A Appendix: Learning Guidance Rewards with
Trajectory-space Smoothing

A.1 Monte-Carlo Estimate of the Guidance Rewards

oo

_ ¢ : o oy et pa(T)1[(s,a) € 7]
nsmooth(ﬂ'e) = E-T—~7r(0) [tz:; Y E‘r~p,3(7;s,a) [R(T)]]v bgs (7-7 S, CL) = pr/[g(T)]].[(S, CL) c 7_} dr

Let pr (s, a) denote the unnormalized discounted state-action visitation distribution for 7. Then:
Tlsmooth (7T0) = E(s,a)wp,r]E'r~p3 (738,a) [R(T)]

Plugging in the definition of ps(7; s, @) and using linearity of expectations:

R(7)1[(s,a) € T
[.ps(T)1[(s,a) € 7] dT

Let I" denote a set of N trajectories generated in the MDP using 3, and N (s, a) be the count of the
trajectories which include the tuple (s, a). The Monte-Carlo estimate of 7smootn (70) is:

7)1[(s,a) € 7]
N(s,a)/N

R(7)1[(s,a) € 7]
N(s,a)

nsmooth(770) = ETNPB(T)E(S#I)NPW

R

. 1
nsmoolh(ﬂe) = N Z IE(s,a)wp7r

Tel

= E(sajpe D

Tel

rg(s,a)
where 7,4(s, a) is same as the Monte-Carlo estimate of the guidance rewards defined in Section 3.1.
We further define (s, a) = 0if N(s,a) = 0.
A.2 Implementation Details and Hyperparameters
Tabular Q-learning

Table 1 provides the hyperparameters for the Tabular Q-learning experiment in a 50 x 50 grid-
world with episodic environmental rewards (Figure 2). Both IRCR and the baseline share the same
hyperparameters.

Hyperparameter \ Value
learning rate 0.3 at start, linearly annealed
exploration e-greedy (e = 0.5 at start, linearly annealed)
discount (7y) 0.9
episode horizon 150 steps
training episodes 15000

Table 1: Hyper-parameters for Tabular Q-learning

SAC

Table 2 provides the hyperparameters for SAC (Algorithm 2) which is used for the experiments in
Figure 3. For the experience replay, the usual FIFO buffer is augmented with a small Min-Heap
buffer which stores a few high return past episodes (details in Table). This is used in all the baselines
as well. Both SAC (IRCR) and SAC (original) share the same hyperparameters.

10

Hyperparameter Value
hidden layers (all networks) 2
hidden units per layer 256
samples per minibatch 256
nonlinearity ReLU
optimizer Adam [3]
discount () 0.99
entropy target —|A|
target smoothing coefficient 0.001
learning rate 1 x 10~* for policy and temperature, 3 x 10~ for critic
replay buffer 3 x 105 transitions (FIFO) + 10 episodes (Min Heap)

Table 2: Hyper-parameters for SAC

MA-TD3

Since our multi-agent task is cooperative and involves maximization of a scalar team reward, we use a
single critic network that is shared amongst the agents. Furthermore, as the agents are homogeneous
(same observation- and action-space), we design a permutation-invariant critic:

Q(S7 a) = g(mean({f(ol, a1)7 R f(0k7 ak)}))
where (0;, a;) are the local observation and action of agent 4, (s, a) denote joint observations and
actions, and g, f are neural networks. This permutation invariant set representation was proposed
by Zaheer et al. [6]. Table 3 provides the hyperparameters for MA-TD3 which is used for the experi-
ments in Figure 4a. Both MA-TD3 (IRCR) and MA-TD3 (original) share the same hyperparameters.

Hyperparameter

Value

policy architecture
critic architecture
samples per minibatch
nonlinearity
optimizer
discount ()
target smoothing coefficient
episode horizon
learning rate
replay buffer
exploration strategy

2 hidden layers, 128 hidden units
shared, permutation-invariant (described above)
256
Tanh
Adam [3]

0.99
0.005
100 steps
1 x 10~% for policy, 3 x 10~* for critic
5 x 10* transitions (FIFO) + 100 episodes (Min Heap)
N(0,0.1) + Adaptive Parameter Noise [4]

Table 3: Hyper-parameters for MA-TD3

The following are the specifics for the environments used in Figure 4a:

e Coupling=1. # POIs = 3, # Agents = 3
e Coupling=2. # POIs =4, # Agents =4
o Coupling=3. # POIs = 4, # Agents =6
o Coupling=4. # POIs = 4, # Agents = 8

A.3 Ilustration of Guidance Rewards with Simple MDP and pg

Consider the MDP in Figure 5 with the states {s1, o, 3, sS4}, s1 is the start state, {s3, s4} are the
terminal states. {a;, as} are the possible actions from s1; {a3, a4} are the possible actions from s.
There are 4 possible trajectories. Let the return associated with each trajectory be the following:

11

Figure 5: MDP with 4 states and 4 actions

o 7 : {s1a182a3}; R(m) =1
o 7o : {s1a180a4}; R(12) =3
o 73: {s1ass2a3}; R(m3) =1
o 74: {s1a280a4}; R(m4) =1

The guidance reward is given by:
d_ef pﬁ(T)]l[(s,a) € 7]
[pp(T)1[(s,a) € T]dT

Tg(57 a; B) = IE‘rrvpg(7';8,(1) [R(T)] Pp (T; S, a

We compute the guidance rewards for the above MDP for two different pg distributions - uniform
and exponential.

With Uniform pg
If pg is uniform, pg(m) = pa(12) = pa(13) = pa(74) = 0.25. From this, we obtain:
° pﬁ(’l’ 81,0,1) %5(7':7'1)4-%5(7':72); rg(sl,al,ﬁ):Z
o pa(Tis1,a2) = %5(7’ =1T3)+ %5(7' =T4); Tg(s1,a0;8) =1
o ps(T;82,a3) = %5(7 =)+ %5(7' =13); Tg(52 az; B) =1
e ps(Tis2,a4) = 36(7 =72) + 30(T =74); Te(s2,a4;8) =

With Exponential pg

If pg is exponential, i.e. pg(T) o< exp(R(7)), pg(mT1) = pa(m3) = pa(1a) = 0.1; pg(me) = 0.7
(rounded off to 1 decimal). From this, we obtain:

. Pﬁ(T'Sl,al):éfs(T_Tl)Jr §0(r=m72); ry(s1,a1;8) =2.75
o ps(T;51,a2) = %5(7 =1T73) + M1 =74); rg(s1,a2;8) =1
o pa(T;82,a3) = %5(7 =) —|— 01T =m3); rg(s2,a3;p) =1
o pp(T;82,a4) = %5(7172)+ Ot =m1); ry(s2,a4;8) =2.75

A.4 Distributional-RL with Guidance Rewards
Background

Distributional-RL models the full distribution of the returns, the expectation of which is the Q-function.
We use the C51 algorithm introduced by Bellemare et al. [1] which represents the return distribution
with learned probabilities on a fixed support; several other representation methods have also been
proposed. Let Z7 (s, a) be the random variable denoting the sum of discounted rewards along a
trajectory starting with the state-action pair (s,a). The value function is Q™ (s,a) = EZ7 (s, a).
Z™ (s, a) is obtained by the repeated application of the distributional Bellman operator 7™ defined as:

T"Z(s,a) £ R(s,a) +72(s',a') &' ~p(|s,a),a" ~7(]s)
C51 models the value distribution with a discrete distribution on a fixed support {z; } ¥ ;, referred to
as a set of atoms. The atom probabilities are given by a learned parametric model fy : S x A — RY:

Zo(s,a) =z w.p. ph(s,a) = softmax(fa(s,a));

12

Atom Support and Guidance Rewards in Log-space

In Bellemare et al. [1], the support of the atoms ranges from Vi, to Vinax, Which are environment-
specific variables defining the limits of the returns possible in that environment. To make the support
range environment-agnostic, we define it in the log-space: w; = {1/N,2/N, ..., 1} and z; = log w;.
Thus, the Q-function is written as Qg (s,a) = >, py(s, a) log w;.

We further define guidance rewards modified with a log function, r14(s,a) = logr,(s, a). Recall
that 7, € [0, 1] due to the min-max normalization; hence the application of log is proper (expect at 0
where a small € should be added). Although this transformation changes the magnitude, the relative
ordering of the guidance rewards is preserved due to the monotonicity of the log. The parametric
model fy is optimized with TD-learning. With the distributional Bellman equation, this is equivalent
to a distribution matching problem. Given a training tuple (s, a, g, s") from the replay buffer, the
discrete target distribution is:

TLg +7y2zi w.p. ph = softmax(fa(s’,a’));
Using the log-space atom support and definition of r g, we can rewrite this as:
log [re.w;"] w.p. pj = softmax(fo(s’,a’));
Similarly, the discrete source distribution is:
logw; w.p. pl = softmax(fy(s,a));

The source and the target distributions have a support interval (-oo, 0]. In principle, any f-divergence
metric on them could be minimized. An alternative is to induce a transformation before the divergence
minimization. This is justified by the following theorem from Qiao & Minematsu [5]: "The f-
divergence between two distributions is invariant under differentiable and invertible transformation”.
With an exponential transformation, we get the following distributions that are now shaped to have a
support interval (0,1]:

rew;? w.p. pj = softmax(fy(s',a’));

w; w.p. ph = softmax(f(s,a));

Following [1], we minimize the KL-divergence between these distributions using a projection step to
account for the mismatch in the atom positions between the source and the target.

A.5 Discussion Points

Exploration vs. Credit-assignment. Exploration and credit assignment are two distinct fundamental
problems in RL. The former deals with the discovery of new useful information, the latter is about
efficiently incorporating this information for learning a robust policy. In hard exploration problems, an
agent typically obtains zero rewards in each episode unless an exploration impetus is given, whereas
in our setting, a reward signal is readily provided to the agent at the end of every episode. The focus,
therefore, is to train effectively from this delayed feedback and improve upon the credit assignment.

Limitations of IRCR. Since the reward that the agent optimizes for is different from the original task
reward and is coupled to a behavioral policy 3, for a given MDP, it might be possible to design an
adversarial S such that optimizing for the resultant guidance rewards leads to unintended behaviors
(as per the task rewards). Although not visible in our empirical evaluation, a limitation of IRCR
is that a careful adaptation of S could be crucial in some domains to avoid this. For instance, if
[gets stuck in some region of the state-action-space, the learning agent may also get trapped in a
local optimum due to deceptive guidance rewards. Combining IRCR with methods that explicitly
incentivize exploration is a promising approach.

A.6 Further Experiments

Robotic manipulator arm environment. Figure 6 shows the robotic arm that models a 7 degree-of-
freedom Sawyer robot, inspired by Chen et al. [2]. The task is to insert a cylindrical peg (held in the
end-effector attached to the arm) into a hole some distance away on the table. A non-zero reward is
provided only at the end of every episode and is equal to exponential of negative Lo distance between
the final position of the peg and the hole. In Table 4, we compare the final performance of the SAC

13

W SAC SAC Random

(env. rewards) (IRCR) Policy

_ 10444 160+7 90+11

Table 4: SAC performance on the peg-insertion task
Figure 6: MuJoCo model of a 7 DoF arm with environmental and guidance rewards. Mean and

based on the Sawyer robot. standard deviation over 5 random seeds are reported.
SAC (env. rewards) SAC (env. rewards) TD3 TD3
n-step returns (n=10) A-returns (A=0.9) (env. rewards) (IRCR)
Hopper 6264281 5664101 235437 29814114
Half-Cheetah —42+29 —112+206 —123+50 6844+918

Table 5: Performance (mean and standard deviation over 5 random seeds) of various algorithms.

algorithm with environmental and guidance rewards, and note that the latter is considerably better.

Baselines for better reward propagation. Table 5 includes the following baselines: SAC (n-step)
uses n-step returns for the Bellman error update of the soft Q-function, and SAC (A-returns) augments
the Q-function training with TD(\), which interpolates nicely between 1-step TD and MC returns
based on the value of \. We tested with n={3,10,20} and A={0.5,0.9,0.95,1.0} but observe that these
methods are unable to solve the MuJoCo locomotion tasks with episodic rewards. Our conjecture
for their low scores with episodic rewards is that the reward delay exacerbates the variance is MC,
and bias in TD, to such an extent that using them separately, or mixing them via interpolation, is not
sufficient to alleviate the problems in value estimation for credit assignment. IRCR takes a different
approach of learning guidance rewards for each time-step and integrates well with 1-step TD (due to
the bias reduction afforded by the dense guidance rewards). Table 5 also contrasts TD3 (IRCR) with
TD3 (environmental rewards) on the locomotion tasks.

References

[1] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In Proceedings of the 34th International Conference on Machine Learning-Volume 70,
pp. 449-458. JMLR. org, 2017.

[2] Tao Chen, Adithyavairavan Murali, and Abhinav Gupta. Hardware conditioned policies for multi-
robot transfer learning. In Advances in Neural Information Processing Systems, pp. 9333-9344,
2018.

[3] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[4] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
arXiv preprint arXiv:1706.01905, 2017.

[5] Yu Qiao and Nobuaki Minematsu. A study on invariance of f-divergence and its application to
speech recognition. IEEE Transactions on Signal Processing, 58(7):3884-3890, 2010.

[6] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R Salakhutdinov,
and Alexander J Smola. Deep sets. In Advances in neural information processing systems, pp.
3391-3401, 2017.

14

	Introduction
	Background and Notations
	Method
	Integrating guidance rewards into existing RL algorithms

	Experiments
	Single-agent environments and baselines
	Multi-agent environments and baselines

	Related work
	Conclusion
	Appendix: Learning Guidance Rewards with Trajectory-space Smoothing
	Monte-Carlo Estimate of the Guidance Rewards
	Implementation Details and Hyperparameters
	Illustration of Guidance Rewards with Simple MDP and p
	Distributional-RL with Guidance Rewards
	Discussion Points
	Further Experiments

