=1,...,T

‖∇f(wt)‖2 ≤ O
(
ρn,d (f(w1)− f?)

(mn)1/3

)
+O

(
dρ2n,d

(mn)1/3

)
,

with probability at least 1−O
(

1
ρn,dn

)
. Here we complete the proof.
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