
Supplementary Material
AutoSync: Learning to Synchronize for Data-Parallel

Distributed Deep Learning

1,2Hao Zhang†, 1,3Yuan Li†, 4Zhijie Deng, 1Xiaodan Liang,
3Lawrence Carin, 1,2Eric P. Xing

1Petuum Inc., 2Carnegie Mellon University, 3Duke University, 4Tsinghua University
{hao.zhang,christy.li,xiaodan.liang,eric.xing}@petuum.com,

dzj17@mails.tsinghua.edu.cn, lcarin@duke.edu

The supplementary material is organized as follows:

• §1 explains the rationale of estimating T using T = max(Tcomp, Tsync) (Section 3.1 of the main
paper).

• §2 provides more detailed explanations about the predefined modeling of TPSserver and zPS in
addition to the contents in Section 3.1 of the main paper.

• §3 provides details on the predefined modeling for TCC and the extraction of domain-agnostic
features zCC (corresponding to Section 3.1 of the main paper).

• §4 gives detailed formulations of the RNN simulator (Section 3.1 of the main paper).

• §5 gives detailed formulations of the GAT simulator (Section 3.1 of the main paper).

• §6 provides detailed algorithms for the two knowledge constraints clb and cam (Section 3.2 of the
main paper).

• §7 elaborates the method for selecting the final set of candidate strategies for trial execution, and
the approaches to estimates similarities between strategies (Section 3.2 of the main paper).

• §8 gives details about the AutoSync system implementations and baseline systems information
(Section 5 of the main paper).

• §9 lists all the 11 models (G) and 14 cluster specifications (D) we have experimented with
throughout our research, and provides information about the public dataset we are going to release.
(Section 5 of the main paper).

• §10 provides some hyperparameter information about the simulator training.

1 Rationale of T = max(Tcomp, Tsync)

In the main paper, we model the per-iteration runtime T of parallelizing G onD using two contributing
components: computation time Tcomp, and parameter synchronization time Tsync, and obtain the per-
iteration time via:

T = max(Tcomp, Tsync). (1)

The rationale behind Eq. 1 is as follows: (1) Since many runtime systems (e.g. TensorFlow [1] or
PyTorch [3]) introduce scheduling or parallelization between communication and computation, in
practice, there are significant overlaps between the two components; (2) in data-parallel training, it
is commonly observed that one component usually dominates the other [4]. These make using the
maximum of them as the estimation of the total time reasonable.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

2 More Explanations for T PS
server

For modeling Tsync of variables, we have introduced two hyperparameters: network overhead denoted
as φ, and GPU kernel memory latency denoted as δ which includes device-host transfer time and
GPU kernel overhead. As δ is relatively slow compared with other time consumption, we treat it
as a constant that does not scale with variable size. Synchronizing vi via PS (vi ∈ V PS) involves:
(1) workers send gradients to servers, (2) servers update parameters, (3) servers send the updated
parameters to workers, where (2) is negotiable and (1)(3) are symmetric processes and cost the same
amount of time. We denote the original size (e.g. byte size) of the gradient of the variable vi as mi

(note mi takes into consideration the sparsity of the gradients when applicable), and assume it will
apply the encoding/decoding scheme ci ∈ si, so the actual size of the message (related to vi) to be
transferred across devices is ci(mi), where we also use ci to denote the compression function that
reduces the original size mi to ci(mi).

Let wi denote the number of workers involved in synchronizing vi. The parameter transfer process
involves transferring data between the GPU device memory and the host memory (RAM) within the
same machine, and between the host memory across machines. The first process introduces GPU
kernel latency and device-host communication. The second process introduces network overhead
(e.g., latency) and network communication. Hence, the communication time TPSserver on the server
hosting vi, indexed as j, is

TPSserver(vi) =

wi∑
k=1

Id(j, k) ·
ci(mi)

bj,k
· rIpi,k︸ ︷︷ ︸

network transfer

+

wi∑
k=1

Id(j, k) · r
Ip
i,k · φ︸ ︷︷ ︸

network overhead

+ δ︸︷︷︸
GPU kernel latency

, (2)

where ri,k is the number of replicas of G on worker k if the worker k has multiple GPUs that host
multiple replicas of G respectively; Id(j, k) and Ip are true when server j and worker k locate on
different machines and when hierarchical reduction is used, respectively. To interpret Eq. 2, the first
term corresponds to sending messages from each worker k to the server j (and vise versa). The
second term captures network overheads that scale linearly with the number of workers, or with the
number of replicas when Ip is false. The third term captures the constant GPU memcpy latency.

The estimation TPSserver(vi) can be accumulated across all vi ∈ V PS to obtain the total synchronization
time taken for all PS variables. We also derive the domain-agnostic features zPS based on Eq. 2,
which has been elaborated in the main paper.

3 Predefined Modeling for TCC
sync and Domain-agnostic Features zCC

In the main paper and §2, we have demonstrated the predefined modeling for communicating
variables which adopt the PS communication architecture (vi ∈ V PS). Next, we develop the model
for variables using collective communication (CC).

For vi ∈ V CC , we model 5 mostly used collective primitives: AllReduce, ReduceScatter,
AllGather, Broadcast and Reduce [12]. Take an example when there are w workers and the
device order in the substrategy si is a ring [14]. Each primitive sends and receives 2(w−1)

w , w−1w , w−1w ,
1, 1 times, respectively, in its applicable scenario for parameter synchronization (e.g. AllReduce for
dense gradients or AllGather for sparse gradients [14]) . Therefore, we can obtain TCCsync(vi) using
the following formula:

TCCsync(vi) = I1
2(wi − 1)ci(mi)

wibm
+ I2

(wi − 1)ci(mi)

wibm
+ I3

ci(mi)

bm︸ ︷︷ ︸
network transfer

+wi · φ+ δ, (3)

where bm = min(k1,k2)∈ring bk1,k2 denotes the lowest bandwidth between devices in the ring, since
the throughput of a ring is restricted by the lowest bandwidth in the network [19]. I1, I2, I3 are
true when AllReduce, ReduceScatter and AllGather, Broadcast and Reduce are activated,
respectively. The formula is derived based on counting how many times each message (i.e. gradients)
needs to be passed across the ring, taking into considerations both network transfer overhead as well
as the device-host memory swap latency. The total synchronization time for variables assigned with
collective communication is TCCsync(V

CC) =
∑|V CC |
i=1 TCCsync(vi).

2

In a similar way as in §2, the domain-agnostic features for vi ∈ V CC are zCCi =
[network transfer, coefficient of φ, coefficient of δ] from Eq. 3, and the global features of TCCsync are
zCC = max{zCCi for vi ∈ V CC} ⊕

∑
{zCCi for vi ∈ V CC}/|V CC |.

4 Detailed Formulation for the RNN-based Simulator

The formulation of applying RNN with both predefined and raw features on runtime prediction can
be written as

zi = MLPi (zrawi ⊕ zprei) , (4)
hi+1 = LSTM (hi, zi) , (5)

h′i+1 = LSTM
(
h′i, z|V ′

G,θ|+1−i

)
, (6)

f̂ = MLPo([h|V ′
G,θ|,h

′
|V ′

G,θ|
]), (7)

where MLPi converts input features to a hidden representation, and MLPo converts encoded features
after LSTM fusion to the output logits. Note that the LSTM walks through each vi ∈ V ′G,θ strictly
following their original forward (backward) order in the computational graph, so as to inject this
information into the modeling. Note the RNN works on the transformed graph {V ′G,θ, E′G}, which
additionally has partitioned variables compared to the original graph {VG,θ, EG}.

5 Detailed Formulation for the GAT-based Simulator

The formulation of applying GAT with both predefined and raw features on runtime estimation can
be written as

{zi}
|V ′

G,θ|
i=1 = GAT({zrawi ⊕ zprei , for vi ∈ V ′G,θ}, E′G), (8)

z =
1

|V ′G,θ|
∑

({zi}
V ′
G,θ
i=1), (9)

f̂ = q(z), (10)

where GAT denotes the graph attention operations [18] applied on the graph {V ′G,θ, E′G} with
zrawi ⊕ zprei as node features. q is a linear layer that converts hidden representation to runtime
estimation.

6 Details of the Knowledge Constraints clb and cam

The two knowledge constraints, load balancing constraint clb and adjacent merging constraint cam,
are implemented together with the strategy sampler as regulations. In particular, the strategy sampler
first generates a partial strategy S, leaving two fields, variable placement (PS-based) and the group
(collective-based) undecided. A global load balancer (clb) and group assigner (cam) assign their
values using randomized and approximate solutions, illustrated in Algorithm 1 and Algorithm 2,
respectively. Note both constraints work on the set of variables V ′G,θ with partitioned shards, instead
of the original set of variables VG,θ.

The two constraints help filter strategies that are obviously inefficient, but approximately maintain
global load balance on the cluster and adjacent merging structures correlated with the forward-
backward propagation order. Their effectiveness has been validated in §5.1 in the main paper.

7 Select Final Candidate Strategies for Trial Execution

This section provides details on the selection of the final set of strategy candidates for trial execution.

As stated in §3.1 of the main paper, we minimize a weighted sum of f̂ and internal similarity to select
the final set of strategy candidates for trial execution. Formally, we solve the following optimization

3

Algorithm 1: Implementation of the load balance constraint clb
Inputs: S, D, V ′G,θ

1 Function load_balance_constraint(S, D, V ′G,θ):
2 Set loads of each device in D as lcur = [0, ..., 0]

3 Sum up the bandwidth of devices in D: ball =
∑|D|
i=1 bi,i

4 Sort V ′G,θ by byte size in descending order and get V s
′

G,θ
5 for v in V s

′

G,θ do
6 lall =

∑|D|
i=1 lcur[i]

7 logits = lall ∗ [b1,1/ball, . . . , b|VD|,|VD|/ball]− lcur
8 j ∼ Categorical(softmax(logits))
9 Set the placement of v in S as dj ∈ D

10 lcur[j] = lcur[j] + byte_size(v)

Algorithm 2: Implementation of the adjacent merge constraint cam
Inputs: D, V ′G,θ, G, the number of total collective merging groups N

1 Function adjacent_merge_constraint(D,V ′G,θ,S,N):
2 Sort V ′G,θ based on their location in the backpropagation order indicated by G, from input to

loss function, and get V s
′

G,θ
3 Set loads lcur = [0, ..., 0]Ni=1 corresponding to N merge groups
4 lavg =

1
N

∑
v∈V s′G,θ

byte_size(v)

5 g = 0

6 for v in V s
′

G,θ do
7 if lcur[g] ≥ lavg then
8 g = g + 1

9 if lcur[g] < lavg then
10 Set the group of v in S as g
11 lcur[g] = lcur[g] + byte_size(v)

problem:

min
{Si}Ki=1⊂{Si}Mi=1

K∑
i=1

f̂(Si) + α

K∑
i=1

K∑
j=1

sim(Si,Sj), (11)

where {Si}Mi=1 are the M qualified strategies filtered first using the simulator score, α denotes a
trade-off coefficient, and sim is a pairwise similarity function between strategies. Solving Eq. 11
helps deliver a set of candidates that trade off between low predicted runtime (exploitation) and low
similarity (exploration). The above problem is a typical problem of submodular minimization, and
we resort to the greedy algorithm for an approximate solution [10].

Estimating the similarity between strategies. Since we do not have a continuous representation of
strategies, we have developed two approaches to estimate the similarities between strategies. The
first approach estimates the similarity of the two strategies S1,S2 by comparing each sub strategy
si1 ∈ S1 and si2 ∈ S1 corresponding to the variable vi, and counting how many choices of each
synchronization-affecting factor are the same, and use the final count as a measure of their similarity
(higher is more similar). The second approach takes the cosine similarity between the hidden outputs
of the simulator, whose inputs are S1 and S2, as a proxy of the strategy similarity. Empirically, we find
the two approaches perform similarly, but the first similarity function does not depend on the simulator
thus can be used when no trained simulator is available (e.g. for the baseline AutoSync(-s)).

4

8 More Details on AutoSync Implementations and Baseline Systems

In this section, we provide more details about the experimental setup, including the implementations
of AutoSync backend for strategy generation and application, and the details about the two baseline
systems: Horovod and PS.

AutoSync System Implementation. Frameworks such as TensorFlow offer a flexible distributed
runtime [1, 20] for evaluating dataflow graphs on distributed clusters [1, 20]. On top of TF 2.0, we
have built a composable dataflow graph rewriting system, called AutoDist (https://github.com/
petuum/autodist), that allows composing different synchronization aspects, such as synchronizer,
placement and partitioning of variables, etc. as synchronization strategies. More precisely, given the
single-node dataflow graph G extracted from user code, AutoDist can rewrite G by modifying nodes,
edges and their attributes, into a distributed graph G′ with all required semantics from S. It then
launches TensorFlow distributed runtime to execute G on the cluster of nodes fromR. This allows
evaluating different S using a common distributed engine and eliminating performance variations
caused by different runtime. We skip the detailed descriptions about how AutoDist is designed as
they are out of the scope of this paper.

Based on AutoDist, AutoSync is implemented a synchronization strategy auto-optimizer component
therein. The specific code of AutoSync can be found at https://github.com/petuum/autodist/
tree/master/autodist.

System Setup. All the baselines and AutoSync rely on TensorFlow 2.0 as the distributed runtime.
For the experiment results reported in this paper, we compile TF2.0 with CUDA10.0, CUDNN 7.1,
and NCCL 2.4.7, and uses gRPC for network communication.

Baseline Systems. In the main paper we introduce two strong hand-optimized synchronization
systems as external baselines. We provide more details about the two systems.

Horovod [14] is one of the most adopted open source synchronization systems for data-parallel
distributed ML. It uses AllReduce (AllGather) to synchronize dense (sparse) gradients of all model
variables, and utilizes BO to autotune the merge scheme for multiple collective operations based
on collected trial data in warm-up runs. Details of the optimization can be found at https:
//github.com/horovod/horovod/blob/master/docs/autotune.rst. Per our experiments
on our cluster setup, it reports up to 2x speedup than a Google-provided parameter server implemen-
tation based on distributed TensorFlow as runtime (details at https://github.com/tensorflow/
examples/blob/master/community/en/docs/deploy/distributed.md), on multiple CNNs
such as ResNet101 and InceptionV3. Horovod uses NCCL 2.4.7 for collective communication,
which is the same with AutoSync.

PS is a highly tuned parameter server implementation with multiple optimizations from recent PS
literature incorporated. We elaborate a few notable optimizations: (1) it maintains load balance by
partitioning large variables and evenly placing the shards across servers depending on their available
bandwidth (i.e. correlates to its maximum bandwidth and the current load as a parameter server);
(2) it uses the BO algorithm to decide the partitioning size following ByteScheduler [13]; (3) it
communicates sparse gradients (IndexSlices in TensorFlow) using Gather and Scatter primitives
(instead of Reduce and Broadcast) [9] to reduce communication overhead; (4) it performs hierarchical
Reduce (or Gather) and Broadcast (or Scatter) on nodes with more than 1 GPUs to reduce network
traffic. The optimizations are implemented on top of TensorFlow 2.0 as well, so the backend also
relies on distributed TensorFlow 2.0 for distributed execution, same with AutoSync.

9 Descriptions of the Experiment Setup and Public Dataset

9.1 Model and Cluster Specifications

Throughout our research in this paper, we have conducted experiments on 10 models from different
DL families, and 14 cluster configurations based on our in-house cluster and AWS. We provide
additional details about the models and cluster specifications below and in Table 1 and Table 2.

Models. Table 1 list the details of the 11 models we have experimented with, including 5 CNN
models for image classification (IC), a transformer-based model for neural machine translation (MT),
two versions of the neural collaborative filtering model for recommendation systems, and four BERT

5

https://github.com/petuum/autodist
https://github.com/petuum/autodist
https://github.com/petuum/autodist/tree/master/autodist
https://github.com/petuum/autodist/tree/master/autodist
https://github.com/horovod/horovod/blob/master/docs/autotune.rst
https://github.com/horovod/horovod/blob/master/docs/autotune.rst
https://github.com/tensorflow/examples/blob/master/community/en/docs/deploy/distributed.md
https://github.com/tensorflow/examples/blob/master/community/en/docs/deploy/distributed.md

Model Task Training data bs/gpu #params
ResNet50 [6] IC ImageNet 32 23M

ResNet101 [6] IC ImageNet 32 45M
InceptionV3 [16] IC ImageNet 32 24M

VGG16 [15] IC ImageNet 32 138M
DenseNet121 [8] IC ImageNet 32 8M
Transformer [17] MT WMT’14 ende 5K 62M
NCF-dense [7] CF MovieLens-20Mx16x32 256 122M
NCF-sparse [7] CF MovieLens-20Mx16x32 256 122M
BERT-3L [2] LM Wiki & BookCorpus 32 11M
BERT-6L [2] LM Wiki & BookCorpus 32 36M

BERT-base [2] LM Wiki & BookCorpus 32 110M
BERT-large [2] LM Wiki & BookCorpus 8 340M

Table 1: Models we have experimented with. Their implementations are from the
tensorflow/models repository. IC: image classification, MT: machine translation, LM: language
modeling.

variants for language modeling. Their single-node implementations are from the official open source
repository at https://github.com/tensorflow/models. Their training data, and number of
parameters are listed in Table 1. We use default training settings suggested by MLPerf [11]. The
per-GPU batch size is indicated in Table 1 as well.

It is worth noting that, for the neural collaborative filtering (NCF) model, we follow MLPerf [11]
and use an enlarged version (x16x32) of the model and training set – which expands the
original MovieLens-20M dataset [5] with 16x more users and 32x more movies. Details
can be found at https://github.com/mlperf/training/tree/master/recommendation/
pytorch#getting-the-expanded-dataset. To test the system’s capability, we also experi-
ment with two versions of NCF: NCF-dense, which uses dense tensors to represent the gradients
of embedding variables in the model, and NCF-sparse, which uses sparse tensors (IndexSlices in
TensorFlow) to represent the gradients instead.

Clusters. We focus on GPU clusters since it is the main setup for distributed DL training. During our
research, we have tested on 14 different cluster configurations as listed in Table 2: Cluster A includes
maximally 16 nodes, each equipped with a GeForce TITAN X GPU, an Intel 16-core CPU and 64GB
RAM, interconnected via a 40-Gigabit Ethernet switch; Cluster B, based on AWS, consists of up to
8 node, each node is one of the g3.4xlarge (1x Tesla M60 GPU and 10GbE Ethernet), g3.16xlarge
(4x M60, 25GbE), g4dn.2xlarge (1x NVIDIA T4 GPU and 25GbE Ethernet), g4dn.12xlarge (4x
T4, 50GbE) instance types. Details about the configurations of AWS instances can be found at
https://aws.amazon.com/ec2/instance-types/g4/ and https://aws.amazon.com/ec2/
instance-types/g3/. Due to AWS constraints, they all have 10GbE single-flow bandwidth. On
top of these two clusters, we list all the resource specifications we have experimented with, including
cluster setup, number of GPUs on each cluster node, and bandwidth information, in Table 2.

To avoid confusion, it is worth noting that the setup A2 and B7 in Table 2 correspond to the Cluster
A and Cluster B referred to in the main paper.

9.2 Public Datasets

We have collected a dataset containing nearly 10k data points of {(G,D,S), f}, where G is one of
the DL models in Table 1, D is one of the cluster setups from Table 2, S is randomly sampled strategy
from the proposed strategy space, and f is the groundtruth runtime collected via real distributed
execution.

The dataset contains strategies sampled for all 11 models, ranging from fixed-formed strategies
such as those used in specialized systems, and randomly explored strategies by AutoSync during
the strategy auto-optimization. The data are organized into multiple folders where each folder
corresponds to a domain of (G,D). Hence the dataset used in the main paper is a subset containing
several domains belonging to the entire collected dataset.

6

https://github.com/tensorflow/models
https://github.com/mlperf/training/tree/master/recommendation/pytorch#getting-the-expanded-dataset
https://github.com/mlperf/training/tree/master/recommendation/pytorch#getting-the-expanded-dataset
https://aws.amazon.com/ec2/instance-types/g4/
https://aws.amazon.com/ec2/instance-types/g3/
https://aws.amazon.com/ec2/instance-types/g3/

D Setup GPU distribution Bandwidth spec
A1 16x Cluster A nodes [1] x 16 40GbE
A2 11x Cluster A nodes [1] x 11 40GbE
B1 2x g3.16 [4] x 2 25 GbE
B2 3x g3.16 [4] x 3 25 GbE
B3 4x g3.16 [4] x 4 25 GbE
B4 1x g4dn.12 [4] x 1 50 GbE
B5 2x g4dn.12 [4] x 2 50 GbE
B6 3x g4dn.12 [4] x 3 50 GbE
B7 4x g4dn.12 [4] x 4 50 GbE
B8 8x g4dn.12 [4] x 8 50 GbE
B9 1x g3.4, 1x g3.16 [1, 4] 10/25 GbE

B10 1x g3.16, 1x g4dn.12 [4] x 2 25/50 GbE
B11 2x g3.16, 2x g4dn.12 [4] x 4 25/50 GbE
B12 1x g4dn.2, 1x g4dn.12 [1, 4] 25/50 GbE

Table 2: Cluster specifications we have experimented with, listed with their reference name (D),
setup information (Setup), GPU distribution and bandwidth specifications (Bandwidth spec).

For quick access, we have provided scripts that read G as dataflow graphs in standard TensorFlow
2.0 format, and read the strategies and runtime into json formats. Instructions on how to access the
dataset are provided at https://github.com/petuum/autodist.

10 Simulator Training Dataset and Hyperparameters

For the end-to-end results (Fig.2 in the main paper), we train simulators using runtime data collected
on-the-fly during trials, strictly following the workflow illustrated in Fig.1 of the main paper.

For the ablation studies (Table.1-3), we split pre-collected data at auto-optimization of a specific
domain (e.g., (NCF-dense, A)) into train/val/test at 70%/15%/15%, respectively, and report the
ranking accuracy on the test split (averaged over 3 runs).

Training RNN simulators in all settings use Adam with 1e-3 lr, decayed by 0.3 at the 80th/160th
epoch, for 200 epochs. We clipped the gradient norm to 0.25.

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, and Michael Isard. Tensorflow: A system for
large-scale machine learning. arXiv preprint arXiv:1605.08695, 2016.

[2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[3] Facebook. http://pytorch.org/.

[4] Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil Devanur, Greg
Ganger, and Phil Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training. arXiv
preprint arXiv:1806.03377, 2018.

[5] F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1–19, 2015.

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

[7] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th international conference on world wide web,
pages 173–182, 2017.

7

https://github.com/petuum/autodist
http://pytorch.org/

[8] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[9] Soojeong Kim, Gyeong-In Yu, Hojin Park, Sungwoo Cho, Eunji Jeong, Hyeonmin Ha, Sanha
Lee, Joo Seong Jeong, and Byung-Gon Chun. Parallax: Automatic data-parallel training of
deep neural networks. arXiv preprint arXiv:1808.02621, 2018.

[10] Andreas Krause and Daniel Golovin. Submodular function maximization.

[11] Peter Mattson, Christine Cheng, Cody Coleman, Greg Diamos, Paulius Micikevicius, David
Patterson, Hanlin Tang, Gu-Yeon Wei, Peter Bailis, Victor Bittorf, et al. Mlperf training
benchmark. arXiv preprint arXiv:1910.01500, 2019.

[12] NVIDIA nccl tests. Performance reported by nccl tests. 2018.

[13] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang Lan, Chuan Wu, and
Chuanxiong Guo. A generic communication scheduler for distributed dnn training acceleration.
In Proceedings of the 27th ACM Symposium on Operating Systems Principles, pages 16–29,
2019.

[14] Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in
tensorflow. arXiv preprint arXiv:1802.05799, 2018.

[15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567,
2015.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pages 5998–6008, 2017.

[18] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[19] Guanhua Wang, Shivaram Venkataraman, Amar Phanishayee, Jorgen Thelin, Nikhil Deva-
nur, and Ion Stoica. Blink: Fast and generic collectives for distributed ml. arXiv preprint
arXiv:1910.04940, 2019.

[20] Yuan Yu, Martín Abadi, Paul Barham, Eugene Brevdo, Mike Burrows, Andy Davis, Jeff Dean,
Sanjay Ghemawat, Tim Harley, Peter Hawkins, et al. Dynamic control flow in large-scale
machine learning. In Proceedings of the Thirteenth EuroSys Conference, page 18. ACM, 2018.

8

