A  Proof of Lemma 1
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where (a) is by definition of ¢y 1, (b) is by the definition of ¢); o and 21 o = &¢ , (¢) is by the setting
Y1,1 = 21,0 and simple rearrangement , (d) is by the setting a; = +, () is by Lemma 6, and (f) is
by the setting A1 = a; and ; = 21 1.

B Proof of Lemma 2

Proof. As l(z) is o-strongly convex, by the definition of the sequence {; x(2)}, Vs—1,m(2) is
m+om Zf;ll a; = m(1+0A,_1)-strongly convex. Furthermore, we also know that ¢ 1. (2)(k > 0)

is also at least m(1 + o As_1)-strongly convex. So it follows that: Vk > 1,
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where (a) is by the definition of ), ; and (b) is by the optimality condition of z, ;_; and the
m(1 + o As_1)-strong convexity of 15 ;_1. Then we have
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where (a) is by the fact that A; = A,_1 + as and simple rearrangement and (b) is by ys p+1 =

Ajl‘l X 1 + 4=z, (Which is by our definition of the sequence {y, x}) and the convexity of /(z).

Meanwhile, by our setting in Step 5 of Algorithm 1, Ay, = A1 + 4/ % and also

as, = Ay — Ag_1, we have
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Then by combining (19) and (20), it follows that
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where (a) is by the fact Y5 y+1 — Ys. ko = (zS i — %s.k—1) and (b) is by (21). Then we have
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where (a) is by Lemma 6 and the Young’s inequality (a, b) > —1||a||* — 3||b]|*. So we have
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C Proof of Lemma 3

Proof. Taking expectation on the randomness over the choice of ¢, we have
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where (a) is by Lemma 6. O
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D Proof of Lemma 4

Proof. By Lemma 2 and taking expectation on the randomness over the choice of ¢, we have
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where (a) is by Lemma 3, and (b) is by E[V,x] = Vg(ysx) ;As = As—1 + as and f(x) =
g(@) + ().

Summing (24) from k = 1 to m, by the setting for s > 2, 95110 := VY5, m and 2441,0 1= Zs,m, WE
have
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where (a) is by the convexity of f(z) and the fact of &; = - >/ | y ;11 (Which is in turn by the
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definition of &, = Aj( Ts_1+ 5 ZZ; 2z x and the definition of y; j.)
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E Proof of Lemma 5

Proof. Vs > 2, taking expectation on the choice of ¢ in the k-th iteration of the s-th epoch, we have
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where (a) is by the fact E[V, x] = Vg(ys 1), and (b) is by the convexity of g(z). Then taking
expectation from the randomness of the epoch s and telescoping (26) from k = 1 to m, we have
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Then taking expectation from the randomness of all the history from ¢ = 3 and telescoping (27) to
some s > 3, we have
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Meanwhile taking expectation from the randomness of epoch s = 2, we have
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where (a) is by the convexity of g(z) and ¥ (2) = 1|z — & .

So combining (28) and (29), we have: Vs > 2,
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where (a) is by the our setting as = As — As_1 and Ag = 0.
Then by (30) and the optimality of z; ,,,, we have ¢ 1 (2s.m) < ¥s.m () and thus
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F The Lower Bounds for the A, in Theorem 1

Proof. In the following, we give the lower bound of A by the condition in Step 6 of Algorithm 1
and Ay =a; = % To show the lower bound by the first term in (10), we know that
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Meanwhile, for s > 2, we also have
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Thus the lower bounds in (10) are proved.

Then with sg = 1 + [log, log,(m/2)], we have
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Meanwhile for s > sg + 1, we have
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Thus we can use the mathematical induction method to prove the first lower bound in (11): Vs >
507A Z32L< 80+2\/7)
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Then assume that foran s > sg + 1, A1 > 32L( —1—s50+ 2\@) , then

mAg_1 m 2 m
> > — — (e —
A = A+ L(s 50+2\/§) + 1o (s = s0) + 32L(4\f 3)
m
> —
> 32L(s so+2f) 37)

Thus the first lower bound in (11) is proved.

Meanwhile, for s > sg + 1, we also have

mAs_1(1+0A45-1) mo mo
> = -
As- 1+\/ 2L Asa 5 A (H QL)AS_l

(1 + \/E)SSOASO

As

Y

Thus the second lower bound in (11) is proved.

O
G An Auxiliary Lemma
By Assumption 1 and [25], we have Lemma 6.
Lemma 6. Under Assumption I, Vx,y,
L
9(y) < g() + (Vg(=),y — ) + S|y — 2| (39)
and Vi € [n], Ve, y,
IVgi(y) = Vai(@)|I* < 2L(gi(y) — gi(x) — (Vgi(z), y — x)). (40)

Under Assumption 1, Lemma 6 are classical results in convex optimization. For completeness, we
provide the proof of Lemma 6 here.

Proof of Lemma 6. By Assumption 1, Vi € [n], g;(x) satisfies Ve, y, || Vgi(x) — Vgi(y)| < L|lx—
y||. As aresult, we have

IVg(x) - Vy(y)l =
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LHw —yH~ (41)

IN

IN

17



The we have

1
oy) = gl@)+ / (Vo(a 1 (y — x)),y — @)dr
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Then it follow that
1
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1
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0
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Thus we obtain (39).
Then denote Vi € [n], ¢;(y)

= ( )—gi(x) — (Vgi(x),y — ). Obviously ¢;(y) is also L-smooth.
One can check that Vg; () = 0 and so that min, ¢;(y) =

¢;(x) = 0, which implies that
gi(z) < ¢ (y - %ng)i(y))

= dily)+ /; <V¢i (v — T Veily)), 2V¢>i<y)> dr

= o)+ (Vo). - Vo)) + [ (Yol FY0) - Valw) ~ Vo) ) ar
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1
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Then we have |V, (y)||? < 2L(¢i(y)—¢;(x)). Then by the definition of ¢;(y), we obtain (40). [

H Experimental Details and Supplementary Experiments

Besides running binary classification experiments on the two datasets a9a and covtype, we also run
multi-class classification experiments on mnist and cifar10. The problem we solve is the ¢5-norm
regularized (multinomial) logistic regression problem:

n c—1
min  f(w) ::%Z <—Zy](-i)wi x; + log <1 +Zexp w(z x; )) Z”w D12,

dx(c—1)
wERX =1 \ =1 i=1
(45)

where 7 is the number of samples, ¢ € {2,3,...} denotes the number of class (for a9a and cov-

type, ¢ = 2; for mnist and cifar10, ¢ = 10.), A > 0 denotes the regularization parameter, y; =
(1) (2) (c=1)\T _ 11 e (g (1) 21(2) (c—1)

(yj Ui e Yy )T is a one-hot vector or zero vector'!, and w := (wM), w®@) ...  wlY) e

R#*(c=1) denotes the variable to optimize. For the two-class datasets “a9a” and “covtype”, we have

presented our results by choosing the regularization parameter A € {0, 1078, 10~*}. For the ten-class

datasets “mnist” and “cifar10”, we choose A € {0,1076,1073}.

11Zero vector denotes the class of the j-th sample is c.
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Figure 2: Comparing VRADA with SVRG, Katyusha and MiG on ¢5-norm regularized multinomial
logistic regression problems. The horizontal axis is the number of passes through the entire dataset,
and the vertical axis is the optimality gap f(x) — f(z*).

For the four algorithms we compare, the common parameter to tune is the parameter w.r.z. Lips-
chitz constant'?, which is tuned in {0.0125,0.025,0.05,0.1,0.25,0.5}."3 All four algorithms are
implemented in C++ under the same framework, while the figures are produced using Python.

As we see, despite there are some minor differences among different tasks/datasets shown in Figure 1
and Figure 2, the general behaviors are still very consistent. From both figures, our method VRADA
is competitive with other two accelerated methods, and is much faster than the non-accelerated SVRG
algorithm in the general convex setting and the strongly convex setting with a large conditional
number. Meanwhile, in the strongly convex setting with a small conditional number, VRADA is still
competitive with the non-accelerated SVRG algorithm and much faster than the other two accelerated
algorithms of Katyusha®® and MiG*°.

"2For logistic regression with normalized data, the Lipschitz constant is globally upper bounded [39] by 1/4,
but in practice we can use a smaller one than 1/4.

BIn our experiments, due to the normalization of datasets, all the four algorithms will diverge when the
parameter is less than 0.0125. Otherwise, they always converge if the parameter is less than 0.5.
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