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Abstract

In this paper, we introduce a simplified and unified method for finite-sum con-
vex optimization, named Variance Reduction via Accelerated Dual Averaging
(VRADA). In both general convex and strongly convex settings, VRADA can attain
an O

�
1
n

�
-accurate solution in O(n log log n) number of stochastic gradient evalu-

ations which improves the best known result O(n log n), where n is the number
of samples. Meanwhile, VRADA matches the lower bound of the general con-
vex setting up to a log log n factor and matches the lower bounds in both regimes
n  ⇥() and n �  of the strongly convex setting, where  denotes the condition
number. Besides improving the best known results and matching all the above
lower bounds simultaneously, VRADA has more unified and simplified algorithmic
implementation and convergence analysis for both the general convex and strongly
convex settings. The underlying novel approaches such as the novel initialization
strategy in VRADA may be of independent interest. Through experiments on real
datasets, we show the good performance of VRADA over existing methods for
large-scale machine learning problems.

1 Introduction

In this paper, we study the following composite convex optimization problem:

min
x2Rd

f(x) := g(x) + l(x) :=
1

n

nX

i=1

gi(x) + l(x), (1)

where g(x) := 1
n

Pn
i=1 gi(x) with gi(x) being convex and smooth, and l(x) is convex, probably

nonsmooth but admitting an efficient proximal operator. In this paper, we mainly assume that each
gi(x) is L-smooth (L > 0) and l(x) is �-strongly convex (� � 0). If � = 0, then the problem
is general convex. If � > 0, then the problem is strongly convex and we define the corresponding
condition number  := L/�. Instances of problem (1) appear widely in statistical learning, operations
research, and signal processing. For instance, in machine learning, if 8i 2 [n], gi(x) := hi(hai,xi),
where hi : R ! R is a convex loss function and ai 2 Rd is the data vector, then the problem (1)
is also called regularized empirical risk minimization (ERM). Important instances of ERM include
ridge regression, Lasso, logistic regression, and support vector machine.

In the large-scale setting where n is large, first-order methods become the natural choice for solving
(1) due to its better scalability. However, when n is very large, even accessing the full gradient
rg(x) becomes prohibitively expensive. To alleviate this difficulty, a common approach is to use
an unbiased stochastic gradient rgi(x) (i is randomly chosen from [n] := {1, 2, . . . , n}) to replace
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Table 1: Complexity results for solving the problem (1) with accuracy ✏ � ⇥(L/n).
Algorithm General/Strongly Convex

SVRG++ [4] O
�
n log 1

✏

�

Varag [19] O
�
n log 1

✏

�

VRADA (This Paper) O
�
n log log 1

✏

�

Lower bound [37] ⌦(n)

the full gradient rg(x) in each iteration, a.k.a., stochastic gradient descent (SGD). In the stochastic
setting, the goal to solve (1) becomes to find an expected ✏-accurate solution x 2 Rd satisfying
E[f(x)] � f(x⇤)  ✏, where x⇤ is an exact minimizer of (1). Typically, the iteration complexity
result of such an algorithm is evaluated by the number of evaluating stochastic gradients rgi(x)
needed to achieve the ✏-accurate solution.

By only accessing stochastic gradients, SGD has a low per-iteration cost. However, SGD has a very
high iteration complexity due to the constant variance krgi(x)�rg(x)k. To reduce the iteration
complexity of SGD while still maintaining its low per-iteration cost, a remarkable progress in the past
decade is to exploit the finite-sum structure of g in (1) to reduce the variance of stochastic gradients.
In such variance reduction methods, instead of directly using rgi(x), we compute a full gradient
rg(x̃) of an anchor point x̃ beforehand. Then we use the following variance reduced gradient

r̃gi(x) := rgi(x)�rgi(x̃) +rg(x̃) (2)
as a proxy for the full gradient rg(x) during each iteration. As a result, the amortized per-iteration
cost is still the same as SGD. However, the variance reduced gradient (2) is unbiased and can reduce
the variance from krgi(x)�rg(x)k to krgi(x)�rgi(x̃)k. As the variance krgi(x)�rgi(x̃)k
can vanish asymptotically, the iteration complexity of SGD can be substantially reduced.

To this end, SAG [32] is historically the first direct2 variance reduction method to solve (1) while
it uses a biased estimation of the full gradient. SVRG [16] directly solves (1) and explicitly uses
the unbiased estimation (2) to reduce variance. Then SAGA [10] provides an alternative of (2) to
avoid precomputing the gradient of an anchor point but with the price of an increased memory cost.
Based on [35], a Catalyst approach [23] has been proposed to combine Nesterov’s acceleration
into variance reduction methods in a black box manner. [2] has proposed the first direct approach,
named Katyusha (a.k.a. accelerated SVRG), to combine variance reduction and a kind of Nesterov’s
acceleration scheme in a principled manner. [37] has given a tight lower complexity bound for
finite-sum stochastic optimization and shown the tightness of Katyusha (with black-box reduction
[3]) up to a logarithmic factor. MiG [40] follows and simplifies Katyusha by two-point coupling to
produce acceleration. Varag [19] improves Katyusha further by considering a unified approach for
both the general convex and strongly convex settings. Finally, [13] has proved improved convergence
results for a variant of SVRG when n � , which is better than the best known results of accelerated
ones such as Katyusha.

1.1 Related Results and Our Contributions

In Table 1, for clarity, we list the state of the art results (as well as results of this paper and lower
bounds [37]) for attaining an accuracy ✏ � ⇥

�
L
n

�
. In Table 2, we give the complexity results of

representative direct variance reduction methods for both the general convex and strongly convex
settings (as well as results of this paper and lower bounds). The literature on variance reduction is
too rich to list them all here.3 In Table 2, we mainly list the algorithms with improved convergence
results for at least one setting.
To understand where we stand with these complexity results, firstly we are particularly interested in
attaining a solution with a proper accuracy such as ✏ = ⇥

�
L
n

�
.4 To attain this accuracy, as shown

2For clarification, we say an algorithm is direct if it solves the problem (1) without any reformulation such as
the dual reformulation [34], primal-dual reformulation [39] or warm restart reformulation [3].

3For instance, when the objective (1) is strongly convex, we can also use randomized coordinate de-
scent/ascent methods on the dual or primal-dual formulation of (1) to indirectly solve (1), such as SDCA [34]
and Acc-ADCA [35], APCG [24] and SPDC [39]. Variance reduction methods have also been widely applied
into distributed computing [30, 22] and nonconvex optimization [29, 31].

4This is because, in the context of large-scale statistical learning, due to statistical limits [7, 33], even under
some strong regularity conditions [7], obtaining an O

�
1
n

�
accuracy will be sufficient.
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Table 2: Complexity results for solving the problem (1). (“—” means the corresponding result does not
exist or is unknown.)

Algorithm General Convex Strongly Convex Strongly Convex
n  ⇥() n � 

SAG [32] — O
�
n log 1

✏

�
O
�
n log 1

✏

�

SVRG [16, 38, 13] — O
�
 log 1

✏

�
O

⇣
n+ n

log(n/) log
1
✏

⌘

SAGA [10] O
�
n+L

✏

�
O( log 1

✏ ) O
�
n log 1

✏

�

SVRG++ [4] O

⇣
n log 1

✏ + L
✏

⌘
— —

Katyushasc [2] — O
�p

n log 1
✏

�
O
�
n log 1

✏

�

Katyushansc [2] O

⇣
n+

p
nLp
✏

⌘
— —

Varag [19]1
O

⇣
n log n+

p
nLp
✏

⌘
O

⇣
n log n+

p
n log 1

✏

⌘
2

O(n log 1
✏ )

VRADA1
O

⇣
n log log n+

p
nLp
✏

⌘
O

⇣
n log log n+

p
n log 1

n✏

⌘3
O

⇣
n+ n

log(n/) log
1
✏

⌘4

(This Paper)
Lower bound [37] ⌦

⇣
n+

p
nLp
✏

⌘
⌦
⇣
n+

p
n log(

p
n


1
✏ )
⌘

O

⇣
n+ n

log(n/) log
1
✏

⌘
5

1 For both Varag and VRADA, the complexity results are given for accuracy ✏ < ⇥(L/n). (For
✏ � ⇥(L/n), see Table 1.)

2 For more precise bounds of Varag, see [19].
3 For this setting, a slightly worse but simpler bound is O(n+

p
n log 1

✏ ).
4 For this setting, the O

⇣
n log log n+ n

log(n/) log
1
n✏

⌘
is also valid.

5 This lower bound is only valid for the class of “oblivious p-CLI” algorithms [5, 13].

in Table 1, for both general/strongly convex settings, the non-accelerated SVRG++ and accelerated
Varag need O(n log n)5 number of iterations whereas the lower bound [37] implies that we may only
need ⌦(n) iterations. Before this work, it is not known whether the logarithmic factor gap can be
further reduced or not.

As shown in Table 2, in the general convex setting, the best known rate is O
�
n log n+

p
nLp
✏

�
6. In the

strongly convex setting with n  ⇥(), as shown in Table 2, for small ✏, both the complexity results
of Katyushasc and Varag can match the lower bound ⌦

�
n+

p
n log

�p
n


1
✏

��
for any randomized

algorithms with “gradient and proximal operator” oracle [37]. When n �  (which is common in the
statistical learning context such as  = O(

p
n) [8]), a widely known complexity result is O(n log 1

✏ ),
attained by both non-accelerated and accelerated methods. However, [13] showed that a variant
of SVRG with different parameter settings has a better iteration complexity O

�
n+ n

log(n/) log
1
✏

�

than O(n log 1
✏ ). The bound O

�
n+ n

log(n/) log
1
✏

�
is proved to be optimal for the class of so called

“oblivious p-CLI algorithms” [5, 13], despite the fact that the bound involves large constants. So the
situation seems to be: before this work, there exists no single algorithm that can match the lower
bounds of the three settings simultaneously in Table 2. Meanwhile, for accelerated methods, [2, 40]
can not unify the general convex/strongly convex settings, while [19] unifies both settings with very
complicated parameter settings and thus is not very practical.

Efficiency. As shown in Table 1, to attain a solution with ✏ � ⇥
�
L
n

�
, the proposed Variance

Reduction via Accelerated Dual Averaging (VRADA) algorithm only needs O
�
n log log 1

✏

�
number

of iterations, while the best known result is O
�
n log 1

✏

�
.

In the general convex setting, as shown in Table 2, to attain an accuracy ✏ < ⇥
�
L
n

�
, our VRADA

method achieves the iteration complexity

O

⇣
n log log n+

p
nLp
✏

⌘
, (3)

which matches the lower bound up to a log log factor, while the best known result before is O
�
n log n+

p
nLp
✏

�
. As practically speaking, the log log factor can be treated as a small constant: for instance

5The linear convergence result is irrelevant to the problem being strongly convex or not.
6The rate is firstly obtained by combining Katyushasc with black-box reduction, which is an indirect solver.
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when n  264, we have n log log n  6n. Thus, for general convex problems, VRADA can attain an
⇥
�
L
n

�
-accurate solution with essentially O(n) iterations, practically matches the lower bound!

In the strongly convex setting with n  ⇥() and ✏ < ⇥
�
L
n

�
, the bound of VRADA becomes

O

⇣
n log log n+

p
n log

1

n✏

⌘
, (4)

which is slightly better than the simpler bound O
�
n +

p
n log 1

✏

�
as n log log n 

p
n log n.

Meanwhile, it also matches the corresponding lower bound for small ✏ > 0.

In the strongly convex setting with n �  and ✏ < ⇥
�
L
n

�
, the rate of VRADA becomes

O

⇣
n+

n

log(n/)
log

1

n✏

⌘
, or O

⇣
n log log n+

n

log(n/)
log

1

n✏

⌘
, (5)

which matches the lower bound for the class of “oblivious p-CLI algorithms” [13]. Compared with
the best-known result [13] for the non-accelerated SVRG, VRADA involves very intuitive parameter
settings and thus has small constants in the bound (5). So we can say, VRADA matches the lower
bounds of the three settings simultaneously for the first time.

Simplicity. VRADA follows the framework of MiG [40], thus it only needs two-point coupling
in the inner iteration rather than three-point coupling in Katyusha and Varag. Furthermore, similar
to MiG, VRADA only needs to keep track of one variable vector in the inner loop, which gives it a
better edge in sparse and asynchronous settings [40] than Katyusha and Varag. In the general convex
setting, VRADA is also a direct solver without any extra effort to attain the improved complexity
result (3). In the strongly convex setting, VRADA attains the optimal results (4) and (5) by using
a natural uniform average, fixed and intuitive inner number of iterations and consistent parameter
settings for all the epochs, while Katyushasc and MiGsc use a weighted average, and Varag uses
different parameter settings for the first ⇥(log n) epochs and the other epochs respectively.

Unification. VRADA uses the same parameter setting for both the general convex and strongly
convex settings. The only difference is that in VRADA, we set the parameter � = 0 in the general
convex setting, while we set � > 0 in the strongly convex setting. Meanwhile, based on a “generalized
estimation sequence”, we conduct a unified convergence analysis for both settings. The only difference
is that the values of two predefined sequences of positive numbers are different. Correspondingly,
Katyushasc and Katyushansc (as well as MiGsc and MiGnsc) use different parameter settings and
independent convergence analysis for both the general convex and strongly convex settings. Varag
provides a unified approach for both settings. However to adapt to both settings, the parameter
settings of Varag are very complicated and cannot even be stated in the algorithm description.

1.2 Our Approach

Separation of Nesterov’s Acceleration and Variance Reduction.7 To combine Nesterov’s acceler-
ation and variance reduction, [2] has introduced negative momentum to make Nesterov’s acceleration
and variance reduction coexist in the inner loop. Since [2], all the follow-up methods [40, 19] consider
similar ideas. However, as results, the resulting convergence analysis becomes complicated and a
weighted averaging in the outer iteration is necessary for the strongly convex setting. In this paper,
we consider a very different approach instead: let Nesterov’s acceleration occur in the outer iteration
and variance reduction occur in the inner iteration, separately. This approach makes the convergence
analysis significantly simplified and only uniform average needed for the strongly convex setting.

Novel Initialization to Cancel Randomized Error. In SVRG-style variance reduction methods,
we need to determine the number of inner iterations. The most intuitive implementation of variance
reduction methods is using a fixed number of inner iterations (e.g., ⇥(n)). However, such a natural
choice makes Katyusha (as well as MiG [40]) incur accumulated randomized errors, which makes it
converge at a suboptimal rate O

⇣
n+

p
nLp
✏

⌘
in the general convex setting. To alleviate this situation,

one may consider an indirect black-box reduction approach [3] or an approach of half SVRG++ and
half SVRG [19] (i.e., exponentially increasing until a given threshold) to reduce the complexity result

7This insightful perspective is from an anonymous NeurIPS reviewer.
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to O
�
n log 1

✏ +
p
nLp
✏

�
, which makes both implementation and analysis complicated. In this paper,

we consider a rather simplified and effective approach: we only do a (full) gradient descent step
and a particular initialization of estimation sequence before entering into the main loop. With this
approach, we can simply use a fixed number of inner iterations and reduce the complexity result to
O
�
n log log 1

✏ +
p
nLp
✏

�
.

Dual Averaging to Accumulate Strong Convexity. The most common implementations of ac-
celerated variance reduction methods are variants of (proximal) accelerated mirror descent (AMD)
[2, 40, 19]. In the strongly convex setting, AMD-based methods only exploit the strong convexity
in the current iteration but still maintains the optimal dependence on ✏. However, the dependence
on n for these methods is not optimal when n � . In this paper, we consider an accelerated
dual averaging (ADA) approach [26]. AMD and ADA are often viewed as two different kinds
of generalizations for Nesterov’s accelerated gradient descent, while ADA can exploit the strong
convexity along the whole optimization trajectory. As a result, when n � , the resulting VRADA
algorithm can improve the best known result O

�
n log 1

✏

�
of AMD-based methods by a log factor to

O
�
n+ n

log(n/) log
1
✏

�
.

1.3 Other Related Works

Regarding the Lower Bound under Sampling with Replacement. When the problem (1) is �-
strongly convex and L-smooth with  = L/�, [20] has provided a stronger lower bound than [37]
such that to find an ✏-accurate solution x such that E[kx� x⇤k2]  ✏, any randomized incremental
gradient methods need at least

⌦
⇣⇣

n+
p
n

⌘
log

1

✏

⌘
(6)

number of iterations when the dimension d is sufficiently large. Our second upper bound in (5) is
measured by E[f(x)]� f(x⇤). By the strong convexity, when n �  and ✏  ⇥(1/n), if we convert
to the Euclidean distance E[kx�x⇤k2], then our rate will be O

⇣
n log log n+ n log(/(n✏))

log(n/)

⌘
. At first

sight, when n � , our upper bound is actually better than the lower bound (6) by a log(n/) factor,
which seems rather surprising and was firstly observed for a variant of SVRG [13]. [13] explained
this phenomenon by the fact that SVRG does not satisfy “the span assumption” that is intrinsic for
the proof in (6). However, it cannot effectively explain why SDCA [34], a variance reduction method
also not satisfying the span assumption, can not have such a log-factor gain. In this paper, we provide
another point of view from the sampling strategy: the randomized incremental gradient methods of
[20] are referred to the ones by sampling with replacement completely, while the proposed VRADA
algorithm is not limited to the assumption of [20]. In detail, VRADA is based on the two-loop
structure of SVRG: in the outer loop, we compute the full gradient of an anchor point; in the inner
loop, we compute stochastic gradients by sampling with replacement. In the outer loop of SVRG,
the step of computing a full gradient can be viewed as stochastic gradient steps with 0 step size by
(implicitly) sampling without replacement. 8 Thus, the lower bound (6) does not apply to VRADA.
Remark 1 (Sampling without Replacement). Very recently, the superiority of sampling without
replacement has also been verified theoretically [14, 12, 27, 1]. Particularly, [1] has shown that
for strongly convex and smooth finite-sum problems, SGD without replacement (also known as
random reshuffling) needs O(

p
n/

p
✏) number of stochastic gradient evaluations, which is tight and

significantly better than the rate O(1/✏) of SGD with replacement [15]. Meanwhile, in practice, it is
also more widely used in training deep neural network for its better efficiency [6, 28].

Other Acceleration Variants. Besides accelerated versions of SVRG, there are a randomized
primal-dual method RPDG [20], a randomized gradient extrapolation method RGEM [21], two
accelerated versions Point-SAGA [9] and SSNM [9] of SAGA, and a unified approach for (random)
SVRG/SAGA/SDCA/MISO [18]. In the submission of this paper, another paper [17] has also
considered the approach of combining variance reduction and ADA. However, all these methods
match the lower bound (6).

8The outer loop of SVRG or our algorithm cannot be interpreted as stochastic gradient steps by sampling
with replacement (say, with 0 step size), as we cannot pick all the samples with probability 1 by sampling with
replacement for n times.
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2 Algorithm: Variance Reduction via Accelerated Dual Averaging
Let [n] := {1, 2, . . . , n}. For simplicity, we only consider the Euclidean norm k · k ⌘ k · k2. We first
introduce a couple of standard assumptions about the convexity and smoothness of the problem (1).
Assumption 1. 8i 2 [n], gi(x) is convex, i.e., 8x,y, gi(y) � gi(x) + hrgi(x),y � xi; gi(x) is
L-smooth (L > 0), i.e., krgi(y)�rgi(x)k  Lky � xk.
By Assumption 1 and g(x) = 1

n

Pn
i=1 gi(x), we can verify that g(x) is L-smooth, i.e.,

8x,y, krg(y)�rg(x)k  Lky � xk. Furthermore, we assume l(x) satisfies:
Assumption 2. l(x) is �-strongly convex (� � 0), i.e., 8x,y, and l

0(x) 2 @l(x), l(y) � l(x) +
hl0(x),y � xi+ �

2 ky � xk2; when � = 0, we also say l(x) is general convex.

To realize acceleration with dual averaging, we recursively define the following generalized estimation
sequence for the finite-sum problem (1):

 s,k(z) :=  s,k�1(z) + as

�
g(ys,k) + hr̃s,k, z � ys,ki+ l(z)

�
, (7)

with the initialization  1,0(z) :=
1
2kz � x̃0k2,  2,0 := m 1,1 with m 2 Z+, k 2 {1, 2, . . . ,m}9,

and  s+1,0 :=  s,m (for s � 2), where {as} is a sequence of positive numbers to be specified later.
Here {ys,k} is a sequence of vectors that will be generated by our algorithm, {r̃s,k} is a sequence of
variance reduced stochastic gradients evaluated at {ys,k}. If m = 1 and r̃s,k = rg(ys,k), then we
can verify that (7) is equivalent to the classical definition of estimation sequence by Nesterov [26]. In
the finite-sum setting, we set m = ⇥(n) to amortize the computational cost per epoch s, where n is
the number of sample functions in (1). Then we say  s,k is the estimation sequence in the (inner)
k-th iteration of the s-th epoch. For convenience, we define As := As�1 + as with A0 := 0.

Based on the definition (7), Algorithm 1 summarizes the proposed Variance Reduction via Acceler-
ated Dual Averaging (VRADA) method. As we see, besides the steps about updating the estimation
sequence such as Steps 2-4, 6 and 12, Algorithm 1 mainly follows the framework of the simplified
MiG [40] of Katyusha. The main formal differences are that we have novel and effective initialization
steps in Steps 2-4 and replace the mirror descent step in MiG by Step 12, a dual averaging step:

zs,k := argmin
z
 s,k(z). (8)

To be self-contained, note that we compute the full gradient on the anchor point in Step 7 and compute
the variance reduced stochastic gradient r̃s,k in Steps 10 and 11. Steps 9 ,12 and 14 are used to
achieve acceleration. The settings for x̃s, zs+1,0 and  s+1,0 in Step 14 are derived from our analysis.
Notice that we update x̃s as a natural uniform average with respect to {zs,k} for both the general
convex and strongly convex settings.

In Step 12, a significant characteristic is the weight as invariant in all the inner iterations of the s-th
epoch. As a result, at the first time, we “decouple” Nesterov’s acceleration and variance reduction:
the acceleration phenomenon will occur per epoch, while the inner iterations are mainly used for
variance reduction. More precisely, the “negative momentum” in Step 9 is used to fuse the variance
reduction technique into the acceleration framework, while the uniform averaging in Step 14 plays
the role of “Nesterov’s momentum” to achieve acceleration.

In Steps 2-4, the novel initialization steps provide us “a right way” to cancel the accumulated
randomized error in the main loop: after performing a (proximal) gradient descent step, we initialize
 2,0 as the m times of  1,1. As we will see in our proof, the accumulated randomized error in the m

inner iterations will be completely canceled by our initialization steps.

In Step 12, due to the nature of dual averaging, we do not linearize l(z) along the whole optimization
trajectory. As a result, when l(z) is strongly convex, it allows us to accumulate all the strong convexity
in the optimization path. As we will see in the proof, this accumulation of strong convexity is crucial
for our algorithm to achieve the optimal convergence rate in the regime n � .

Then we can prove (in Section 3 and Appendix) the main result for the proposed VRADA algorithm:
Theorem 1. Let {x̃s} be generated by Algorithm 1. Under Assumptions 1 and 2, and taking
expectation on the randomness of all the history, we have: 8s � 2,

E[f(x̃s)]� f(x⇤)  kx̃0 � x⇤k2

2As
, (9)

9As we will see, m denotes the number of inner iterations in our algorithm.
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Algorithm 1 Variance Reduction via Accelerated Dual Averaging (VRADA)
1: Problem: minx2Rd f(x) = g(x) + l(x) = 1

n

Pn
i=1 gi(x) + l(x).

2: Initialization: A0 = 0, A1 = a1 = 1
L , y1,1 = z1,0 = x̃0 2 Rd

, 1,0(z) =
1
2kz � x̃0k2.

3: z1,1 = argminz
�
 1,1(z) :=  1,0(z) + a1(g(y1,1) + hrg(y1,1), z � y1,1i+ l(z))

 
.

4: x̃1 = z1,1, z2,0 = z1,1, 2,0 = m 1,1.

5: for s = 2, . . . , S do
6: As = As�1 +

q
mAs�1(1+�As�1)

2L and as = As �As�1.
7: µs�1 = rg(x̃s�1).
8: for k = 1, 2, . . . ,m do
9: ys,k = As�1

As
x̃s�1 +

as
As

zs,k�1.

10: Sample i from {1, 2, . . . , n} uniformly at random.
11: r̃s,k = rgi(ys,k)�rgi(x̃s�1) + µs�1.

12: zs,k = argminz
�
 s,k(z) :=  s,k�1(z) + as(g(ys,k) + hr̃s,k, z � ys,ki+ l(z))

 
.

13: end for
14: x̃s =

As�1

As
x̃s�1 +

as
mAs

Pm
k=1 zs,k, zs+1,0 = zs,m,  s+1,0 =  s,m.

15: end for
16: return: x̃S

where 8s � 2,

As � max

(
m

2L

⇣ 2

m

⌘2�(s�1)

,
1

L

⇣
1 +

r
�m

2L

⌘s�1
)
, (10)

and with s0 = 1 + dlog2 log2(m/2)e, besides the lower bounds in (10), we also have 8s � s0,

As � max

(
m

32L

⇣
s� s0 + 2

p
2
⌘2

,
m

4L

⇣
1 +

r
�m

2L

⌘s�s0
)
. (11)

Theorem 1 gives a unified convergence result for both the general convex (� = 0) and strongly convex
(� > 0) settings. By (9), the objective gap is simply bounded by the term about kx̃0 � x⇤k2.

To see implications of Theorem 1, by the first term in (10), whether strongly convex or not, VRADA
can attain an O

�
L
m

�
-accurate solution in 1+dlog2 log2(m/2)e number of epochs and thus As0 = m

4L .

The superlinear phenomenon is by our novel initialization Steps 2-4 of Algorithm 1. The best known
convergence rate in the initial stage is firstly obtained by SVRG++ [4], which has shown a linear
convergence rate in the initial stage for convex finite-sums. In contrast, the corresponding rate
of VRADA is superlinear. To the best of our knowledge, we have not observed any theoretical
justification of superlinear phenomenon for variance reduced first order methods.

By the second term in (10), in the strongly convex setting (� > 0), we can have an accelerated linear
convergence rate from the start. Note that whatever m  ⇥() or m � , the contracting ratio of

VRADA will always be
⇣
1 +

p
�m
2L

⌘�1
, which will tend to 0 as m ! +1. However, for all the

existing accelerated variance reduction methods such as Katyushasc and Varag, when m � , the
contracting ratio will be at least a constant such as 2

3 in Katyushasc.

Then based on the prompt decrease in the superlinear initial stage, we also provide two new lower
bounds for As in (11). By the first term in (11), whether strongly convex or not, VRADA can have at
least an accelerated sublinear rate. By the second term in (11), in the strongly convex setting (� > 0),
VRADA will maintain an accelerated linear rate.

Thus by Theorem 1, by setting m = ⇥(n), we obtain our improved iteration complexity results for
both the general convex and strongly convex settings in Table 2.
Remark 2. The generalized estimation sequence { s,k} and the associated analysis is the key in
proving our main result Theorem 1, while it is commonly known to be difficult to understand. However,
the estimation sequence itself also has principled explanations [11, 36]. In Section 3, we show that
the estimation sequence analysis leads to a very concise, unified, and principled convergence analysis
for both the general convex and strongly convex settings.
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3 Convergence Analysis

When using estimation sequence to prove convergence rate, the main task is to give the lower bound
and upper bound of  s,k(zs,k), where zs,k = argminz  s,k(z). The lower bound is given in terms
of the objective value at the current iterate and the estimation sequence in the previous iteration, while
the upper bound is in terms of the objective value at the optimal solution. (For simplicity, we only
give the upper bound of  s,m(zs,m).) Then by telescoping and concatenating the lower bound and
upper bound of  s,k(zs,k), we prove the rate in terms of the objective difference f(x̃s)� f(x⇤) in
expectation. First, in the initial Step 3 of Algorithm 1, by the smoothness property of g(z) and the
setting A1 = a1 = 1

L , we have Lemma 1.
Lemma 1 (The initial step). It follows that  1,1(z1,1) � A1f(x̃1).

Lemma 1 will be used to cancel the error introduced by f(x̃1) in the main loop. After entering into
the main loop, by using the smoothness and convexity properties, the optimality condition of {zs,k},
and the careful setting of {as} and {As}, we obtain the lower bound of  s,k(zs,k) in Lemma 2.
Lemma 2 (Lower bound). 8s � 2, k � 1, we have

 s,k(zs,k)

�  s,k�1(zs,k�1) + asg(ys,k) +As

⇣
f(ys,k+1)� g(ys,k)�

As�1

2AsL
kr̃s,k �rg(ys,k)k2

⌘

�As�1hr̃s,k, x̃s�1 � ys,ki �As�1l(x̃s�1). (12)

In Lemma 2, the term kr̃s,k �rg(ys,k)k2 is the variance we need to bound, of which the bound is
given in Lemma 3 based on the standard derivation in [2].
Lemma 3 (Variance reduction). 8s � 2, k � 1, taking expectation on the randomness over the
choice of i in the k-th iteration of s-th epoch, we have

E[kr̃s,k �rg(ys,k)k2]  2L(g(x̃s�1)� g(ys,k)� hrg(ys,k), x̃s�1 � ys,ki). (13)

Then by combining Lemmas 2 and 3, we will find that the inner product in (12) and (13) can be
canceled with each other in expectation. Therefore after combining Lemmas 2 and 3, telescoping the
resulting inequality from k = 1 to m and using the definition  s+1,0 :=  s,m, we have Lemma 4.
Lemma 4 (Recursion). 8s � 2, taking expectation on the randomness over the epoch s, it follows
that E[ s+1,0(zs+1,0)] � E

h
 s,0(zs,0) +mAsf(x̃s)�mAs�1f(x̃s�1)

i
.

Besides the lower bound in Lemma 4, by the convexity of f(x) and optimality of zs,m, we can also
provide the upper bound of  s,m(zs,m) in Lemma 5.
Lemma 5 (Upper bound). 8s � 2, taking expectation on all the history, we have

E[ s,m(zs,m)]  mAsf(x
⇤) +

m

2
kx̃0 � x⇤k2. (14)

Finally, by combining Lemmas 1, 4 and 5, we prove Theorem 1 as follows.

Proof of Theorem 1.

Proof. Taking expectation on the randomness of all the history and telescoping Lemma 4 from 2 to
s(s � 2), we have

E[ s+1,0(zs+1,0)�  2,0(z2,0)] � E
h
mAsf(x̃s)�mA1f(x̃1)

i
, (15)

where mA1f(x̃1) can be viewed as “accumulated randomized errors” in the main loop. It turns out
that it will be cancelled by Lemma 1 and the setting z2,0 = z1,1, 2,0 = m 1,1 for our initialization
steps as follows.

 2,0(z2,0) = m 1,1(z2,0) = m 1,1(z1,1) � mA1f(x̃1). (16)
So combining (15) and (16), and by the setting  s+1,0(zs+1,0) =  s,m(zs,m)(s � 2), we have

E[ s,m(zs,m)] = E[ s+1,0(zs+1,0)] � E[mAsf(x̃s)]. (17)
Then combining Lemma 5 and (17), we have

E[mAsf(x̃s)]  E[ s,m(zs,m)]  mAsf(x
⇤) +

m

2
kx̃0 � x⇤k2. (18)

So after simple rearrangement of (18), we obtain (9). Then by the proof of Section F, we obtain (10)
and (11).
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� 0 10�8 10�4

a9a

covtype

Figure 1: Comparing VRADA with SVRG, Katyusha and MiG on `2-norm regularized logistic
regression problems. The horizontal axis is the number of passes through the entire dataset, and the
vertical axis is the optimality gap f(x)� f(x⇤).

4 Experiments
In this section, to verify the theoretical results and show the empirical performance of the proposed
VRADA method, we conduct numerical experiments on large-scale datasets in machine learning.
The datasets we use are a9a and covtype, downloaded from the LibSVM website10. To make
comparison easier, we normalize the Euclidean norm of each data vector in the datasets to be 1.
The problem we study is the `2-norm regularized logistic regression problem with regularization
parameter � 2 {0, 10�8

, 10�4}. For � = 0, the corresponding problem is unregularized and thus
general convex. For this setting, we compare VRADA with the state-of-the-art variance reduction
methods SVRG [16], Katyushansc [2], and MiGnsc [40]. The settings � = 10�8 and � = 10�4

correspond to the strongly convex settings with a large condition number and a small one, respectively.
For both settings, we compare VRADA with SVRG, Katyushasc and MiGsc.

All four algorithms we compare have a similar outer-inner structure, where we set all the number
of iterations as m = 2n. For these algorithms, the common parameter to tune is the parameter w.r.t.
Lipschitz constant. The details of parameter tuning can be found in Section H of the supplementary
material. Our results are given in Figure 1. Following the tradition of ERM experiments, we use the
number of “passes” of the entire dataset as the x-axis.

In Figure 1, when � = 0, VRADA decreases the error promptly in the initial stage, which validates
our theoretical result in attaining an O(1/n)-accurate solution with log log n passes of the entire
dataset. An interesting phenomenon is that the other variance reduction methods share the same
behavior with VRADA in empirical evaluations (in fact, MiGnsc is slightly faster for both a9a and
covtype datasets). This poses an open problem whether or not this superlinear phenomenon in the
initial stage can be theoretically justified for SVRG, Katyusha, and MiG.

In Figure 1, when � = 10�8, i.e., the large condition number setting, VRADA has significantly
better performance than Katyushasc and MiGsc. This is partly due to the fact that the accumulation
of strong convexity by dual averaging helps us better cancel the error from the randomness and
allows VRADA to tune a more aggressive parameter about Lipschitz constant. When � = 10�4,
i.e., the small condition number setting, VRADA is significantly better than Katyushasc and MiGsc,
which validates our superior theoretical results in (5). Meanwhile, when � = 10�4, SVRG can be
competitive with VRADA, which partly verifies the theoretical results for SVRG [13].

In summary, the existing methods only perform well for the above one or two regimes, while VRADA
performs well for all the three regimes: general convex, strongly convex with a large condition
number and strongly convex with a small condition number, which is consistent with our theoretical
results (see Table 1).

10The dataset url is https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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