
A Table of Notations

Table 3: Table of Notations.

Notation Description
X A batch of inputs (each row is a sample)
Y A batch of labels (each row is a sample)
B A batch B = (X,Y)

N,C,L Batch size, number of classes, and number of layers
Qf (·) , Qθ (·) , Qb(·) activation / parameter / gradient quantizer

F(·;Θ) DNN with parameter Θ

F(l)(·;Θ(l)) l-th layer with parameter Θ(l)

H(l) Activation matrix at layer l, whose size is N ×D(l)

H̃
(l)
, Θ̃

(l)
Quantized activation / parameter

`(H(L),Y) loss function of prediction H(L) and label Y .
∇Θ` Gradient of ` w.r.t. Θ

J(l) Jacobian matrix ∂vec(H(l))

∂vec(H̃
(l−1)

)

K(l) Jacobian matrix ∂vec(H(l))

∂vec(Θ̃
(l)

)

∇H(l) ,∇Θ(l) ,∇Θ QAT gradient for activation / parameter
∇̂H(l) , ∇̂Θ(l) , ∇̂Θ FQT gradient for activation / parameter
∇

h
(l)
i
, ∇̂

h
(l)
i

i-th row of QAT / FQT activation gradient at l-th layer
E [X | Y] Conditional expectation of X given Y
Var [X | Y] Conditional variance of X given Y
R(X) Dynamic range of X, i.e., maxX−minX
b, B Number of quantization bits / bins

B Preliminary Knowledge

Proposition 1. (Law of total variance) If X and Y are random matrices on the same probability
space, and all elements of Var [Y] is finite, then

Var [Y] = E [Var [Y | X]] + Var [E [Y | X]] .

Proof. By the definition of variance,

Var [Y] =
∑
ij

E[Y 2
ij]− E[Yij]2.

By law of total expectation,

E[Y 2
ij]− E[Yij]2 = E[E

[
Y 2
ij

∣∣ X
]
]− E[E [Yij | X]]2

= E[Var [Yij | X] + E [Yij | X]
2
]− E[E [Yij | X]]2

= E[Var [Yij | X]] + E[E [Yij | X]
2
]− E[E [Yij | X]]2

= E[Var [Yij | X]] + Var [E [Yij | X]] .

Putting it together, we have

Var [Y] =
∑
ij

E[Var [Yij | X]] + Var [E [Yij | X]] = E [Var [Y | X]] + Var [E [Y | X]] .

Proposition 2. For a random matrix X and a constant matrix W,

Var [XW] ≤ Var [X] ‖W‖22 .

13

Proof. Firstly, for any matrices A and B, by the definition of Frobenius and operator norm, we have

‖AB‖2F =
∑
i

‖aiB‖22 ≤
∑
i

‖ai‖22 ‖B‖
2
2 = ‖A‖2F ‖B‖

2
2 .

Let µ = E [X], and utilize this inequality, we have

Var [XW] = E ‖vec(XW)− E[vec(XW)]‖22 = E ‖XW − E[XW]‖2F
= E ‖(X− µ)W‖2F ≤ E

[
‖(X− µ)‖2F ‖W‖

2
2

]
= Var [X] ‖W‖22 .

Proposition 3. For constant matrices A, B and a random matrix ε, if for all entries i, j, Var [εij] ≤
σ2, then

Var [AεB] ≤ σ2 ‖A‖2F ‖B‖
2
F .

Proof.

Var [AεB] =
∑
ij

Var [aiεB:,j] =
∑
ij

Var

[∑
kl

AikεklBlj

]
=
∑
ijkl

A2
ikVar [εkl]B

2
lj

≤ σ2
∑
ijkl

A2
ikB

2
lj = σ2 ‖A‖2F ‖B‖

2
F .

C Proofs

In this section, we give the proofs on the gradient bias and variance used in the main text.

C.1 Proof of Theorem 1

Proof. We prove by induction. Firstly,

∇̂H(L) = ∇H(L) = ∂`/∂H(L),

so E
[
∇̂H(l)

∣∣∣ B] = ∇H(l) holds for l = L. Assume that E
[
∇̂H(l)

∣∣∣ B] = ∇H(l) holds for l, then
we have

vec
(
E
[
∇̂H(l−1)

∣∣∣ B]) = E
[
vec(∇̂H(l−1))

∣∣∣ B] ,
because vec(·) does not affect the expectation. According to the definition Eq. (5), we have

E
[
vec(∇̂H(l−1))

∣∣∣ B] = E
[
vec(Qb(∇̂H(l)))J(l)

∣∣∣ B] .
Since J(l) is deterministic given B, we have

E
[
vec(Qb(∇̂H(l)))J(l)

∣∣∣ B] = vec
(
E
[
Qb(∇̂H(l))

∣∣∣ B])J(l) = vec
(
E
[
∇̂H(l)

∣∣∣ B])J(l).

By induction assumption and Eq. (4),

vec
(
E
[
∇̂H(l)

∣∣∣ B])J(l) = vec(∇H(l))J(l) = vec(∇H(l−1)).

So E
[
∇̂H(l−1)

∣∣∣ B] = ∇H(l−1) . Similarly,

vec
(
E
[
∇̂Θ(l)

∣∣∣ B]) = E
[
vec(Qb(∇̂H(l)))K(l)

∣∣∣ B] = vec(∇H(l))K(l) = vec(∇Θ(l)).

Therefore, E
[
∇̂Θ(l)

∣∣∣ B] = ∇Θ(l) . Taking l from L to 1, we prove

∀l ∈ [L],E
[
∇̂H(l)

∣∣∣ B] = ∇H(l) ; ∀l ∈ [L]+,E
[
∇̂Θ(l)

∣∣∣ B] = ∇Θ(l) ,

so E
[
∇̂Θ

∣∣∣ B] = ∇Θ.

14

C.2 Proof of Theorem 2

Proof. By Proposition 1 and Theorem 1, we have

Var
[
∇̂Θ

]
= E

[
Var

[
∇̂Θ

∣∣∣ B]]+Var
[
E
[
∇̂Θ

∣∣∣ B]] = E
[
Var

[
∇̂Θ

∣∣∣ B]]+Var [∇Θ] .

By definition of Var [·], we have Var
[
∇̂Θ

∣∣∣ B] =∑L
l=1 Var

[
vec(∇̂Θ(l))

∣∣∣ B]. Apply Proposition
1 and Eq. (5), we have

E
[
Var

[
vec(∇̂Θ(l))

∣∣∣ B]]
=E

[
Var

[
vec(Qb(∇̂H(l)))K(l)

∣∣∣ B]]
=E

[
Var

[
vec(Qb(∇̂H(l)))K(l)

∣∣∣ ∇̂H(l)

]]
+ E

[
Var

[
E
[
vec(Qb(∇̂H(l)))K(l)

∣∣∣ ∇̂H(l)

] ∣∣∣ B]]
=E

[
Var

[
vec(Qb(∇̂H(l)))K(l)

∣∣∣ ∇̂H(l)

]]
+ E

[
Var

[
vec(∇̂H(l))K(l)

∣∣∣ B]] ,
where

E
[
Var

[
vec(∇̂H(l))K(l)

∣∣∣ B]]
=E

[
Var

[
vec(Qb(∇̂H(l+1)))J(l+1)K(l)

∣∣∣ ∇̂H(l+1)

]]
+ E

[
Var

[
E
[
vec(Qb(∇̂H(l+1)))J(l+1)K(l)

∣∣∣ ∇̂H(l+1)

] ∣∣∣ B]]
=E

[
Var

[
vec(Qb(∇̂H(l+1)))J(l+1)K(l)

∣∣∣ ∇̂H(l+1)

]]
+ E

[
Var

[
vec(∇̂H(l+1))J(l+1)K(l)

∣∣∣ B]] .
Repeat this procedure, we can finally get

E
[
Var

[
vec(∇̂Θ(l))

∣∣∣ B]] = L∑
k=l

E
[
Var

[
vec(Qb(∇̂H(k)))γ(l,k)

∣∣∣ ∇̂H(k)

]]
.

Putting it together, we have

Var
[
∇̂Θ

]
=E

[
Var

[
∇̂Θ

∣∣∣ B]]+Var [∇Θ] = Var [∇Θ] +

L∑
l=1

E
[
Var

[
vec(∇̂Θ(l))

∣∣∣ B]]
=Var [∇Θ] +

L∑
l=1

L∑
k=l

E
[
Var

[
vec(Qb(∇̂H(k)))γ(l,k)

∣∣∣ ∇̂H(k)

]]
=Var [∇Θ] +

L∑
k=1

k∑
l=1

E
[
Var

[
vec(Qb(∇̂H(k)))γ(l,k)

∣∣∣ ∇̂H(k)

]]
=Var [∇Θ] +

L∑
l=1

E

[
l∑

k=1

Var
[
vec(Qb(∇̂H(l)))γ(k,l)

∣∣∣ ∇̂H(l)

]]
, (7)

where in the second last line we swap the order of inner and outer summations, and in the last line we
swap the symbols k and l, and utilize the linearity of expectation.

Utilizing Proposition 2, we have

Var
[
vec(Qb(∇̂H(l)))γ(k,l)

∣∣∣ ∇̂H(l)

]
≤ Var

[
vec(Qb(∇̂H(l)))

∣∣∣ ∇̂H(l)

] ∥∥∥γ(k,l)
∥∥∥2

2
.

Putting it together

Var
[
∇̂Θ

]
≤ Var [∇Θ] +

L∑
l=1

E

[
l∑

k=1

Var
[
vec(Qb(∇̂H(l)))

∣∣∣ ∇̂H(l)

] ∥∥∥γ(k,l)
∥∥∥2

2

]

= Var [∇Θ] +

L∑
l=1

E

[
Var

[
Qb(∇̂H(l))

∣∣∣ ∇̂H(l)

] l∑
k=1

∥∥∥γ(k,l)
∥∥∥2

2

]
.

15

D Variance of Specific Quantizers

Proposition 4. (Variance of stochastic rounding) For any X ∈ RN×M , Var [SR(X)] ≤ NM
4 .

Proof. For any real number X , let p := X − bXc ∈ [0, 1), then

Var [SR(X)] = E[SR(X)−X]2 = p(dXe −X)2 + (1− p)(bXc −X)2

=p(1− p)2 + p2(1− p) = p(1− p)(1− p+ p) = p(1− p) ≤ 1

4
.

Therefore, according to Definition 1,

Var [SR(X)] =
∑
ij

Var [SR(Xij)] =
NM

4
.

For simplicity, all the expectation and variance are conditioned on ∇̂H(l) in the rest of this section.

D.1 Per-tensor Quantizer

Var
[
Qb(∇̂H(l))

]
= Var

[
SR
(
S(l)(∇̂H(l) − Z(l))

)
/S(l) + Z(l)

]
=

1

(S(l))2
Var

[
SR
(
S(l)(∇̂H(l) − Z(l))

)]
≤ ND(l)

4(S(l))2
=
ND(l)

4B2
R(∇̂H(l))2.

D.2 Matrix Quantizer

For the matrix quantizer defined in Eq. (11), we have

Var
[
Qb(∇̂H(l))

]
= Var

[
(S(l))−1SR

(
S(l)(∇̂H(l) − 1z(l))

)
+ 1z(l)

]
= Var

[
(S(l))−1SR

(
S(l)(∇̂H(l) − 1z(l))

)]
.

Utilizing Proposition 3 with A = (S(l))−1, ε = SR
(
S(l)(∇̂H(l) − 1z(l))

)
, and B = I,

Var
[
Qb(∇̂H(l))

]
≤ 1

4

∥∥∥(S(l))−1
∥∥∥2

F
‖I‖2F =

D(l)

4

∥∥∥(S(l))−1
∥∥∥2

F
. (13)

Minimizing Eq. (13) w.r.t. S(l) yields optimization problem (12) as follows

min
S(l)

∥∥∥(S(l))−1
∥∥∥2

F
, s.t. R(S(l)∇̂H(l)) ≤ B,

D.3 Per-sample Quantizer

When S = diag(s1, . . . , sN), we can rewrite optimization problem (12) as

min
s1,...,sN

N∑
i=1

s−2
i , s.t. siR(∇̂h

(l)
i
) ≤ B, ∀i ∈ [N]+. (14)

Since the objective is monotonic w.r.t. si, problem (14) can be minimized when all the inequality
constraints takes equality, i.e., siR(∇̂h

(l)
i
) = B. Therefore, si = B/R(∇̂

h
(l)
i
). Plug this back to

Eq. (13), we have

Var
[
Qb(∇̂H(l))

]
≤ D(l)

4

∥∥∥(S(l))−1
∥∥∥2

F
=
D(l)

4

N∑
i=1

(
B/R(∇̂

h
(l)
i
)
)−2

=
D(l)

4B2

N∑
i=1

R(∇̂
h

(l)
i
)2.

16

D.4 Householder Quantizer

Let λ1 = R(∇̂
h

(L)
1

), λ2 = 2maxi 6=1

∥∥∥∇̂h
(L)
i

∥∥∥
∞

, and assume λ2/λ1 ≈ 0. Without loss of generality,
we can write

∇̂H(l) =

[
∇̂

h
(l)
1

∇̂
H

(l)
>1

]
=

[
∇̂

h
(l)
1

0

]
+

[
0

∇̂
H

(l)
>1

]
= λ1e1u1 +

1

2
λ2U2,

such that R(u1) ≤ 1, and maxi 6=1

∥∥∥∇̂h
(L)
i

∥∥∥
∞
≤ 1, and e1 is a column coordinate vector. Further-

more, we construct S(l) = Qdiag(s1, s2, . . . , s2), where Q = I − 2nn>/ ‖n‖22 is a Householder
reflection with the normal vector n = 1/

√
N − e1.

We have

S(l)∇̂H(l) = Qdiag(s1, s2, . . . , s2)

(
λ1e1u1 +

1

2
λ2U2

)
= Q

(
λ1s1e1u1 +

1

2
λ2s2U2

)
= λ1s1N

−1/21u1 +
1

2
λ2s2QU2.

Then, utilizing R(u1) ≤ 1,

R(λ1s1N
−1/21u1) = λ1s1N

−1/2R(1u1) = λ1s1N
−1/2(max

j
u1j −min

j
u1j) ≤ λ1s1N

−1/2.

On the other hand,

R(
1

2
λ2s2QU2) =

1

2
λ2s2R(QU2) ≤ λ2s2 ‖QU2‖∞ = λ2s2 max

j
‖QU2,:j‖∞ ,

and
‖QU2,:j‖∞ ≤ ‖QU2,:j‖2 = ‖U2,:j‖2 ≤

√
N ‖U2,:j‖∞ ≤

√
N.

Putting it together, we have

R(S(l)∇̂H(l)) ≤R(λ1s1N
−1/21u1) +R(

1

2
λ2s2QU2) ≤ λ1s1N

−1/2 + λ2s2N
1/2.

Therefore, problem (12) can be rewritten as

min
s1,s2

s−2
1 + (N − 1)s−2

2 , s.t. λ1s1N
−1/2 + λ2s2N

1/2 = B.

We minimize an upper bound instead

min
s1,s2

s−2
1 +Ns−2

2 , s.t. λ1s1N
−1/2 + λ2s2N

1/2 = B.

Introducing the multiplier τ , and define the Lagrangian

f(s1, s2, τ) = s−2
1 +Ns−2

2 + τ
(
λ1s1N

−1/2 + λ2s2N
1/2 −B

)
.

Letting ∂f/∂s1 = ∂f/∂s2 = 0, we have

−2s−3
1 + τλ1N

−1/2 = 0⇒ s1 ∝ λ−1/3
1 N1/6

−2Ns−3
2 + τλ2N

1/2 = 0⇒ s2 ∝ λ−1/3
2 N1/6,

utilizing the equality constraint λ1s1N
−1/2 + λ2s2N

1/2 = B, we have

s1 = B
λ
−1/3
1 N1/6

λ
2/3
1 N−1/3 + λ

2/3
2 N2/3

, s2 = B
λ
−1/3
2 N1/6

λ
2/3
1 N−1/3 + λ

2/3
2 N2/3

.

Therefore, we have∥∥∥(S(l))−1
∥∥∥2

F
= s−2

1 + (N − 1)s−2
2 < s−2

1 +Ns−2
2 =

1

B2

(
λ

2/3
1 N−1/3 + λ

2/3
2 N2/3

)3

,

plugging it to Eq. (13), we have

Var
[
Qb(∇̂H(l))

]
≤ D(l)

4B2

(
λ

2/3
1 N−1/3 + λ

2/3
2 N2/3

)3

≈ D(l)

4B2
λ2

1N
−1 = O(λ2

1/N).

17

D.5 Details of Block Householder Quantizer

We construct the block Householder quantizer as follows.

1. Sort the magnitude Mi :=
∥∥∥∇̂h

(l)
i

∥∥∥
∞

of each row in descending order.

2. Loop over the number of groupsG. Assume that {Mi} is already sorted, we consider the first
G rows as “large” and all the other N −G rows as “small”. The i-th group contains the i-th
largest row and a number of small rows. Furthermore, we heuristically set the size of the i-th
group to (N −G) Mi∑G

i=1Mi
, i.e., proportional to the magnitude of the large row in this group.

Finally, we approximate the variance
∥∥∥(S(l))−1

∥∥∥2

F
≈∑G

i=1M
2
i /
[
(N −G) Mi∑G

i=1Mi

]
and

select the best G with minimal variance.
3. Use the grouping of rows described in Step 2 to construct the block Householder quantizer.

E Experimental Setup

Model: Our ResNet56-v2 model for CIFAR10 directly follows the original paper [40]. For the
ResNet18/50 model, we adopt a slightly modified version, ResNetv1.5 [45]. The difference between
v1.5 and v1 is, in the bottleneck blocks which requires downsampling, v1 has stride = 2 in the first
1x1 convolution, whereas v1.5 has stride = 2 in the 3x3 convolution. According to the authors, this
difference makes v1.5 slightly more accurate (∼0.5%) than v1, but comes with a small performance
drawback (∼5% images-per-second).

Model hyperparameter: For CIFAR10, we follow the hyperparameter settings from the original
papers [29, 40], with weight decay of 10−4.

For ImageNet, we keep all hyperparameters unchanged from [45], which has label smoothing=0.1,
and weight decay=1/32768.

Optimizer hyperparameter: For CIFAR10, we follow the original paper [29], with a batch size of
128, initial learning rate of 0.1, and momentum 0.9. We train for 200 epochs.

For ImageNet, we follow [45], which has a momentum of 0.875. Due to limited device memory, we
set the batch size to 50 per GPU with 8 GPUs in total, the initial learning rate is 0.4. We train for 90
epochs, and the first 4 epochs has linear warmup of the learning rate.

For both datasets, we use a cosine learning rate schedule, following [45].

Quantization: We follow the settings in [20]. All the linear layers are quantized, where the forward
propagation is

F(l)
(
H̃

(l−1)
; Θ̃

(l)
)
= H̃

(l−1)
Θ̃

(l)
,where H̃

(l−1)
= Qf

(
H(l−1)

)
, Θ̃

(l)
= Qθ

(
Θ(l)

)
,

both Qf (·) and Qθ (·) are deterministic PTQs that quantizes to 8-bit. The back propagation is

∇̂Θ(l) = H̃
(l−1)>

Qb1(∇̂H(l)), ∇̂H(l−1) = Qb2(∇̂H(l))Θ̃
(l)>

,

with gradient bifurcation [20]. We set Qb1 to a 8-bit stochastic PTQ, and Qb2 to PTQ, PSQ, or BHQ
with 4-8 bits. The original paper [20] set Qb1 as an identity mapping (i.e., not quantized), and Qb2 to
be 8-bit stochastic PTQ.

We quantize the inputs and gradients of batch normalization layers, as described in our framework.

Number of training / evaluation runs: Due to the limited amount of computation resources, we
train on each setting for only once.

Runtime & Computing Infrastructure: Following [20], we simulate the training with FP32. Our
simulator runs approximately 3 times slower than FP32 counterparts. We utilize a machine with 8
RTX 2080Ti GPUs for training.

F Additional Experimental Results

18

0 50 100 150 200

Epochs

80

82

84

86

88

90

92

94
V

al
id

at
io

n
A

cc
u

ra
cy

QAT

8-bit PTQ

7-bit PTQ

6-bit PTQ

5-bit PTQ

4-bit PTQ

0 50 100 150 200

Epochs

80

82

84

86

88

90

92

94

V
al

id
at

io
n

A
cc

u
ra

cy

QAT

8-bit PSQ

7-bit PSQ

6-bit PSQ

5-bit PSQ

4-bit PSQ

0 50 100 150 200

Epochs

80

82

84

86

88

90

92

94

V
al

id
at

io
n

A
cc

u
ra

cy

QAT

8-bit BHQ

7-bit BHQ

6-bit BHQ

5-bit BHQ

4-bit BHQ

0 50 100 150 200

Epochs

10−3

10−2

10−1

100

T
ra

in
in

g
L

os
s

QAT

8-bit PTQ

7-bit PTQ

6-bit PTQ

5-bit PTQ

4-bit PTQ

0 50 100 150 200

Epochs

10−3

10−2

10−1

100
T

ra
in

in
g

L
os

s

QAT

8-bit PSQ

7-bit PSQ

6-bit PSQ

5-bit PSQ

4-bit PSQ

0 50 100 150 200

Epochs

10−3

10−2

10−1

100

T
ra

in
in

g
L

os
s

QAT

8-bit BHQ

7-bit BHQ

6-bit BHQ

5-bit BHQ

4-bit BHQ

Figure 6: CIFAR10 convergence curves.

0 20 40 60 80

Epochs

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

V
al

id
at

io
n

A
cc

u
ra

cy

QAT

8-bit PTQ

7-bit PTQ

6-bit PTQ

5-bit PTQ

4-bit PTQ

0 20 40 60 80

Epochs

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

V
al

id
at

io
n

A
cc

u
ra

cy

QAT

8-bit PSQ

7-bit PSQ

6-bit PSQ

5-bit PSQ

4-bit PSQ

0 20 40 60 80

Epochs

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

V
al

id
at

io
n

A
cc

u
ra

cy

QAT

8-bit BHQ

7-bit BHQ

6-bit BHQ

5-bit BHQ

4-bit BHQ

0 20 40 60 80

Epochs

3× 100

4× 100

T
ra

in
in

g
L

os
s

QAT

8-bit PTQ

7-bit PTQ

6-bit PTQ

5-bit PTQ

4-bit PTQ

0 20 40 60 80

Epochs

3× 100

4× 100

T
ra

in
in

g
L

os
s

QAT

8-bit PSQ

7-bit PSQ

6-bit PSQ

5-bit PSQ

4-bit PSQ

0 20 40 60 80

Epochs

3× 100

4× 100

T
ra

in
in

g
L

os
s

QAT

8-bit BHQ

7-bit BHQ

6-bit BHQ

5-bit BHQ

4-bit BHQ

Figure 7: ResNet18 on ImageNet convergence curves.

19

0 20 40 60 80

Epochs

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

V
al

id
at

io
n

A
cc

u
ra

cy

QAT

8-bit PTQ

7-bit PTQ

6-bit PTQ

5-bit PTQ

0 20 40 60 80

Epochs

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

V
al

id
at

io
n

A
cc

u
ra

cy

QAT

8-bit PSQ

7-bit PSQ

6-bit PSQ

5-bit PSQ

4-bit PSQ

0 20 40 60 80

Epochs

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

V
al

id
at

io
n

A
cc

u
ra

cy

QAT

8-bit BHQ

7-bit BHQ

6-bit BHQ

5-bit BHQ

4-bit BHQ

0 20 40 60 80

Epochs

2× 100

3× 100

4× 100

6× 100

T
ra

in
in

g
L

os
s

QAT

8-bit PTQ

7-bit PTQ

6-bit PTQ

5-bit PTQ

0 20 40 60 80

Epochs

2× 100

3× 100

4× 100

6× 100

T
ra

in
in

g
L

os
s

QAT

8-bit PSQ

7-bit PSQ

6-bit PSQ

5-bit PSQ

4-bit PSQ

0 20 40 60 80

Epochs

2× 100

3× 100

4× 100

6× 100

T
ra

in
in

g
L

os
s

QAT

8-bit BHQ

7-bit BHQ

6-bit BHQ

5-bit BHQ

4-bit BHQ

Figure 8: ResNet50 convergence curves.

20

