
To Reviewers, we will make all suggested minor corrections in the final version and address main concerns below.1

R1 (and R3, R5:) Thanks for your constructive comments! The idea of integrating several key optimization techniques,2

dual averaging + variance reduction + acceleration, is novel and nontrivial for three reasons. First, for the general convex3

setting, the proposed SVR-ADA gives the rateO
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of Katyusha, not substantially improved for over 4 years; for the well-conditioned strongly convex setting (the case5

of the number of samples n far greater the condition number, i.e., n � κ), SVR-ADA has the rate O
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which improves the SOTA rate O(n log 1

ε ) of SAG, unchanged for 8 years; for the ill-conditioned7

strongly convex setting (n ≤ O(κ)), SVR-ADA matches the lower bound in [25]. Second, besides the improved or8

optimal convergence results, SVR-ADA shares the simplicity of MiG [29] and the unification of Varag (see comments9

of R2) simultaneously. Third, this work is the first to show that in the finite sum setting, combining accelerated dual10

averaging (ADA) with variance reduction (VR) gives better convergence rates than that of combining accelerated mirror11

descent (AMD) with VR as adopted in Katyusha, MiG and Varag. This provides new perspectives to acceleration.12

In terms of experiments, SVR-ADA is compared with SOTA finite sum solvers. The results send one consistent13

message: SVR-ADA performs well in all the three settings, namely general convex, ill-conditioned or well-conditioned14

strongly convex. In comparison, the existing accelerated algorithms Katyusha and MiG do not perform so well for15

the well-conditioned strongly convex setting; the non-accelerated algorithm SVRG does not perform well for the16

general convex and ill-conditioned strongly convex settings. In terms of the choice of regularization, we use different17

two-norm regularizations to represent the phenomenon of the three settings compactly by Figure 1 and Figure 2.18

If we use one-norm, then it can only represent the general convex setting. For completeness, we will show the19

numerical results of one-norm in the final version. The different regularization parameters of the two figures are used to20

better represent the obvious change in experimental phenomena. In the final version, we will represent the results of21

{0, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3} for both experiments at least in the supplementary material.22

Thanks for your suggestions about writing! In the final version, we will rewrite the abstract to make it more clear. Per23

your suggestions, we will use “general convex” to replace “nonstrongly convex” and make the statements in Line 30 and24

32 more precise. We will add a paragraph to make a simple introduction to stochastic algorithms that do not use VR.25

R2: We are very glad that you obviously recognize significance of our contributions! We were also aware of Varag26

after our submission! In the final version, we will make systematical comparisons with Varag from three perspectives:27

1) Efficiency. SVR-ADA improves the SOTA rates for general convex and well-conditioned strongly convex settings,28

while Varag does not improve any SOTA rates. 2) Simplicity. SVR-ADA only uses two-point coupling in the inner29

iteration, while Varag uses three-point coupling. SVR-ADA uses a uniform average in the outer iteration, while Varag30

uses a weighted one. 3) Unification. SVR-ADA unifies the general convex and strongly convex settings with much31

simplified parameter settings, which can be simply specified in algorithm description. However, to adapt to both settings,32

the parameter settings of Varag are very complicated and not explicitly and clearly stated in the algorithmic description.33

In terms of techniques, first, we use the combination of VR and ADA, while they use the combination of VR and AMD;34

second, we use completely different and concise convergence analysis by estimation sequence; third, we only use35

negative momentum, while they use both Nesterov’s momentum and negative momentum.36

In terms of applicability in the constrained setting, we can always reformulate a convex constrained convex problem as37

an unconstrained convex problem by the indicator function of the constrained set. Thus if the indicator function admits38

an efficient proximal operator, then we can apply SVR-ADA in the constrained setting. Meanwhile, in the final version,39

we will give a complete proof for the bound of Ak. We will cite the latest reference Joulani et al. (ICML 2020)!40

R3: Thanks for your constructive comments! We fully understand your concern with the applicability for nonconvex41

problems such as deep neural networks. However, it is an open problem for all control variate finite sum solvers, not42

only for ours. Meanwhile, the primary area of our contribution is in convex optimization, which is valuable for many43

problems in machine learning, signal processing, operational research. Thus we cannot undervalue the widely studied44

control variate approaches as they significantly reduce the overall complexity for finite sum convex optimization. It is45

fair to say broad applicability is the main reason why the control variate finite sum solvers are so widely studied!46

In terms of theoretical contributions, as highlighted in our response to R1, we have improved rates in two regimes47

that remain unimproved for many years, in a very actively studied area. In terms of empirical performance, as in our48

response to R1, SVR-ADA is the first algorithm that performs well in all the three settings. We will conduct more49

experimental evaluation as per the request by you and R1 and report in the final version.50

R5: Thanks for your constructive comments! For the general convex setting, the best-known resultO(n log 1
ε+
√
nL√
ε
) is51

optimal up to a log factor. In convex optimization, a main endeavor is to shave off log factors to match the corresponding52

lower bounds. We have made a substantial step forward by reducing log n to log log n. Meanwhile, as in our response53

to R1, we also improve the rate for the well-conditioned strongly convex setting. As R2 commented, the simplicity and54

unification merits of SVR-ADA are remarkable! We believe our work is of significant value to this area.55


