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Abstract

While recent generative models for 2D images achieve impressive visual results,
they clearly lack the ability to perform 3D reasoning. This heavily restricts the
degree of control over generated objects as well as the possible applications of
such models. In this work, we bridge this gap by leveraging recent advances in
differentiable rendering. We design a framework that can generate triangle meshes
and associated high-resolution texture maps, using only 2D supervision from single-
view natural images. A key contribution of our work is the encoding of the mesh
and texture as 2D representations, which are semantically aligned and can be easily
modeled by a 2D convolutional GAN. We demonstrate the efficacy of our method
on Pascal3D+ Cars and CUB, both in an unconditional setting and in settings where
the model is conditioned on class labels, attributes, and text. Finally, we propose
an evaluation methodology that assesses the mesh and texture quality separately.

1 Introduction

State-of-the-art image synthesis models based on the GAN framework [13] nowadays achieve photo-
realistic results thanks to a series of key contributions in this area [19, 34, 35, 65, 25]. A recent trend
in this field has been to make generative models more controllable and of better use for downstream
applications. This includes works that condition generative models on class labels [35, 65, 4], text
[66, 67, 59, 30], input images [70, 22], as well as structured scene layouts such as semantic maps
[53, 41, 36], bounding boxes [69, 20, 47], and scene graphs [23]. While these approaches achieve
impressive visual results, they are all based on architectures that fundamentally ignore the concept of
image formation. Real-world images depict 2D projections of 3D objects, and explicitly considering
this aspect would lead to better generative models that can provide disentangled control over shape,
color, pose, lighting, and can better handle spatial phenomena such as occlusions. A recent trend
to account for such effects has been to disentangle factors of variation during the generation process
in the hope of making it more interpretable [63, 44, 25, 26]. These approaches potentially learn a
hierarchical decomposition of objects, and in some settings (e.g. faces) they can provide some degree
of control over pose. However, the pose disentanglement assumptions made by these approaches
have been shown to be unrealistic without some form of supervision [32], and they have not reached
the degree of controllability that a native 3D representation would be capable of. More recent efforts
have focused on incorporating 3D information into the model architecture, using either rigid transfor-
mations in feature space [38] or analysis-by-synthesis [37]. These approaches represent an interesting
middle ground between 2D and 3D generators, although their objective remains 2D image synthesis.

In this work, we propose a GAN framework for generating triangle meshes and associated textures,
using only 2D supervision from single-view natural images. In terms of applications, our approach
could greatly facilitate content creation for art, movies, video games, virtual reality, as well as
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augment the possible downstream applications of generative models. We leverage recent advances in
differentiable rendering [33, 27, 31, 5] to incorporate 3D reasoning into our approach. In particular,
we initially adopt a reconstruction framework to estimate meshes through a representation we name
convolutional mesh which consists of a displacement map that deforms a mesh template in its tangent
space. This representation is particularly well-suited for 2D convolutional architectures as both the
mesh and its texture share the same topology, and the mesh benefits from the spatial smoothness
property of convolutions. We then project natural images onto the UV map (mapping between
texture coordinates and mesh vertices) and reduce the problem to a 2D modeling task where the
representation is independent of the pose of the object. Finally, we train a 2D convolutional GAN in
UV space where inputs to the discriminator are masked in order to deal with occlusions.

Our model generates realistic meshes and can easily scale to high-resolution textures (512x512 and
possibly more) owing to the precise semantic alignment between maps in UV space, without requiring
progressive growing [25]. Most importantly, since our model is based exclusively on 2D convolutions,
we can easily adapt ideas from state-of-the-art GAN methods for 2D images, and showcase our
approach under a wide range of settings: conditional generation from class labels, attributes, text (with
and without attention), as well as unconditional generation. We evaluate our approach on Pascal3D+
Cars [57] and CUB Birds [52], and propose metrics for evaluating FID scores [19] on meshes and
textures separately as well as collectively. In summary, we make the following contributions:

e A novel convolutional mesh representation that is smooth by definition, and alongside the texture,
is easy to model using standard 2D convolutional GAN architectures.

o A GAN framework for producing textured 3D meshes from a pose-independent 2D representation.
In particular, in a GAN setting, we are the first to demonstrate full generation of textured triangle
meshes using 2D supervision from natural images, whereas prior attempts have focused on limited
settings supervised on synthetic data without a principled texture learning strategy.

o We demonstrate conditional generation of 3D meshes from text (with and without an attention
mechanism) and show that our model provides disentangled control over shape and appearance.

e We release our code and pretrained models at https://github.com/dariopavllo/convmesh.

2 Related work

Deep learning approaches that deal with 3D data typically target either reconstruction, where the
goal is to predict a 3D mesh from an image, or generation, where the goal is to produce meshes from
scratch. We review the literature of both tasks as they are relevant to our work.

3D representations. Early approaches have focused on reconstructing meshes using 3D supervision.
These are typically based on voxel grids [12, 7, 72, 55, 61, 48, 15], point clouds [9], or signed
distance functions [40]. However, 3D supervision requires ground-truth 3D meshes, which are
usually available in synthetic datasets but not for real-world images. Therefore, a related line of
research aims at reconstructing meshes using exclusively 2D supervision from images. Similarly,
there has been work on voxel representations [60, 14, 50, 54, 49, 62] as well as on point clouds [21],
but these methods require supervision from multiple views which still limits their applicability. More
recent approaches lift the requirement of multiple views in order to learn to reconstruct 3D shapes
from a single view using a voxel representation [|8]. However, these representations tend to be
computationally inefficient and do not explicitly support texture maps.

Differentiable rendering. Triangle meshes are an established representation in computer graphics,
owing to their efficiency as well as flexibility in terms of vertex transformations and texturing. For
this reason, they are used in almost every graphics pipeline, ranging from video games to animation.
This has motivated a newer line of research where the goal is to predict triangle meshes and texture
maps from single images, achieving high-quality visual results [27, 24, 5]. The basic building block
of these approaches is a differentiable renderer (DR), i.e. a renderer that can compute gradients w.r.t.
the scene parameters. While early DRs approximate gradients with respect to mesh vertices [33, 27],
newer methods propose fully-differentiable formulations [31, 5]. Our work is also based on this
framework, and specifically we adopt DIB-R [5] because it supports UV mapping.

3D mesh generation. Analogous to reconstruction methods, 3D object generation has also been
demonstrated using voxels [56, 12,45, 58, 71, 3] and point clouds [1, 1 1], but again, these approaches
require some form of 3D supervision which precludes training from natural images, in addition to
the texturing limitations highlighted above. As for triangle meshes, [5] propose a GAN framework
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where 2D images are discriminated after differentiable rendering, but they rely on multiple views of
synthetic objects and cannot directly learn textures from images. Instead, they supervise the generator
on textures predicted by a separate model previously trained for reconstruction. This intermediate
step results in a noticeable loss of quality, and is absent in our approach, which can learn from natural
images directly. A parallel work to ours [17] also leverages 2D data to generate 3D meshes, but they
adopt a VAE framework [29] and only predict face colors instead of UV-mapped textures (i.e. fexture
maps), which limits the visual detail of generated objects. An early work [43] generates untextured
meshes in a variational framework using reinforcement learning to estimate gradients. Our work
is based on GANs and can explicitly generate high-resolution texture maps which are then mapped to
the mesh via UV mapping, enabling an arbitrary level of detail. Unlike [5], we learn textures directly
from natural images, and introduce a pose-independent representation that reduces the problem to a
2D modeling task. Finally, we are not aware of any prior work that can generate 3D meshes from text.

3 Method
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Figure 1: Initial mesh reconstruction using our convolutional mesh representation. This step follows a
typical autoencoder setup where the goal is to reconstruct the input image after forcing it through a 3D
representation and rendering it. RGB colors in the displacement map correspond to XYZ coordinates.

Requirements. Our approach has data requirements similar to recent reconstruction methods [24, 5].
We require a dataset of single-view natural images, with annotated segmentation masks and pose, or
alternatively, keypoints from which the pose can approximately be estimated. If ground-truth masks
are not available (as in the ImageNet subset of Pascal3D+), we obtain them from an off-the-shelf
segmentation model (we use Mask R-CNN [16]), whereas the pose is inferred from the keypoints
using structure-from-motion, as was done in [24]. Our approach does not require ground-truth 3D
meshes (i.e. 3D supervision) or multiple views of the same object.

Mesh representation. As mentioned, we focus on triangle meshes due to their wide adoption in
computer graphics, their flexibility in terms of vertex transformations, and their support for texture
mapping. Following [27, 24, 5], we use a deformable sphere template with a fixed topology and a
static UV map which maps vertices to texture coordinates. Previous work has used fully-connected
networks to predict vertex positions, which ignores the topology of the mesh and the spatial correlation
between neighboring vertices, essentially treating each vertex as independent. This issue is typically
mitigated through regularization, e.g. by combining smoothness [27] and Laplacian [46] loss penalties.
Instead, we propose to regress the mesh through the same deconvolutional network that we use to
regress the texture. The output is therefore a displacement map (Fig. 1), which describes how the
mesh should be deformed in its tangent space. Importantly, the displacement map and the texture
share the same UV map, which ensures that the maps are topologically aligned (e.g. the vertices
corresponding to the beak of a bird are co-located with the color of the beak). This detail is crucial for
designing a discriminator that can jointly discriminate mesh and texture, that is, not just the mesh and
texture separately, but also how well the texture fits the mesh. Furthermore, our mesh representation
is smooth by nature since it benefits from the intrinsic spatial correlation of convolutional layers. A
second major difference in terms of representation is that our mesh template is a UV sphere (2-pole
sphere as shown in Fig. 1), whereas prior work has used ico-spheres. While the latter exhibits a
more regular mesh, it cannot be UV-mapped without gaps or arbitrary distortions that make the
representation space discontinuous. On the other hand, except for the singularities at the two poles, a
UV sphere presents a bijective mapping between vertices and texture coordinates, has a well-defined
tangent map, and the circular boundary conditions along the x axis can be neatly incorporated in
the model architecture using circular convolutions. Denoting the mesh template as V (an N x 3
matrix with N vertices described by their zyz coordinates, where each vertex is indexed by 1), the
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textures. The bottom row shows additional examples (Pascal3D+ Cars on the left and CUB Birds
on the right). The yellow dashed lines represent the boundaries of the textures, which have been
extended to highlight the circular boundary conditions along the x axis.

final position of the ¢-th vertex is computed as v; + R; Ay, where Ay, is the output of the model
after sampling the displacement map, and R; is a precomputed rotation matrix that describes the
local normal, tangent, and bitangent of the vertex.

3.1 Pose-independent dataset

Our approach initially augments the dataset by estimating a mesh for each training image (Fig. 1).
The images are then converted into a pose-independent representation (Fig. 2), which can be finally
modeled by a 2D GAN (Fig. 3).

Mesh estimation. This is a typical reconstruction task where the goal is to reconstruct the mesh from
an input image. Our approach is loosely based on [24], but simplified since we are not interested in
performing inference on unseen images. Our formulation can be regarded as a fitting process where
we only keep the predicted meshes and discard the model weights/predicted textures. As depicted in
Fig. 1, the input image is fed to a convolutional encoder, compressed into a vector representation, and
decoded through a convolutional decoder which jointly outputs a texture and a displacement map. The
predicted texture is only used to facilitate the learning process and produce more semantically-aligned
meshes, and is discarded afterwards. The mesh template is deformed as described by the displacement
map, and the final result is rendered using a differentiable renderer. The model is trained to minimize
the mean squared error (MSE) between the rendered image and the input image. While this generally
leads to blurry textures, it does not represent an issue in our case as these textures are discarded.
Since we are not interested in performing inference, we do not predict pose or keypoints, nor do
we use texture flows or perceptual losses to improve predicted textures. For the camera model, we
adopt a weak-perspective model where the pose of an image is described by a rotation q € R* (a unit
quaternion), a scale s € R, and a screen-space translation t € R2. For Pascal3D+, we augment the
projection model with a perspective correction term zg (further details in the Appendix A.2). While
these are initially estimated using structure-from-motion on keypoints [24], we allow the optimizer to
fine-tune s, t, and zq (if used), i.e. we additionally optimize with respect to the dataset parameters'.
This leads to a better alignment between rendered masks and ground-truth masks, facilitating the next
step. As a side note, we mention that inaccurate camera assumptions (e.g. using an orthographic model
on photographs that exhibit significant perspective distortion) would most likely not affect the mask
alignment or convergence of the model, but might lead to distorted meshes. Nonetheless, our method
can work with any projection model as long as the camera parameters are known or can be estimated.

2D discrimination. The most obvious way to adapt the aforementioned reconstruction framework
is to train a GAN where the generator G produces a 3D mesh and the discriminator D discriminates
its 2D projection after differentiable rendering, as in [5]. However, we found this strategy to lead
to training instabilities due to the discrepancies of the representation being used by G and D (which
are respectively pose-independent and pose-dependent). A further complication we observed is an

'In an inference model this would be detrimental to generalization, but our goal is mesh fitting.



aliasing effect in the gradient from the differentiable renderer. Successful 2D GAN models typically
use complementary architectures for G and D (e.g. both convolutional), which motivates our next idea.

Pose-independent representation. We instead propose to project ground-truth images onto the UV
map of the mesh template, thus reducing the generative model to a 2D GAN that can be trained with
existing convolutional techniques. The construction of this representation is depicted in Fig. 2, and
can be regarded as a form of inverse rendering. We treat our previous mesh estimates as if they were
texture coordinates, i.e. (x,y) — (u,v) (2 is dropped), the UV map becomes the mesh to render (a
flat surface with z = 0), and the texture is the ground-truth image. The result is the projection of
the natural image onto the UV map. However, as can be seen in the figure, this process erroneously
projects occluded vertices (the back of the car in the example), which should ideally be masked out
as visual information associated with them is not available in the 2D image. We therefore mask
the projection using a binary visibility mask, which describes what parts of the mesh are visible in
UV space. The mask is obtained by rendering the mesh using a dummy texture (e.g. all white) and
computing its gradient with respect to the texture (we provide implementation details in the Appendix
A.2). Only texels (pixels of the texture) that contribute to the final image (i.e. visible ones) will have
non-zero gradients, therefore we obtain the visibility mask by thresholding these gradients. The
final result is a pose-independent dataset of pseudo-ground-truth textures (because they are partially
occluded). A useful consequence of this representation is that samples become semantically aligned,
i.e. the positions of parts such as wheels or eyes are aligned across all images.

3.2 GAN framework
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Figure 3: GAN training strategy. Left: discrimination of a “real” batch with pseudo-ground-truth
textures. Right: discrimination of a “fake” batch after masking to reflect the “real” batch distribution.

We directly use the estimated displacement maps and the pseudo-ground-truth textures to train a convo-
lutional GAN, with the only obstacle that “real” textures are masked, while generated textures should
ideally be complete. This can be easily dealt with by masking “fake” images before they reach D: as
shown in Fig. 3, we multiply the batch of generated textures with a random sample of visibility masks
from the training set. This strategy avoids a distribution mismatch between fake and real textures in D,
while acting as a gradient gate such that only gradients from the visible areas will reach the generator.
Being convolutional and agnostic to the visibility mask, G will always generate the full texture.

In terms of architecture, the generator is a convolutional model that outputs both mesh (displacement
map) and texture. Mesh and texture can have different resolutions — in our experiments we use
32x32 for the mesh and up to 512x512 for the texture. To support this, the generator branches
out at some point and outputs mesh and texture through two different heads (this is also done in
the mesh estimation model). The discriminator adopts a multi-scale architecture [53] (i.e. multiple
discriminators trained jointly) and a patch-based loss [22] which is masked using the visibility mask
scaled to the same resolution as the last feature map. The smallest discriminator discriminates both
the mesh and the texture, which is downscaled to the same resolution as the mesh (32x32). It focuses
on global aspects of the texture, while discriminating the mesh and how well it fits the texture. The
higher-resolution discriminators are only texture discriminators (one for experiments at 256 X256, up
to two for experiments at 512x512 in which the intermediate one discriminates at 128 x 128).

D takes as input the displacement map (mesh), the masked texture, the visibility mask, as well as a soft
positional encoding of the UV map: inspired by attention-based NLP methods that propose a similar
idea [51] (this is unrelated to our attention method for text conditioning), we add a sinusoidal encoding
to the input that gives convolutions a sense of where they are within the image. For a coordinate
space u,v € [—1, 1], we add four channels cos(mu), sin(mu), cos(m(v/2 + 0.5)), sin(7(v/2 + 0.5))



such that the encoding smoothly wraps around the u (horizontal) axis and is discontinuous along the
v (vertical) axis. Giving an absolute sense of position to the model is important as the semantics of
the texels depend on their absolute position within the UV map, and we show this quantitatively in the
ablation study (sec. 4.3). Finally, the GAN framework allows us to condition the generator on a wide
range of inputs: class labels, classes combined with attributes, and text. For the latter, we investigate
both an attention mechanism and a method based on a simple fixed-length sentence embedding. We
explain how these are implemented in sec. 4.2.

4 Experiments

4.1 Evaluation and datasets

Perceptual metrics such as the Fréchet Inception Distance (FID) [19] are widely employed for
evaluating 2D GANS, as they have been shown to correlate well with human judgment [68]. Although
we focus on a different task, the FID still appears as a natural choice as it can easily be adapted to
our task. Therefore, we suggest to evaluate FID scores on rendered 2D projections of generated
meshes. To this end, we sample random poses (i.e. viewpoints) from the training set as we do not
want the evaluation metric to be affected by our choice of poses. Moreover, this strategy allows us to
evaluate mesh and texture separately: in addition to the Full FID, we report the Texture FID, where
we use meshes estimated using the differentiable renderer instead of generated ones, and the Mesh
FID, where we replace generated textures with pseudo-ground-truth ones. In the latter, using real
poses ensures that we render the visible part of the pseudo-ground-truth texture, and occlusions are
minimized. While we mostly rely on the Full FID to discuss our results, the individual ones represent
a useful tool for analyzing how the model responds to variations of the architecture. Generated
samples are rendered at 299 x299 (the native resolution of Inception), and ground-truth images are
also scaled to this resolution. In the Appendix A.2, we provide some visualizations that give more
insight into the conceptual differences between these metrics.

We evaluate our method on two datasets with annotated keypoints, and use the implementation of
[24] to estimate the pose from keypoints using structure-from-motion.

CUB-200-2011 [52] We use the train/test split of [24], which consists of ~6k training images and
~5.7k test images. Each image has an annotated class label (out of 200 classes) and 10 captions which
we use for text conditioning. Using poses and labels (where applicable) from the training set, we eval-
uate the FID on test images, although we observe that the FID is almost identical between the two sets.

Pascal3D+ (P3D) [57] We use the cars subset, which is the most abundant class in this dataset.
Images are part of a low-resolution set (Pascal set) and a newer, high-resolution set from ImageNet
[8]. While we use the same split as [24] to train our mesh estimation model, the GAN is trained only
on the ImageNet subset (= 4.7k usable images) since we noticed that the images in the Pascal set
are too small for practical purposes. We infer segmentation masks using Mask R-CNN [16] since
they are not available. The test split of [24] does not contain any ImageNet images, therefore we
evaluate FID scores on training images 2, motivated by our previous observation on CUB. Finally, to
demonstrate conditional generation on this dataset, we collected new annotations for the class (11
shape categories) and color (11 attributes) of each car (details and statistics in the Appendix A.2).

4.2 Implementation details

Mesh estimation. The model (Fig. 1) is trained for 1000 epochs using Adam [28], with an initial
learning rate of 10~* halved every 250 epochs. We train with a batch size of 50 on a single Pascal GPU,
which requires ~12 hours. We use DIB-R [5] for differentiable rendering due to its support for texture
mapping and its relatively low overhead. To stabilize training we adopt a warm-up phase, described
in the Appendix A.2. In the same section we also describe how we augment the camera model for
Pascal3D+. Finally, the detailed architecture of the network can be found in the Appendix A.1.

GAN architecture. Since our method is reduced to a 2D generation task, we adopt recent ideas from
the 2D convolutional GAN literature. Our generator follows a ResNet architecture where the latent
code z (64D, normally distributed) is injected in the input layer as well as after every convolutional
layer through conditional batch normalization. Following [65, 4], we use spectral normalization [34]
in both G and D, but D does not employ further normalization, e.g. we tried instance normalization

’Given the already small size of the dataset, we decided not to split it further.



but found it detrimental. We adopt a hinge loss objective (patch-based and masked as described
in sec. 3), and train for 600 epochs with a constant learning rate of 0.0001 for G and 0.0004 for D
(two time-scale update rule [19]). We update D twice per G update, and evaluate the model on a
running average of G’s weights (8 = 0.999) as proposed by [64, 25, 26, 4]. Detailed aspects about
the architecture of our GAN can be found in the Appendix A.l. Training the 512x512 models
requires ~ 20 hours on 4 Pascal GPUs, while the 256 X256 models require roughly the same time
on a single GPU. For all experiments, we use a total batch size of 32 and we employ synchronized
batch normalization across multiple GPUs.

Conditional generation. In settings conditioned on class labels, we simply concatenate a learnable
64D embedding to z, and use projection discrimination [35] in the last feature map of D. In the P3D
experiment with attributes (i.e. colors), we split the embedding into a 32D shape embedding and a
32D color embedding. For text conditioning, we first encode the sentence using the pretrained RNN
encoder from [59] (a bidirectional LSTM), and compare (i) a simple method where we concatenate
the sentence embedding to z as before, (i) an attention mechanism operating on all hidden states of
the RNN. For the latter we add a single attention layer in G right before the mesh/texture branching,
operating at 16x 16 resolution. Likewise, we modify projection discrimination in D to apply attention
on the last feature map. Detailed schemes can be found in the Appendix A.1.

Representation. Since the UV map of a UV sphere has circular boundary conditions along the
horizontal axis, convolutional layers in the discriminator use circular padding horizontally and regular
zero-padding vertically. Furthermore, in both the mesh estimation model and the GAN generator,
we enforce reflectional symmetry across the = axis as done in [24], which has the dual benefit
of improving quality and halving the computational cost to output a mesh/texture. In this case,
convolutions use reflection padding horizontally instead of circular padding. Finally, to deal with the
singularities of the UV sphere, the vertex displacements of the north and south pole are respectively
taken to be the average of the top and bottom rows of the displacement map.

4.3 Results

Quantitative results. We report our main results in Table 1 (left). For CUB, we compare settings
where the model is conditioned on class labels, captions (using the attention model), and no condi-
tioning at all. For P3D, we compare unconditional generation and conditional generation on class

Table 1: Left: FID scores grouped by dataset, texture resolution, and conditioning, both in truncated
and untruncated settings. Lower is better; bold = best. Right: Ablation study on CUB with a
512x512 texture resolution. We report truncated FID scores in the truncated setting.

FID (truncated o) FID (untruncated)
Dataset | Tex. res. | Conditioning | o Full Tex.  Mesh | Full Tex.  Mesh FID A
xsi None 1 41.56 4526 1836 | 56.27 50.12 25.85 Baseline (class) 33.63 0
CUB 512x5 Class 025 33.63 28.68 1949 | 4133 30.60 2328 pos. encoding 4371 +10.08
Text 0.5 1845 2291 12.05 | 42.66 3895 21.18 Same G/D updates 4155 +7.92
256x256 | Class 0.25 3355 3092 19.39 | 42.61 33.31 2337 p : .
InstanceNorm 36.38  +2.75
None 1 4309 3270 28.62 | 7474 4799 4323 . -
pap | 512512 | Class 075 2773 2217 2376 | 4956 2998 3410  Textwithattention 1845 0
Class+Color | 05 3130 2170 27.75 | 52.55 3029 3632  Noattention 22.14 +3.69
256x256 | Class+Color | 0.5 39.09 2652 36.73 | 63.63 36.56 46.37

Figure 4: Qualitative results on P3D (left, conditioned on class and color) and CUB (right, conditioned
on class). Each object is rendered from 3 views, and the top row depicts the unwrapped texture.



labels (i.e. car shapes) as well as classes plus colors. We evaluate the FID every 20 epochs and report
the model with the best Full FID in the table. Since there is no prior work to which we can compare
under our setting, we set baselines on these two datasets. As proposed by [4], we found it useful to
sample latent codes z from a truncated Gaussian (only at inference time), which trades off sample
diversity for quality and considerably improves FID scores. For each setting we specify the optimal
truncation o, but we also report scores in an untruncated setting as these are more directly comparable.
As expected, conditional GANS result in better scores than their unconditional counterparts (with the
text model being the best), but we generally observe that our approach is stable under all settings.

Ablation study. We conduct an ablation study in Table 1 (right). The results in the top section are
relative to the 512x 512 CUB model conditioned on classes (truncated FID). Removing the positional
encoding from the discriminator leads to a significant FID degradation (+10.08), suggesting that
giving convolutions a sense of absolute position in UV space is an important aspect of our approach.
Likewise, updating D as often as G has a significant negative impact (+7.92) compared to two D
updates per G update. Using instance normalization in D also leads to a slight degradation (+2.75),
but beyond that we observe that, while training appears to converge faster initially, it rapidly becomes
unstable. In the bottom section of the table, we compare the text attention model (baseline) to a
model where a fixed-length sentence vector is simply concatenated to z (as in the other conditional
models). The results show that the model effectively exploits the attention mechanism with the added
benefit of being more interpretable.

Qualitative results. Fig. 4 shows a few generated meshes rendered from multiple views, as well as
the corresponding textures. While results on CUB are generally of high visual quality, we observe that
the back of the cars in P3D present some artifacts. After further investigation, we found that the dataset
is very imbalanced, with only 10-20% of the images depicting the back of the car and the majority
depicting the front. Therefore, this issue could in principle be mitigated with more training data. In
Fig. 5 we show that the latent space of our models is structured. We interpolate over different factors
of variation using spherical interpolation and observe that they are relatively disentangled, enabling
isolated control over shape, color, and style in addition to the pose disentanglement guaranteed by the
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Figure 5: Interpolation over conditioning inputs, which highlights that our model learns a structured
latent space where factors of variation of both shape and texture are relatively disentangled.
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3D representation itself. Fig. 6 shows results rendered from random viewpoints (the scenario on which
we evaluate FID scores) as well as generation conditioned on text, which enables precise control over
both shape and appearance. Finally, in the Appendix A.3 we show a wider range of qualitative results.

2D GAN baseline. An interesting baseline for generating 3D meshes is to first train a 2D GAN
using a state-of-the-art architecture (e.g. StyleGAN [26]), and then run a 3D mesh reconstruction
model on top of the generated 2D images. First, we note that such a baseline would not exhibit
the properties of a true 3D representation, such as pose disentangled from shape. Additionally, the
reconstruction model would have difficulties dealing with occlusions, since it can only reliably infer
information visible in the 2D image. To substantiate our observation, we investigate this baseline
empirically: we train the 3D reconstruction model of [24] for 1000 epochs on CUB training images
with an empty background (our setting). Evaluating this model on training images achieves an FID of
85.8 on reconstructions rendered from ground-truth viewpoints, which is already worse than all of our
baselines and establishes a lower bound. If we run the model on CUB images produced by StyleGAN
[26] and evaluate the FID on renderings from sampled viewpoints, the FID further degrades to 101.9.

Attention mechanism. Similar to other attention-based GANSs conditioned on text [59], our at-
tention mechanism can be easily visualized. Interestingly, since the attention is applied to our
pose-independent representation in UV space and not on flat 2D images, our attention maps can be
visualized both in UV space and on 2D renderings, as we show in Fig. 7. Furthermore, our process is
more interpretable and semantically meaningful. For instance, prompts that refer to a specific part
of the object (e.g. “yellow crown”, “red cheeks”) activate the same area within the UV map. Most
importantly, these correspondences are learned in an unsupervised fashion and are aligned among
different images owing to our pose-independent representation.

Bird with white belly , blue i yellow crown
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This bird cheeks white belly
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Figure 7: Visualization of the attention mechanism on our CUB model conditioned on text. The
attention maps are visualized in UV space (first row) as well as on the rendered mesh (second row).
In this particular bidirectional LSTM model, active tokens typically correspond to the adjectives that
precede body parts. The first and last tokens are also active because the sentence representation does
not comprise explicit sentence delimiters.

5 Conclusion

We propose a GAN-based framework for generating 3D meshes. Our approach can generate triangle
meshes and corresponding texture maps at high resolution (512x512 and possibly more), requiring
only 2D supervision from single-view natural images. We evaluate our method on Pascal3D+ Cars
and CUB Birds, and showcase it under a wide range of conditional settings to demonstrate its high
level of adaptation. Nonetheless, we have only scratched the surface of what can be done with
this framework. Our approach can be enriched by employing different forms of supervision (e.g.
semi-supervision by combining 3D supervision from synthetic datasets with 2D supervision from
natural images) as well as incorporating more conditional information that would allow the model to
disentangle further aspects of variation (e.g. lighting). In the future, we would also like to experiment
with larger datasets, and apply the approach to full-scene generation. A viable option is to decompose
background and foreground generation as in [42], and use a 3D mesh generator for foreground objects.



Broader Impact

Our line of research can positively benefit the video game and film industries, both of which impact
the life of billions of users. The ability to partially automate the construction of tailored 3D shapes
with textures has the potential to reduce costs and timelines by lessening tedious work. The impact
on jobs in this area is likely to be minimal as this work is usually performed by specialists whose
expertise could be redirected to more creative tasks [2]. Other areas like education and arts could
benefit from the ability to bring new concepts to life in an (interactive) 3D environment. Additionally,
mesh generation is a hard problem that is likely to be central in many research areas and industry
applications going forward.

Adversely, generative models can be used toward fake content creation. The negative societal impact
of our method on image generation is likely small as many image modification tools have existed for
years [10]. In the longer term, approaches that involve 3D generation might facilitate manipulation
of fake video sequences which is harder to achieve with modern software tools. Such applications
bring on concerns over exploitation, privacy, political manipulation and the undermining of public
institutions. Comparable considerations have already become part of public discourse. A range of
approaches have been suggested to tackle such issues ranging from technological, legal, and market
solutions. For a more in-depth overview of this discussion we refer to [0].
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