A Table of Notations

Table 3: Table of Notations.

Notation Description
X A batch of inputs (each row is a sample)
Y A batch of labels (each row is a sample)
B Abatch B=(X,Y)
N,C,L Batch size, number of classes, and number of layers
Qs (), Qo (-),Qu() activation / parameter / gradient quantizer
F(;0) DNN with parameter ©
FOeW) I-th layer with parameter @ (")
HY Activation matrix at layer [, whose size is N x DW®
H(l)7 ®(l) Quantized activation / parameter
(HD), ) loss function of prediction H'™) and label ).
Vel Gradient of / w.r.t. ©
Jo Jacobian matrix %Hﬁ)l)
8vec(H( )
K® Jacobian matrix M
Ovec(©®")
Vaw,Ven,Ve QAT gradient for activation / parameter
@HU) , @@m , @@ FQT gradient for activation / parameter
Vo, @h(.” i-th row of QAT / FQT activation gradient at [-th layer
E[X |Y] Conditional expectation of X given Y’
Var [ X | Y] Conditional variance of X given Y
R(X) Dynamic range of X, i.e., max X — min X
b,B Number of quantization bits / bins

B Preliminary Knowledge

Proposition 1. (Law of total variance) If X and Y are random matrices on the same probability

space, and all elements of Var [Y| is finite, then
Var [Y] =E[Var[Y | X]] 4+ Var [E[Y | X]].

Proof. By the definition of variance,

Var[Y] = ST E[VE] - B[l

By law of total expectation,

E[Y;3] - E[Yy]?

E[E [Y2 | X]] - EE[Y;, | X)P

Var[¥;; | X] +E[Y,, | XJ*] - EE[Y,, | X]?
[Var[¥i; | X)] + E[E[Y;, | X)?] - E[E[Y;; | X]?
[Var [V, | X)) + Var [E[Y;; | X

E
E
E

Putting it together, we have

Var [Y] = ZE[Var Vi | X]]+ Var [E[Y;; | X]] = E[Var[Y | X]] + Var [E[Y | X]].

ij

Proposition 2. For a random matrix X and a constant matrix W,

Var [XW] < Var [X] [W]3.
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Proof. Firstly, for any matrices A and B, by the definition of Frobenius and operator norm, we have
IABG = llaBl3 < > llails IBI3 = [1A]5 B3
Let o = E [X], and utilize this inequality, we ha\l/e
Var [XW] = E ||[vec(XW) — E[vec(XW)][|5 = E [ XW — E[XW]]|%.
—E (X~ W} <E[IIX — )5 W3] = var (X [W].

O

Proposition 3. For constant matrices A, B and a random matrix €, if for all entries i, j, Var [e;;] <

o2, then

Var [AeB] < o* | A5 [ BI[7-
Proof.
Var [AeB] = Z\/ar [a;€B. ;] = ZVar ZAikelelj = ZA?kVar [€xi] BZQJ-
ij ij ki ijkl
2 2
<o ZA?kBlgj =0° A7 B -
ijkl

O

C Proofs

In this section, we give the proofs on the gradient bias and variance used in the main text.

C.1 Proof of Theorem[I]

Proof. We prove by induction. Firstly,
@H(L) =Vygw = 8f/8H(L),

so E {@H(z)
we have

B} = Vg holds for [ = L. Assume that E [@H(z)

B} = Vg holds for [, then

vec (IE {@Huq)

BD =E [VGC(?H(FU) ‘ B} )
because vec(-) does not affect the expectation. According to the definition Eq. , we have
E [vee(Vaga-n) | B] = E [vee(@u(Ver)I® | B].
Since J® is deterministic given 3, we have
E [Vec(Qb(@H(z)))J(Z) ‘ B} = vec (IE [Qb(@Hm) ’ BD JO = vec (E [@H“)
By induction assumption and Eq. (),
vec (IE {@H(l) BD JO = VEC(VH(L))J(l) = vec(Vygo-).

8| )30

SoE [@Hm)

B| = Vg Similarly,

vec (E [@@(1)

BD =FE [vec(Qb(@Hu)))K(l) ‘ B} = vee(Vgo ) KO = vec(Vew ).

Therefore, E [@@(n

B} = V. Taking [ from L to 1, we prove

Vi € [LLE [Vao | B] = Vao: Vi€ [L]1,E [Voo

B} =Veu,

soE[@@’B] —Ve. 0
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C.2 Proof of Theorem 2]
Proof. By Proposition[I|and Theorem|[I] we have
Var [@@} =K [Var [@@ ‘ BH + Var [IE [@@ ’ BH =E [Var [@@ ‘ BH + Var[Ve].

By definition of Var [-], we have Var [V@ ‘ B} Zle Var [Vec(?@m) ‘ B} . Apply Proposition
1 and Eq. (), we have

VHWH +E [Var [E [vec(Qb(@Ha)))K(” ‘ @Hm} ‘ BH

VHu)H +E {Var [vec(@H(z))K(l) ‘ BH ,

E [Var [Vec(@Hm)K(l) ’ BH
= [Var [vec(@u(Vageen NIV | Vyginn || + 8 [Var [E [vec(Qu(Traen))ITVKD | T | | 5]

—E [Var [vec(Qb(@mw))J”“)K”) ‘ @HM)H +E [Var [vec(@Hw))J”“)K(“ ‘ BH .

Repeat this procedure, we can finally get

I

E [Var {Vec(@@m) ’ BH = ;E {Var [VGC(Qb(@HUc)))’Y

Putting it together, we have

Var [@@} =E {Var [@@ ’ BH + Var[Ve] = Var [Ve| + iE [Var [vec(@@u)) ‘ BH
=1

L L
=Var[Ve| + ZZ]E {Var {vec(Qb(V )y ?H(MH
I=1 k=l
L
=Var[Ve| + ZZ [Var [vec (Qo(Vigm )y P @H““)H
L 1
=Var[Ve| + Z ZVar [veC(Qb(@Hu)))v(k’l) @H(UH, ||
=1 Lk=1

where in the second last line we swap the order of inner and outer summations, and in the last line we
swap the symbols k and [, and utilize the linearity of expectation.

Utilizing Proposition[2] we have
. . . . 2
Var [VGC(Qb(VH(z)))’Y(k’l) ‘ VH(L)i| < Var [Vec(Qb(VHm)) ‘ VHu)} H'y(k’l)Hz.

Putting it together

Var {V@} < Var [V +ZIE
=1

zl:Var [veC(Qb(VHU) ’ VH(1>:| H’Y )H ]

= Var [V +ZIE
=1

Var {Qb Vo) ' VHm] Z H’y kl)H ]
k=
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D Variance of Specific Quantizers

Proposition 4. (Variance of stochastic rounding) For any X € RN*M Var [SR(X)] < NM

Proof. For any real number X, letp := X — | X | € [0, 1), then
Var [SR(X)] = E[SR(X) — X]* = p([X] - X)* + (1 - p)(| X] - X)?
=p(1=p)* +p*(1—p) =p(1—p)(L—p+p) =p(l-p) < .

Therefore, according to Definition 1,

NM
Var [SR(X ZVar [SR(X ij) 4

O

For simplicity, all the expectation and variance are conditioned on @H(l) in the rest of this section.
D.1 Per-tensor Quantizer

Var [Qb(@Hm)} = Var [SR (S(l)(@Hu) — Z(U)) /S(l) + Z(l)}

o NDWO NDO .
l 1 _ )
(sm) i Var [ 8 (SO (Vo0 — 2)) ] < 1507~ apr RVmo)”

D.2 Matrix Quantizer

For the matrix quantizer defined in Eq. (TI)), we have
Var [Qb(ﬁHm)] Var [(s“ )~IsR (s@(@Hm - 1z(l>)) + lz(l)} = Var [(s@)*lsa (s“WHm - lz(l))>] .
Utilizing Propositionwith A= (D)1 e=sR (S(l)(@Hm — lz(l))), and B =1,

Var [Qu(¥o)] < 181 iz = 27 sy (13

Minimizing Eq. w.rt. SO yields optimization problem as follows

min

2 .
0) ‘(Sm)ilHF’ st R(S(Z)VHU)) < B,

D.3 Per-sample Quantizer

When S = diag(sy, . .., Sn), we can rewrite optimization problem (12)) as

min Zs . st s;R h(z))SB,WE[N]Jr. (14)

S$15--38N

Since the objective is monotonic w.r.t. s;, problem (I4) can be mlnlmlzed when all the inequality
constraints takes equality, i.e., s; R(Vh@) B. Therefore, s; = B/R(V, ). Plug this back to

Eq. (13), we have

("

s Eme] < 2 591 = 2S5 (ms) = 05 e
i=1 =1
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D.4 Householder Quantizer

Let Ay = R(Vh<L>), A2 = 2max;4; H@h(m , and assume Az/A; ~ 0. Without loss of generality,
1 7
we can write -
N v 10 V. o 0 1
v = Ahl = h() - :Aeu 7AU,
HO VH”) [ 01 + VHQQ 1eju; + 522
>1

such that R(u;) < 1, and max;2q H@hm < 1, and e; is a column coordinate vector. Further-

o0
more, we construct S = Qdiag(sy, s2, ..., s2), where Q = I — 2nn / ||nH§ is a Householder

reflection with the normal vectorn = 1/v/ N — e;.

We have
- . 1 1
S(Z)VHU) = leag(sl, 82,. .., 82) (/\161111 + 2)\2U2) = Q (/\18161111 + 2/\282U2>

1
= /\131N71/21U1 + 5)\282QU2.
Then, utilizing R(u;) < 1,
R()\lslN_l/21u1) = /\181N_1/2R(1111) = AlslN_l/Q(max up; — m_inulj) S )\181N_1/2.
J J

On the other hand,
1 1
R(§/\232QU2) = 5/\282R(QU2) < X252 [|QUs|| o = A2s2 max QU2

and
1QUz, ], < 1QU2ll, = [IU2ll, < VN [Us ]l < VN.
Putting it together, we have

N 1
R(S(Z)VH(U) §R()\151N_1/21u1) + R(i/\gSQQUg) S )\1$1N_1/2 + )\282]\71/2.

Therefore, problem (I2) can be rewritten as

min SIQ + (N - 1)8527 s.t. \siN~Y2 4 \ysoNY2 = B.

51,82

We minimize an upper bound instead
min 51_2 + N52_27 st AysiN~Y2 4 AysoNY2 = B,

51,52

Introducing the multiplier 7, and define the Lagrangian
f(s1,82,7) = 31_2 + N52_2 + T (AlslN_l/Q + Aosy N2 — B) .
Letting 0f /0s1 = 0f /0s2 = 0, we have
—28;3 +TMN2=0= s x )\1_1/3N1/6
—2Ns2_3 +TANY2 =0 = 55 x A;1/3N1/6,

utilizing the equality constraint A\;s; N ~1/2 4+ \y50N/2 = B, we have

—1/3771/6 —1/3nr1/6
51:B )\1 N So = )\2 N

2/3 \r_ 2/3 » 02 2/3 nr_ 2/3 :
)\1/ N 1/3+>\2/ N2/3 )\1/ N 1/3_|_)\2/ N2/3

Therefore, we have

2 3
H(S<”)—1HF =572+ (N —1)s5% < 572+ Nsy 2 = o ()\f/gN_l/?’ = A§/3N2/3) ,

plugging it to Eq. (I3)), we have

N DO ) 3 pO
Var [Qy(Veg)| (NPN12 £ XON) & TN = OA3/N).

< = ~ =
~ 4B2 4B2
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D.5 Details of Block Householder Quantizer

We construct the block Householder quantizer as follows.

1. Sort the magnitude M; := H@ of each row in descending order.

[©)
h; ||

2. Loop over the number of groups G. Assume that { M} is already sorted, we consider the first
G rows as “large” and all the other NV — G rows as “small”. The ¢-th group contains the i-th
largest row and a number of small rows. Furthermore, we heuristically set the size of the i-th

group to (N — G)%, i.e., proportional to the magnitude of the large row in this group.
i=1 4"

2
Finally, we approximate the variance H C H ~ Y9 M2/ [(N — G)=t——| and
F i

select the best G with minimal variance.
3. Use the grouping of rows described in Step 2 to construct the block Householder quantizer.

E Experimental Setup

Model: Our ResNet56-v2 model for CIFAR10 directly follows the original paper [40]. For the
ResNet18/50 model, we adopt a slightly modified version, ResNetv1.5 [45]. The difference between
v1.5 and vl is, in the bottleneck blocks which requires downsampling, v1 has stride = 2 in the first
1x1 convolution, whereas v1.5 has stride = 2 in the 3x3 convolution. According to the authors, this
difference makes v1.5 slightly more accurate (~0.5%) than v1, but comes with a small performance
drawback (~5% images-per-second).

Model hyperparameter: For CIFAR10, we follow the hyperparameter settings from the original
papers [29]140], with weight decay of 10~

For ImageNet, we keep all hyperparameters unchanged from [45]], which has label smoothing=0.1,
and weight decay=1/32768.

Optimizer hyperparameter: For CIFAR10, we follow the original paper [29]], with a batch size of
128, initial learning rate of 0.1, and momentum 0.9. We train for 200 epochs.

For ImageNet, we follow [45], which has a momentum of 0.875. Due to limited device memory, we
set the batch size to 50 per GPU with 8 GPUs in total, the initial learning rate is 0.4. We train for 90
epochs, and the first 4 epochs has linear warmup of the learning rate.

For both datasets, we use a cosine learning rate schedule, following [45]].

Quantization: We follow the settings in [20]. All the linear layers are quantized, where the forward
propagation is

FO (ﬁufl); é(w) _ fl(“”(l)”),where gl _ Q; (H(lfl)) 7 60 _ Qo (Qu)) 7

both Q¢ (-) and Qy (-) are deterministic PTQs that quantizes to 8-bit. The back propagation is

T ~ N N ~ (Z)T
Qv1(Vuw), Vae-y = Que(Vgw)®

with gradient bifurcation [20]. We set Q31 to a 8-bit stochastic PTQ, and Q2 to PTQ, PSQ, or BHQ
with 4-8 bits. The original paper [20] set (51 as an identity mapping (i.e., not quantized), and Q2 to
be 8-bit stochastic PTQ.

We quantize the inputs and gradients of batch normalization layers, as described in our framework.

@@(l) = I:Iu*l)

Number of training / evaluation runs: Due to the limited amount of computation resources, we
train on each setting for only once.

Runtime & Computing Infrastructure: Following [20], we simulate the training with FP32. Our
simulator runs approximately 3 times slower than FP32 counterparts. We utilize a machine with 8
RTX 2080Ti GPUs for training.

F Additional Experimental Results
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Figure 6: CIFAR10 convergence curves.
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Figure 7: ResNet18 on ImageNet convergence curves.
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Figure 8: ResNet50 convergence curves.
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