
A Proof of Lemma 1

Proof. It follows that

 1,1(z1,1)
(a)
=  1,0(z1,1) + a1(g(y1,1) + hrg(y1,1), z1,1 � y1,1i+ l(z1,1))

(b)
=

1

2
kz1,1 � z1,0k2 + a1(g(y1,1) + hrg(y1,1), z1,1 � y1,1i+ l(z1,1))

(c)
= a1

⇣
g(y1,1) + hrg(y1,1), z1,1 � y1,1i+

1

2a1
kz1,1 � y1,1k2 + l(z1,1)

⌘

(d)
= a1

⇣
g(y1,1) + hrg(y1,1), z1,1 � y1,1i+

L

2
kz1,1 � y1,1k2 + l(z1,1)

⌘

(e)
� a1(g(z1,1) + l(z1,1))
(f)
= A1f(x̃1),

where (a) is by definition of  1,1, (b) is by the definition of  1,0 and z1,0 = x̃0 , (c) is by the setting
y1,1 = z1,0 and simple rearrangement , (d) is by the setting a1 = 1

L , (e) is by Lemma 6, and (f) is
by the setting A1 = a1 and x̃1 = z1,1.

B Proof of Lemma 2

Proof. As l(z) is �-strongly convex, by the definition of the sequence { s,k(z)},  s�1,m(z) is
m+�m

Ps�1
i=1 ai = m(1+�As�1)-strongly convex. Furthermore, we also know that  s,k(z)(k � 0)

is also at least m(1 + �As�1)-strongly convex. So it follows that: 8k � 1,

 s,k(zs,k)
(a)
=  s,k�1(zs,k) + as(g(ys,k) + hr̃s,k, zs,k � ys,ki+ l(zs,k))
(b)
�  s,k�1(zs,k�1) +

m(1 + �As�1)

2
kzs,k � zs,k�1k2

+as(g(ys,k) + hr̃s,k, zs,k � ys,ki+ l(zs,k)), (19)

where (a) is by the definition of  s,k and (b) is by the optimality condition of zs,k�1 and the
m(1 + �As�1)-strong convexity of  s,k�1. Then we have

as(g(ys,k) + hr̃s,k, zs,k � ys,ki+ l(zs,k))

(a)
= asg(ys,k) +As

D
r̃s,k,

as

As
zs,k � ys,k +

As�1

As
x̃s�1

E

�As�1hr̃s,k, x̃s�1 � ys,ki+ asl(zs,k)
(b)
� asg(ys,k) +As

D
r̃s,k,ys,k+1 � ys,k

E
�As�1hr̃s,k, x̃s�1 � ys,ki

+Asl(ys,k+1)�As�1l(x̃s�1), (20)

where (a) is by the fact that As = As�1 + as and simple rearrangement and (b) is by ys,k+1 =
As�1

As
x̃s�1 +

as
As

zs,k (which is by our definition of the sequence {ys,k}) and the convexity of l(z).

Meanwhile, by our setting in Step 5 of Algorithm 1, As = As�1 +
q

mAs�1(1+�As�1)
2L and also

as = As �As�1, we have

mAs(1 + �As�1)

a2s

=
2As

As�1
L �

⇣
1 +

As

As�1

⌘
L. (21)
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Then by combining (19) and (20), it follows that

 s,k(zs,k)�  s,k�1(zs,k�1)

� asg(ys,k) +As

D
r̃s,k,ys,k+1 � ys,k

E
�As�1hr̃s,k, x̃s�1 � ys,ki

+Asl(ys,k+1)�As�1l(x̃s�1) +
m(1 + �As�1)

2
kzs,k � zs,k�1k2

(a)
= asg(ys,k) +As

D
r̃s,k,ys,k+1 � ys,k

E
�As�1hr̃s,k, x̃s�1 � ys,ki

+Asl(ys,k+1)�As�1l(x̃s�1) +
mA

2
s(1 + �As�1)

2a2s
kys,k+1 � ys,kk2

(b)
� asg(ys,k) +As

✓D
r̃s,k,ys,k+1 � ys,k

E

+
⇣
1 +

As

As�1

⌘
L

2
kys,k+1 � ys,kk2 + l(ys,k+1)

◆

�As�1hr̃s,k, x̃s�1 � ys,ki �As�1l(x̃s�1),

where (a) is by the fact ys,k+1 � ys,k = as
As

(zs,k � zs,k�1) and (b) is by (21). Then we have

D
r̃s,k,ys,k+1 � ys,k

E
+
⇣
1 +

As

As�1

⌘
L

2
kys,k+1 � ys,kk2 + l(ys,k+1)

=
D
rg(ys,k),ys,k+1 � ys,k

E
+

L

2
kys,k+1 � ys,kk2 + l(ys,k+1)

+
D
r̃s,k �rg(ys,k),ys,k+1 � ys,k

E
+

AsL

2As�1
kys,k+1 � ys,kk2

(a)
� g(ys,k+1)� g(ys,k) + l(ys,k+1)�

As�1

2AsL
kr̃s,k �rg(ys,k)k2

= f(ys,k+1)� g(ys,k)�
As�1

2AsL
kr̃s,k �rg(ys,k)k2 (22)

where (a) is by Lemma 6 and the Young’s inequality ha, bi � � 1
2kak

2 � 1
2kbk

2
. So we have

 s,k(zs,k)�  s,k�1(zs,k�1)

� asg(ys,k) +As

⇣
f(ys,k+1)� g(ys,k)�

As�1

2AsL
kr̃s,k �rg(ys,k)k2

⌘

�As�1hr̃s,k, x̃s�1 � ys,ki �As�1l(x̃s�1). (23)

C Proof of Lemma 3

Proof. Taking expectation on the randomness over the choice of i, we have

E[kr̃s,k �rg(ys,k)k2] = E[krgi(ys,k)�rgi(x̃s�1) + µs�1 �rg(ys,k)k2]
= E[krgi(ys,k)�rgi(x̃s�1) +rg(x̃s�1)�rg(ys,k)k2]
= E[krgi(ys,k)�rgi(x̃s�1)k2]� krg(x̃s�1)�rg(ys,k)k2

 E[krgi(ys,k)�rgi(x̃s�1)k2]
(a)
 E[2L(gi(x̃s�1)� gi(ys,k)� hrgi(ys,k), x̃s�1 � ys,ki)]
= 2L(g(x̃s�1)� g(ys,k)� hrg(ys,k), x̃s�1 � ys,ki),

where (a) is by Lemma 6.
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D Proof of Lemma 4

Proof. By Lemma 2 and taking expectation on the randomness over the choice of i, we have

E[ s,k(zs,k)�  s,k�1(zs,k�1)]

� E
h
asg(ys,k) +As

⇣
f(ys,k+1)� g(ys,k)�

As�1

2AsL
kr̃s,k �rg(ys,k)k2

⌘

�As�1hr̃s,k, x̃s�1 � ys,ki �As�1l(x̃s�1)
i

(a)
� E

h
asg(ys,k)

+As(f(ys,k+1)� g(ys,k))�As�1(g(x̃s�1)� g(ys,k)� hrg(ys,k), x̃s�1 � ys,ki)

�As�1hr̃s,k, x̃s�1 � ys,ki �As�1l(x̃s�1)
i

(b)
= E[Asf(ys,k+1)]�As�1f(x̃s�1), (24)

where (a) is by Lemma 3, and (b) is by E[r̃s,k] = rg(ys,k) , As = As�1 + as and f(x) =
g(x) + l(x).

Summing (24) from k = 1 to m, by the setting for s � 2,  s+1,0 :=  s,m and zs+1,0 := zs,m, we
have

E[ s+1,0(zs+1,0)�  s,0(zs,0)] = E[ s,m(zs,m)�  s,0(zs,0)]

� E

As

mX

k=1

f(ys,k+1)�mAs�1f(x̃s�1)

�

(a)
� E

h
mAsf(x̃s)�mAs�1f(x̃s�1)

i
, (25)

where (a) is by the convexity of f(z) and the fact of x̃s =
1
m

Pm
k=1 ys,k+1 (which is in turn by the

definition of x̃s =
As�1

As
x̃s�1 +

as
mAs

Pm
k=1 zs,k and the definition of ys,k.)

E Proof of Lemma 5

Proof. 8s � 2, taking expectation on the choice of i in the k-th iteration of the s-th epoch, we have
8z,

E[ s,k(z)] = E[ s,k�1(z) + as(g(ys,k) + hr̃s,k, z � ys,ki+ l(z))]
(a)
=  s,k�1(z) + as(g(ys,k) + hrg(ys,k), z � ys,ki+ l(z))
(b)
  s,k�1(z) + as(g(z) + l(z))

=  s,k�1(z) + asf(z), (26)

where (a) is by the fact E[r̃s,k] = rg(ys,k), and (b) is by the convexity of g(z). Then taking
expectation from the randomness of the epoch s and telescoping (26) from k = 1 to m, we have

E[ s,m(z)]   s,0(z) +masf(z)

=

⇢
 s�1,m(z) +masf(z), s � 3
m 1,1(z) +ma2f(z), s = 2.

(27)

Then taking expectation from the randomness of all the history from i = 3 and telescoping (27) to
some s � 3, we have

E[ s,m(z)]   2,m(z) +m

sX

i=3

aif(z). (28)
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Meanwhile taking expectation from the randomness of epoch s = 2, we have

E[ 2,m(z)]  m 1,1(z) +ma2f(z)

= m( 1,0(z) + a1(g(y1,1) + hrg(y1,1), z � y1,1i+ l(z))) +ma2f(z)
(a)
 m

⇣1
2
kz � x̃0k2 + a1(g(z) + l(z))

⌘
+ma2f(z)

= m(a1 + a2)f(z) +
m

2
kz � x̃0k2, (29)

where (a) is by the convexity of g(z) and  1,0(z) =
1
2kz � x̃0k2.

So combining (28) and (29), we have: 8s � 2,

E[ s,m(z)]  m

sX

i=1

asf(z) +
m

2
kz � x̃0k2

(a)
= mAsf(z) +

m

2
kz � x̃0k2, (30)

where (a) is by the our setting as = As �As�1 and A0 = 0.

Then by (30) and the optimality of zs,m, we have  s,m(zs,m)   s,m(x⇤) and thus

E[ s,m(zs,m)]   s,m(x⇤)  mAsf(x
⇤) +

m

2
kx⇤ � x̃0k2. (31)

F The Lower Bounds for the As in Theorem 1

Proof. In the following, we give the lower bound of As by the condition in Step 6 of Algorithm 1
and A1 = a1 = 1

L . To show the lower bound by the first term in (10), we know that

As = As�1 +

r
mAs�1(1 + �As�1)

2L
�
r

mAs�1(1 + �As�1)

2L
�
r

mAs�1

2L
, (32)

so we have

2LAs

m
�
⇣2LAs�1

m

⌘ 1
2 �

⇣2LA1

m

⌘2�(s�1)

. (33)

Then by the setting A1 = 1
L , we have

As �
m

2L

⇣ 2

m

⌘2�(s�1)

. (34)

Meanwhile, for s � 2, we also have

As � As�1 +

r
mAs�1(1 + �As�1)

2L
� As�1 +

r
m�

2L
As�1 =

⇣
1 +

r
m�

2L

⌘
As�1

�
⇣
1 +

r
m�

2L

⌘s�1
A1

=
1

L

⇣
1 +

r
m�

2L

⌘s�1
. (35)

Thus the lower bounds in (10) are proved.

Then with s0 = 1 + dlog2 log2(m/2)e, we have

As0 � m

2L

⇣ 2

m

⌘2�(s0�1)

� m

2L

⇣ 2

m

⌘2�dlog2 log2(m/2)e

� m

2L

⇣ 2

m

⌘2� log2 log2(m/2)

=
m

4L
.
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Meanwhile for s � s0 + 1, we have

As � As�1 +

r
mAs�1(1 + �As�1)

2L
� As�1 +

r
mAs�1

2L
. (36)

Thus we can use the mathematical induction method to prove the first lower bound in (11): 8s �
s0, As � m

32L

⇣
s� s0 + 2

p
2
⌘2

.

Firstly, for s = s0, we have As � m
4L = m

32L (2
p
2)2.

Then assume that for an s � s0 + 1, As�1 � m
32L

⇣
s� 1� s0 + 2

p
2
⌘2

, then

As � As�1 +

r
mAs�1

2L
� m

32L

⇣
s� s0 + 2

p
2
⌘2

+
m

16L
(s� s0) +

m

32L
(4
p
2� 3)

� m

32L

⇣
s� s0 + 2

p
2
⌘2

. (37)

Thus the first lower bound in (11) is proved.

Meanwhile, for s � s0 + 1, we also have

As � As�1 +

r
mAs�1(1 + �As�1)

2L
� As�1 +

r
m�

2L
As�1 =

⇣
1 +

r
m�

2L

⌘
As�1

�
⇣
1 +

r
m�

2L

⌘s�s0
As0

� m

4L

⇣
1 +

r
m�

2L

⌘s�s0
. (38)

Thus the second lower bound in (11) is proved.

G An Auxiliary Lemma

By Assumption 1 and [25], we have Lemma 6.
Lemma 6. Under Assumption 1, 8x,y,

g(y)  g(x) + hrg(x),y � xi+ L

2
ky � xk2 (39)

and 8i 2 [n], 8x,y,

krgi(y)�rgi(x)k2  2L(gi(y)� gi(x)� hrgi(x),y � xi). (40)

Under Assumption 1, Lemma 6 are classical results in convex optimization. For completeness, we
provide the proof of Lemma 6 here.

Proof of Lemma 6. By Assumption 1, 8i 2 [n], gi(x) satisfies 8x,y, krgi(x)�rgi(y)k  Lkx�
yk. As a result, we have

krg(x)�rg(y)k =

�����
1

n

nX

i=1

rgi(x)�
1

n

nX

i=1

rgi(y)

�����

 1

n

nX

i=1

kgi(x)� gi(y)k

 Lkx� yk. (41)
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The we have

g(y) = g(x) +

Z 1

0
hrg(x+ ⌧(y � x)),y � xid⌧

= g(x) + hrg(x),y � xi+
Z 1

0
hrg(x+ ⌧(y � x))�rg(x),y � xid⌧. (42)

Then it follow that

g(y)� g(x)� hrg(x),y � xi 
����
Z 1

0
hrg(x+ ⌧(y � x))�rg(x),y � xid⌧

����


Z 1

0
|hrg(x+ ⌧(y � x))�rg(x),y � xi| d⌧


Z 1

0
krg(x+ ⌧(y � x))�rg(x)kky � xkd⌧


Z 1

0
L⌧ky � xk2d⌧

=
L

2
ky � xk2. (43)

Thus we obtain (39).

Then denote 8i 2 [n],�i(y) = gi(y)� gi(x)�hrgi(x),y�xi. Obviously �i(y) is also L-smooth.
One can check that rgi(x) = 0 and so that miny �i(y) = �i(x) = 0, which implies that

�i(x)  �i

⇣
y � 1

L
r�i(y)

⌘

= �i(y) +

Z 1

0

⌧
r�i

�
y � ⌧

L
r�i(y)

�
,� 1

L
r�i(y)

�
d⌧

= �i(y) +

⌧
r�i(y),�

1

L
r�i(y)

�
+

Z 1

0

⌧
r�i

�
y � ⌧

L
r�i(y)

�
�r�i(y),�

1

L
r�i(y)

�
d⌧

 �i(y)�
1

L
kr�i(y)k2 +

Z 1

0
L

���
⌧

L
r�i(y)

���k
1

L
r�(y)kd⌧

 �i(y)�
1

2L
kr�i(y)k2. (44)

Then we have kr�i(y)k2  2L(�i(y)��i(x)). Then by the definition of �i(y), we obtain (40).

H Experimental Details and Supplementary Experiments

Besides running binary classification experiments on the two datasets a9a and covtype, we also run
multi-class classification experiments on mnist and cifar10. The problem we solve is the `2-norm
regularized (multinomial) logistic regression problem:

min
w2Rd⇥(c�1)

f(w) :=
1

n

nX

j=1

 
�

c�1X

i=1

y
(i)
j w(i)Txj + log

⇣
1 +

c�1X

i=1

exp
�
w(i)Txj

�⌘
!
+
�

2

c�1X

i=1

kw(i)k22,

(45)
where n is the number of samples, c 2 {2, 3, . . .} denotes the number of class (for a9a and cov-
type, c = 2; for mnist and cifar10, c = 10.), � � 0 denotes the regularization parameter, yj =

(y(1)j , y
(2)
j , . . . , y

(c�1)
j )T is a one-hot vector or zero vector11, and w := (w(1)

,w(2)
, . . . ,w(c�1)) 2

Rd⇥(c�1) denotes the variable to optimize. For the two-class datasets “a9a” and “covtype”, we have
presented our results by choosing the regularization parameter � 2 {0, 10�8

, 10�4}. For the ten-class
datasets “mnist” and “cifar10”, we choose � 2 {0, 10�6

, 10�3}.

11Zero vector denotes the class of the j-th sample is c.

18



� 0 10�6 10�3

mnist

cifar10

Figure 2: Comparing VRADA with SVRG, Katyusha and MiG on `2-norm regularized multinomial
logistic regression problems. The horizontal axis is the number of passes through the entire dataset,
and the vertical axis is the optimality gap f(x)� f(x⇤).

For the four algorithms we compare, the common parameter to tune is the parameter w.r.t. Lips-
chitz constant12, which is tuned in {0.0125, 0.025, 0.05, 0.1, 0.25, 0.5}.13 All four algorithms are
implemented in C++ under the same framework, while the figures are produced using Python.

As we see, despite there are some minor differences among different tasks/datasets shown in Figure 1
and Figure 2, the general behaviors are still very consistent. From both figures, our method VRADA
is competitive with other two accelerated methods, and is much faster than the non-accelerated SVRG
algorithm in the general convex setting and the strongly convex setting with a large conditional
number. Meanwhile, in the strongly convex setting with a small conditional number, VRADA is still
competitive with the non-accelerated SVRG algorithm and much faster than the other two accelerated
algorithms of Katyushasc and MiGsc.

12For logistic regression with normalized data, the Lipschitz constant is globally upper bounded [39] by 1/4,
but in practice we can use a smaller one than 1/4.

13In our experiments, due to the normalization of datasets, all the four algorithms will diverge when the
parameter is less than 0.0125. Otherwise, they always converge if the parameter is less than 0.5.
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