A Proofs

A.1 Learning D,,,;-random networks is harder than SCAT;;‘d (Dmat)

Theorem A.1. Let Dy, be a distribution over matrices. Assume that there is an algorithm that
learns Dy, at-random neural networks where the distribution D is supported on A C R"™. Then, there
is a fixed d and an efficient algorithm that solves SCAT;?d (Dmat)-

Proof. Let L be an efficient learning algorithm that learns Dy, ,¢-random neural networks where the
distribution D is supported on A. Let m(n) be such that £ uses a sample of size at most m(n). Let
p(n) = 9m(n) +n. Let S = {(x;,5:) ' € (R" x {0,1})P(™ be a sample that is contained in A.
We will show an efficient algorithm A that distinguishes whether S is scattered or Dy, ,¢-realizable.
This implies that the theorem holds for d such that n¢ > p(n).

Given S, the algorithm A learns a function A : R™ — R by running £ with an examples oracle that
generates examples by choosing a random (uniformly distributed) example (x;,y;) € S. We denote
ls(h) = ﬁ Zie[p(n)] (h(x;) — yi)2. Now, if £g(h) < 1—10, then A returns that S is D, -realizable,
and otherwise it returns that it is scattered. Clearly, the algorithm A runs in polynomial time. We
now show that if S is Dy, a¢-realizable then A recognizes it with probability at least 2, and that if S is
scattered then it also recognizes it with probability at least %.

Assume first that .S is D,y ,¢-realizable. Let Dg be the uniform distribution over x; € R™ from S. In
this case, since Dg is supported on A, we are guaranteed that with probability at least % over the

2§1

choice of W and the internal randomness of £, we have {g(h) = Ex.pg |(h(x) — hw (X)) i

Therefore, the algorithm returns “D,,,-realizable".

Now, assume that S is scattered. Let o : R™ — R be the function returned by £. Let A’ : R™ — {0,1}
be the following function. For every x € R™, if h(x) > 3 then A’(x) = 1, and otherwise ’(x) = 0.
Note that for every (x;, ;) € S, if b/ (x;) # y; then (h(x;) — y;)* > 5. Therefore, £5(h) > 10s(R).
Let C' C [p(n)] be the set of indices of S that were not observed by L. Note that given C, the events
{(x;) = yi}iec are independent from one another, and each has probability . By the Hoefding

bound, we have that //(x;) # y; for at most 3 — n(m) fraction of the indices in C' with probability

n
at most

n n n

exp <—2C““(”>> — exp (-2(8m(") +n) ln(")> < exp(~2In(n)) = — .

Thus, 7' (x;) # y; for at least £ —o,,(1) fraction of the indices in C with probability at least 1 —o,,(1).
Hence,

(s> qesiny > 1 1 (; _ on(n) — (; - on<1>) >1 ).

Therefore, for large enough n, with probability at least % we have £g(h) > 75, and thus the algorithm
returns “scattered". O

A2 SCATZ,(HZ™ . )is RSAT-hard

sign—cnn

For a predicate P : {+1}% — {0, 1} we denote by CSP(P, ~P) the problem whose instances are
collections, J, of constraints, each of which is either P or —P constraint, and the goal is to maximize
the number of satisfied constraints. Denote by CSP;??S) (P,—P) the problem of distinguishin

satisfiable from random formulas with n variables and m(n) constraints. Here, in a random formula,
each constraint is chosen w.p. % to be a uniform P constraint and w.p. % a uniform —P constraint.

We will consider the predicate T 5 : {0, 1}5M — {0, 1} defined by

TK7M(Z) = (Zl \/...\/ZK) N (ZK+1 \/...\/ZQK)/\.../\ (2(1\471)K+1 \/...\/ZMK) .

*Asin CSPE?S) (P), in order to succeed, and algorithm must return “satisfiable" w.p. at least 2 — 0,,(1) on

every satisfiable formula and “random" w.p. at least % — 0n (1) on random formulas.
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We will need the following lemma from [[17]. For an overview of its proof, see Appendix B}
Lemma A.1. [I7] Let g(n) = w(log(n)) with ¢(n) < foa(my and let d and K be fixed integers. The
problem CSPrand(SATK) can be efficiently reduced to the problem CSPﬁf}i“,dl (Tk ,q(n)» Tk q(n))-

In the following lemma, we use Lemmain order to show RSAT-hardness of SCAT?, (Hien—cnn)
with some appropriate m and A.

Lemma A.2. Let n = (n' + 1)log®(n/), and let d be a fixed integer. The problem
SCAT4, (ko8 (n )), where A is the ball of radius log®(n') in R", is RSAT-hard.

sign—cnn

Proof. By Assumptlon | there is K such that CSPEandM (SAT) is hard, where the K-SAT for-
mula is over n’ variables. Then, by Lemman the problem CSP“?)(]H (T 10g2(n7)> "T 10g? (n))

is also hard. We will reduce CSP{us1 (T og? (n/)> "Ik og? (n)) 10 SCAT( s (H;égg_i(:rll))
2 ’
Since ()% > n, it would imply that SCAT, (%1% (")} is RSAT-hard.

sign—cnn

Let J = {Cy,.. C(n/ a+1} be an input for CSPmn ya1 (T log2 (nys "L log? (ny)-  Namely,
each constraint C is either a CNF or a DNF formula Equivalently, J can be written as
J' ={(CL,y1): -, (Cl a1, Ynryarr )} where for every 4, if C; is a DNF formula then Cj = C;
and y; = 1, and if C; is a CNF formula then C is the DNF obtained by negating C;, and y; = 0.
Given J’ as above, we encode each DNF formula C (with log2(n’ ) clauses) as a vector x; € R"™
such that each clause [(a1,71), ..., (ak,ik)] in C (a signed K-tuple) is encoded by a vector
z = (21,...,2n+1) as follows. First, we have z,,11 = —(K — 1). Then, forevery 1 < j < K we
have z;; = «;, and for every variable [ that does not appear in the clause we have z; = 0. Thus,
for every 1 < 1 < n/, the value of z; indicates whether the [-th variable appears in the clause as a
positive literal, a negative literal, or does not appear. The encoding x; of C/ is the concatenation of
the encodings of its clauses.

Let S = {(x1,41); - - - » (X(nrya+1, Y(nryat+1) }. If J is random then S is scattered, since each constraint
C; is with probability % a DNF formula, and with probability % a CNF formula, and this choice is
independent of the choice of the literals in C;. Assume now that J is satisfiable by an assignment
Ve {£1}". Letw = (1,1) € {#1}"'+1. Note that S is realizable by the CNN h”, with log?(n’)
hidden neurons. Indeed, if z € R +1 is the encoding of a clause of Cg ,then (z, w) = 1 if all the K
literals in the clause are satisfied by 1), and otherwise (z, w) < —1. Therefore, hl, (x;) = v;.

Note that by our construction, for every i € [(n')4*!] we have for large enough n’

Ixill = /log? () (K + (K —1)?) < log(n') - K < log(n').

A.3 Hardness of learning random fully-connected neural networks

Let n = (n' + 1)log?(n’). We say that a matrix M of size n x n is a diagonal-blocks matrix if

B o Bllogg(n’)
M= : - :
Blogz(n/)l o BlogQ(n’) logZ(n')

where each block B is a diagonal matrix diag(zij e z;J, 41)- Forevery 1 <i < n'+1let
S; = {i+j(n'+1):0<j<log*(n') —1}. Let Mg, be the submatrix of M obtained by selecting
the rows and columns in S;. Thus, Mg, is a matrix of size log?(n’) x log®(n’). For x € R" let
Xg, € RI°5” (") be the restriction of x to the coordinates S;.

Lemma A.3. Let M be a diagonal-blocks matrix. Then,

smin(M> Z 1§?§1i7§+1 Smin(MSi> .
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Proof. For every x € R™ with ||x|| = 1 we have

IMx|* = > IMsxs P> > (smn(Ms,) |xs,])?
1<i<n/+1 1<i<n/+1
. 2 2 . 2 2
> , A 0% = ‘ »
> i Gun0) Y sl = (i () I
1<i<n/+1
_ . _ 2
= i (smin(Ms,))” -
HCHCC, Smin(M) Z minlgign’—&-l Smin(MS,i)- 0
A.3.1 Proof of Theorem[3.1]
Let M be a diagonal-blocks matrix, where each block B is a diagonal matrix diag(zij N z:f, 1)

Assume that for all 7, j, [ the entries zlij are i.i.d. copies of a random variable z that has a symmetric
distribution D, with variance o2. Also, assume that the random variable 2z’ = f is b-subgaussian for
some fixed b.

Lemma A 4.
g

Pr (smm(M) < n/10g2(n’)) = on(1).

Proof. Let M’ = %M . By Lemma we have
Smin(M') > min  spin(Mg,) . (1)

T 1<i<n/41
Note that for every i, all entries of the matrix Mg are i.i.d. copies of 2.
Now, we need the following theorem:

Theorem A.2. [42] Let & be a real random variable with expectation 0 and variance 1, and assume
that £ is b-subgaussian for some b > 0. Let A be an n X n matrix whose entries are i.i.d. copies of €.
Then, for every t > 0 we have

t

; < — 1 < T
Pr <smm(A) < \/ﬁ> <Ct+c

where C' > 0 and ¢ € (0, 1) depend only on b.

By Theorem since each matrix Mg, is of size log?(n') x log?(n'), we have for every i € [n’ 4 1]
that '

Pr <5111in(MZ5'i) < - ) < Ct+ ClogQ(n/) .

log(n’)
we have

By choosing t = #g(n,)

1

2 /
< + ¢los™ ()
n' logQ(n’)) ~ n'log(n’)

Pr <5min(M,3/3‘i) S
Then, by the union bound we have

+ 610g2(n/)(n/ + 1) _ On(l) .

. . ! <
Pr (1<§21nr}+1 (5min(Mg,)) <

1 ) C(n'+1)
n'log®(n’)) — n'log(n’)
Combining this with sy, (M) = 0 - $min (M) and with Eq. (I} we have

Pr(sun00) £ 5 ) = Pr(sn00) < )

n/log?(n’) n’log®(n’)

1
< P i min M/‘ SV = n .
< Pr (15217{}“ ($min(Mg,)) < " logz(n’)> on(1)



Lemma A.5. Let D, be a distribution over R7x10g* () such that each entry is drawn i.i.d. from
D.. Note that a Dpai-random network hyy has log®(n') = O(log®(n)) hidden neurons. Let d be a

fixed integer. Then, SCAT2,(Dyyat) is RSAT-hard, where A is the ball of radius "l%z(n) in R™.

Proof. By Lemma the problem SCATf; (’Hn’logz(n,)) where A’ is the ball of radius log®(n’)

sign—cnn
in R, is RSAT-hard. We will reduce this problem to SCAde (Dmat). Given a sample S =
{(xi,vi) ?:dl € (R x {0,1})"" with ||x;]| < log?(n’) for every i € [n%], we will, with probability
1 — 0,(1), construct a sample .S’ that is contained in A, such that if S is scattered then S’ is scattered,

201
and if S is H;gﬁg_ ") realizable then S is Dypay-realizable. Note that our reduction is allowed to
fail with probability o,,(1). Indeed, distinguishing scattered from realizable requires success with
probability % — 0,,(1) and therefore reductions between such problems are not sensitive to a failure
with probability o, (1).

Assuming that M is invertible (note that by Lemmait holds with probability 1 — 0, (1)), let
S ={(x},y1), -, (x4, Ypna)} where for every i € [n?] we have x; = (M ")~ 'x;. Note that if S
is scattered then S’ is also scattered.

Assume that S is realizable by the CNN A, with w € {:I:l}”'H. Let W be the matrix of size
n x log?(n') such that hyy = hZ. Thus, W = (w', ..., w'& (")) where for every i € [log?(n’)]
we have (W(;_ 1)y 1y415 - -+ Wi 1)) = W, and wj = 0 for every other j € [n]. Let W' = MW.
Note that S’ is realizable by hyy. Indeed, for every i € [n?] we have y; = h%(x;) = hy (x;), and
WTix; =WTMT(MT)"1x; = (W) Tx/. Also, note that the entries of W’ are i.i.d. copies of z.
Indeed, denote M " = (v!,...,v™). Then, for every line i € [n] we denote i = (b—1)(n’ +1) +r,
where b, r are integers and 1 < 7 < n’ + 1. Thus, b is the line index of the block in M that correspond
to the ¢-th line in M, and r is the line index within the block. Now, note that

7 ] 7 7 bj bj
W= (v wl) = <(v(j_1)(n/+1)+1, o ,vj(,,/,ﬂ)) W) = ((BY,....BY ,.).w)
= BY.w,.=2w,.

/

Since D, is symmetric and w,. € {£1}, we have W/ i ~ D, independently from the other entries.

Thus, W' ~ Dyai. Therefore, hyy is a Dyat-random network.
By Lemma we have with probability 1 — 0,,(1) that for every i € [n9],
1 1

Ty\—1 Ty\—1
||X§|| = H(M ) X¢H < Smax ((M ) ) x|l = m lIx:l| = m [l |l
/ 207 2
< " log (n)logz(n’) < nlog™(n)
g

Finally, Theorem [3.1|follows immediately from Theorem[A.T]and the following lemma.

Lemma A.6. Let Dy, be a distribution over R™*™ with m = O(log® (7)), such that each entry is
drawni.i.d. fromD,. Let d be a fixed integer, and let € > 0 be a small constant. Then, SCAT%‘d (Drnat)
is RSAT-hard, where A is the ball of radius % inR™,

Proof. For integers k, [ we denote by Dﬁ;;t the distribution over R¥*! such that each entry is drawn
iid. from D,. Let ¢ = 2, and let i = n°. By Lemma the problem SCAT<... (D7) is RSAT-

mat

hard, where m = O(log®(n)), and A’ is the ball of radius "1%2(") in R™. We reduce this problem to
SCATZ. (DY), where A is the ball of radius - in R™. Note that m = O(log?(n)) = O(log”(#)).

mat
Let S = {(xi,:) ?:1 € (R™ x {0,1})"" with ||x;]| < ”1%2("). For every i € [n°], let x; € R™
be the vector obtained from x; by padding it with zeros. Thus, x; = (x;,0,...,0). Note that

ned = ad. Let 8" = {(x},y;)},. If S is scattered then S is also scattered. Note that if S is
realizable by hyy then S’ is realizable by hyy where W' is obtained from W by appending 7 — n
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arbitrary lines. Assume that S is D]} -realizable, that is, W ~ D["%. Then, S’ is realizable by hy/

mat *
where W’ is obtained from W by appending lines such that each component is drawn i.i.d. from D,

and therefore, S’ is D" -realizable. Finally, for every i € ¢ we have

oo

log® e log(ie) _
Il =l < o) - AELOE L) BF

g g

A.3.2 Proof of Theorem[3.2]

Let Dyat be a distribution over R™*™ with m = 1og2(n), such that each entry is drawn i.i.d. from
N(0,1). Let d be a fixed integer. By Lemma we have that SCAT, (Dt ) is RSAT-hard, where
A is the ball of radius n¢ in R™. Let (A(0,1))™ be the distribution over R™ where each component is
drawn i.i.d. from N(0, 1). Recall that (M (0, 1))™ = N(0, I,,) ([46]). Therefore, in the distribution
Dinat» the columns are drawn i.i.d. from A (0, I,,). Let D/, be a distribution over R"*™, such that
each column is drawn i.i.d. from N'(0, X). By Theoremﬂ we need to show that SCATZ ( Do)
is RSAT-hard, where A’ is the ball of radius m in R™. We show a reduction from SCAT”d( Dinat)

to SCATA,(DL,....).

LetS = {(x;,y:) ;L:dl € (R"x{o0, 1})"d be a sample. Let X = UAU " be the spectral decomposition
of ¥, and let M = UAz. Recall that if w ~ N(0, I,,) then Mw ~ N(0, X) ([46]). For every i €
[nd],letx} = (M ")~ 'x;, andlet S’ = {(x},91), ..., (X4, Yna)}. Note that if S is scattered then S’
is also scattered. If S is realizable by a D, ,¢-random network Ay, then let W’ = M. Note that S’
is realizable by hyy . Indeed, for every i € [n?] we have (W')Tx, = WTMT(M ") 1x; = WTx,.
Let W = (wy,...,Wy,) and let W' = (w],...,w/,). Since W' = MW then w) = Mw; for
every j € [m]. Now, since W ~ Dyat, We have for every j that w; ~ N(0, I,,) (i.i.d.). Therefore,
w;- = Mw,; ~N(0,X), and thus W' ~ Hence, S’ is D’ . -realizable.

mat mat

We now bound the norms of the vectors x/ in S’. Note that for every i € [n?] we have

Ixill = ([T x| = [UAExs

Ve

HX’L” < >‘m1n

mln

A.3.3 Proof of Theorem[3.3]

Let n = (n’ +1)log?(n’), and let M be a diagonal-blocks matrix, where each block B% is a diagonal
matrix diag(zy’,..., 27, ;). Wedenote z/ = (zy,..., 2 ), and 27 = (z",. .. 708" ()7 ¢
R”. Note that for every j € [log*(n’)], the vector z/ contains all the entries on the diagonals of
blocks in the j-th column of blocks in M. Assume that the vectors z’ are drawn i.i.d. according to
the uniform distribution on 7 - S*~1.
Lemma A.7. For some universal constant ¢’ > 0 we have

PT <5min(M) S

cr

m) =on(l)-

Proof. Let M’ = @M . For every j € [log?(n’)], let Z € R™ be the vector that contains all the
entries on the diagonals of blocks in the j-th column of blocks in M’. That is, z/ = @zj . Note that
the vectors z’ are i.i.d. copies from the uniform distribution on y/n - S*~1. By Lemma we have
Smin(M') >  min  Spmin (Mg ) . 2
mm( ) - 1<i<n'+1 mm( Si) ( )
Note that for every i, all columns of the matrix Mg are projections of the vectors z’ on the S;
coordinated. That is, the j-th column in My is obtained by drawing Z’ from the uniform distribution
on v/n - S"~! and projecting on the coordinates S;.
We say that a distribution is isotropic if it has mean zero and its covariance matrix is the identity. The
covariance matrix of the uniform distribution on S”~! is 1 = I,,. Therefore, the uniform distribution on
/1 - S~ 1 is isotropic. We will need the following theorem
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Theorem A.3. [Il] Let m > 1 and let A be an m x m matrix with independent columns drawn from
an isotropic log-concave distribution. For every € € (0,1) we have

where ¢ and C are positive universal constants.

We show that the distribution of the columns of My is isotropic and log-concave. First, since the

uniform distribution on /7 - S~ is isotropic, then its projection on a subset of coordinates is also
isotropic, and thus the distribution of the columns of M éi is isotropic. In order to show that it is
log-concave, we analyze its density. Let x € R”™ be a random variable whose distribution is the
projection of a uniform distribution on S~ on k coordinates. It is known that the probability density
of x is (see [25])

_ T
o) = s\ 2

where >, ..., 27 < 1. Recall that the columns of M s, are projections of the uniform distribution

over \/n - S"~1, namely, the sphere of radius \/n and not the unit sphere. Thus, let X’ = /nx. The
probability density of x’ is

Fo (@2 = (\/%)f(jﬁjﬁ>

n—=k 1
2
1 I'(n/2) -y ) \°
nk/2 T((n —k)/2)mk/2 2\ ’
where 3, ;. (#7)? < n. We denote
1 I'(n/2)
k) = . .
9(717 ) nk/2 F((n . k)/2)7rk/2
By replacing k with log®(n’) we have
n-log®(n’)
2

1
fx (m’l, e ,x{ogg(n,)) = g(n,log2(n/)) 1—— Z (q;;)Z

1<i<log?(n’)
Hence, we have
/ /
log fxr (23, -, $10g2(n/))

log (g(n,logQ(n’))) + (nlc;g(m — 1> log | 11— % Z (z4)?

1<i<log?(n’)

Since %2("/) — 1 > 0, we need to show that the function
1 2
log [1—— % () 3)
1<i<log?(n’)
(where 37y ;<1002 (n) (2})? < ) is concave. This function can be written as h(f (21, . . ., Tiog2(n7)))
where

h(z) =log (1 + ),
1
f(x’l,...,xgogz(n,)):_ﬁ Z ()2 .

1<i<log?(n’)
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Recall that if h is concave and non-decreasing, and f is concave, then their composition is also
concave. Clearly, h and f satisfy these conditions, and thus the function in Eq.[3]is concave. Hence
fx 1s log-concave.

We now apply Theorem on M ZSH , and obtain that for every € € (0, 1) we have
ce 2
Pr (Smin(M./S'i) < 1og(n’)> < Clog™(n')e .

By choosing € = we have

1
n’ log3(n’)

C
Pr( smin (Ml ) < —< < .
( M) < n/log4<n'>> = wlog(n)

Now, by the union bound

Pr( min  (Smin(M3,)) < —— )g O 1) =on(l).

1<i<n’/+1 n' log4(n’) n' 10g(’l’L/)

Combining this with sy, (M) = ﬁsmin(M ") and with Eq.[2} we have

Ccr C
P miIl M < - = A, < - P IIlin M/ < - 1, <
( (M) < \/ﬂn’log“(n’)) ( ( >—nflog4<n'>>

c
< P i min M/v S ——a ) =oul).
< T <1<Zn<11nl}+1(5 ( s,L)) = 10g4(n’)> 0n (1)

Note that

cr cr cr cr

= > ,
vn-nlogh(n')  Vn' +1-n/log’(n’) ~ 2v/n’ -n/log®(n’)  V/n/ - n'log®(n/)
where ¢’ = §. Thus,

Pr (smm<M> < M) < Pr <smm<M> < M) —0a(1).
O

Let Dy, be a distribution over R7xlog*(n') guch that each column is drawn i.i.d. from the uniform
distribution on 7 - S*~!. Note that a Dy,,-random network Ay has log?(n’) = O(log?(n)) hidden
neurons. Now, Theorem [3.3|follows immediately from Theorem[A.T|and the following lemma.

Lemma A.8. Let d be a fixed integer. Then, SCAde (Drnat) is RSAT-hard, where A is a ball of
radius O (M) in R™,

T

Proof. By Lemma the problem SCAT?; (H”’logZ(n,)) where A’ is the ball of radius log?(n’)

sign—cnn
in R”, is RSAT-hard. We will reduce this problem to SCAT;?d (Dmat). Given a sample S =
{(xi, i) ?:dl € (R™ x {0, 1})"d with ||x;|| < log?(n’) for every i € [n%], we will, with probability
1 —0,(1), construct a sample .S’ that is contained in A, such that if S is scattered then S’ is scattered,

2 ’
and if S is Hgglﬁfi C(:n)-realizable then S’ is Dy, a¢-realizable. Note that our reduction is allowed to

fail with probability o,,(1). Indeed, distinguishing scattered from realizable requires success with
probability % — 0y,(1) and therefore reductions between such problems are not sensitive to a failure
with probability o,,(1).

Assuming that M is invertible (by Lemma it holds with probability 1 — 0,(1)), let S =
{(x4, 1), -, (X4, yna)} where for every i we have x; = (M ")~ 'x;. Note that if S is scattered
then S’ is also scattered.

Assume that S is realizable by the CNN A7 with w € {+1}"' 1. Let W be the matrix of size
n x log?(n') such that hyy = A7 Thus, W = (w!,..., w'°s (")) where for every i € [log?(n’')]
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we have (Wzifl)(n’+1)+1’ . ,wg(n,ﬂ)) = w, and w’ = 0 for every other j € [n]. Let W' = MW.

Note that S’ is realizable by hyy. Indeed, for every i € [n?] we have y; = h%(x;) = hw (x;), and
Wix; =WTMT(M")"x; = (W) Tx.. Also, note that the columns of W’ are i.i.d. copies from
the uniform distribution on 7 - S* . Indeed, denote M T = (vl, ..., V™). Then, for every line index
1 € [n] wedenote i = (b— 1)(n’ + 1) + r, where b, r are integers and 1 < r < n/ + 1. Thus, b is the
line index of the block in M that correspond to the ¢-th line in M, and r is the line index within the
block. Now, note that

o | . . .
W, (vi wi) = <(v;jfl)(n,+1)+1,...,v;.(n,ﬂ)) w) = ((BY,....BY )W)

bj bj
= Bl -w,=2z" w,.

Since w,. € {+1}, and since the uniform distribution on a sphere does not change by multiplying a
subset of component by —1, then the j-th column of W’ has the same distribution as z’, namely, the
uniform distribution over r - S*~!. Also, the columns of W’ are independent. Thus, W’ ~ Dy.¢,
and therefore hyy is a Dy, -random network.

By Lemma[A.7] we have with probability 1 — o0,,(1) that for every 4,

1
: = MT - i|| < Smax MT -t il = il = i
[l (M) 75| < S (M) 71) 1] s (M) [l D [l
! / 5 i
- nﬁ{og(n) Nog2(n) < nfli)g()
cr cr
ThuS, ||X;H _ O (nflig (’n)> D

A.4 Hardness of learning random convolutional neural networks
A.4.1 Proof of Theorem 3.4

Theorem [3.4] follows immediately from Theorem [A.T]and the following lemma:
Lemma A.9. Let d be a fixed integer. Then, SCAT?, (D™ +1 n) is RSAT-hard, where A is the ball

of radius lof(( ) in R™

Proof. By Lemma | the problem SCATZ, (Hn.’logg("/)) where A’ is the ball of radius log?(n/)

sign—cnn
in R”, is RSAT-hard. We will reduce this problem to SCATSJ (D?l“, n). Given a sample S =
{(xi, i) ?:dl € (R™ x {0, 1})"d with ||x; || < log?(n’) for every i € [n%], we will, with probability
1 —0,(1), construct a sample S’ that is contained in A, such that if .S is scattered then S’ is scattered,

and if S is Hgglﬁg C(:n)-reahzable then S’ is D7 "+1_realizable. Note that our reduction is allowed to

fail with probablhty on(1). Indeed, distinguishing scattered from realizable requires success with
probability 3 < — 0 (1) and therefore reductions between such problems are not sensitive to a failure
with probability o,,(1).

Letz = (z1,..., 2n4+1) Where each z; is drawn i.i.d. from D,. Let M = diag(z) be a diagonal
matrix. Note that M is invertible with probability 1 — 0, (1), since for every i € [n’ + 1] we have
Pra..p.(zi = 0) < Pro,p.(|zi| < f(n')) = o(& ) Now, for every xZ from S, denote x; =
(X3, -+, X g2(,s)) Where for every j we have x} € R" o Letx) = (M~'xi, ..., Mt X og2(nr))>
andlet S = {(x},y1),...,(x/,4,yna)}. Note that if S is scattered then S’ is also scattered. If S is
realizable by a CNN Ay € H;gﬁgjc(:];), then let w’ = Mw. Note that S’ is realizable by h3,.. Indeed,
for every i and j we have (w', M ~'x}) = w M TM~'x} = wT MM~'x} = (w,x!). Also, note
that since w € {#1}" ™! and D, is symmetric, then w’ has the distribution D 1, and thus h?, is
a D *+!-random CNN.
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The probability that z ~ D2+ has some component z; with |z;| < f(n'),is atmost (n'+1)-0(-%) =
0,,(1). Therefore, with probability 1 — 0,,(1) we have for every i € [n?] that

) 1 S\ 2 1 2
KIP = X el Y (Gl g X Ik
1<j<log?(n’) ’ 1<j<log?(n’) f) T (Flw))? 1<j<log?(n’) ’
B 1 2 log*(n)
= Toe = Ganye
Thus, [lx]]| < 5022 =

A.4.2 Proof of Theorem[3.3]

Assume that the covariance matrix ¥ is of size (n/ 4+ 1) x (n/ 4+ 1), and let n = (n’ 4 1) log?(n/).
Note that a (0, X2)-random CNN A7 has log?(n’) = O(log®(n)) hidden neurons. Let Dy be a
distribution over R™ *! such that each component is drawn i.i.d. from A/ (0,1). Let d be a fixed
integer. By Lernmaand by choosing f(n’) = ﬁg(n’)’ we have that SCAT, (Dyec, 1) is RSAT-
hard, where A is the ball of radius n’ log®(n’) < nlog(n) in R™. Note that Dyec = N(0, I,y41)
([46]). By Theorem we need to show that SCAT;‘; (N(0,X),n) is RSAT-hard, where A’ is
the ball of radius A2 nlog(n) in R™. We show a reduction from SCAT#,(N(0, I, 11),n) to
SCAT,(N(0,%),n).

Let S = {(xi,yi)}?:dl e (R" x {0, 1})”d be a sample. For every x; from S, denote x; =
(X1, X (n)) Where for every j we have X, € R™*1 Let ¥ = UAUT be the spectral
decomposition of ¥, and let M = UAz. Recall that if w ~ N(0, I,,41) then Mw ~ N(0,X)
([46]). Letx; = (MT")"1xt, ..., (MT)*lxliogz(n,)), and let S = {(x},y1),..., (X0, yna)}.
Note that if S is scattered then S’ is also scattered. If S is realizable by a A'(0, I,,»1)-random
CNN A%, then let w' = Mw. Note that S’ is realizable by hZ,.. Indeed, for every 7 and j we have
(W, (MT)™!xi) =w MT(MT)"'x} = (w,x%). Since w' = Mw ~ N (0, %), the sample 5" is
N (0, X)-realizable.

We now bound the norms of x/ in S’. Note that for every i € [n¢] we have

. 112 112
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1<j<log?(n’) 1<j<log?(n’) 1<j<log?(n’)
< A7% 7 2_A_1 7 2_)\—1 .2
— Z minxj — ‘Ymin Z ij || — “‘min HXZH .

1<j<log?(n’) 1<j<log?(n’)

1 1
Hence, [|x[| < A, [l < Ayinlog(n).

A.4.3 Proof of Theorem 3.6

Let n = (n/ 4 1) log?(n’). Let Dy be the uniform distribution on 7 - . Note that a Dyec-random
CNN A7 has log®(n') = O(log?(n)) hidden neurons. Let d be a fixed integer. By Theorem
we need to show that SCAT?, (Dyec, n) is RSAT-hard, where A is the ball of radius Y15 jn Rm.

By Lemma the problem SCAT?; (H:lglggi(:;)) where A’ is the ball of radius log®(n’) in R™,
is RSAT-hard. We reduce this problem to SCAT?, (Dycc, 7). Given a sample S = {(x;, yi)}?:dl €
(R™ x {0,1})"" with ||x;]| < log?(n’) for every i € [n9], we construct a sample S’ that is contained
in A, such that if S is scattered then S’ is scattered, and if S is H
D, cc-realizable.

n,log?(n’)

. ,
sign_cnn ~Tealizable then S” is

Let M be a random orthogonal matrix of size (n’ + 1) x (n’ + 1). For every i € [n? denote

x; = (xt,... 7xf0g2(n,)) where for every j we have x; € R"™*1, For every i € [n%] let x|, =

20



(L arxd, V”T’+1foog2(n,)), and let 8" = {(x,41),...,(X/a,yna)}. Note that if S is

2007
scattered then S’ is also scattered. If S is realizable by a CNN A7, € H'° (") then let w' =

sign—cnn °

Mw. Note that S’ is realizable by hZ,. Indeed, for every i and j we have

—_r

vn'+1
v n! 1 ) v n'! 1 ) )
(w', L—"_MX3> =w' \/%MT mt Mx; = (w,x;) .
r n r

Also, note that since ||w|| = v/n’ + 1 and M is orthogonal, w’ is a random vector on the sphere of
radius r in R”/“, and thus A}, is a Dyec-random CNN.

Since M is orthogonal then for every i € [n?] we have
2 n +1

D S

1< <log?(n’)
n +1

2
= r2 ’ Hxi” <

2
i.

J

n +1 2
LS )

1<j<log?(n’)

(n' 4+ 1)log*(n/) < nlog?(n) .

r2 r2

Hence ||x}]| < M.

B From CSP™M(SAT k) to CSP™ (T y(ny, =T q(my) (A7)

‘We outline the main ideas of the reduction.

First, we reduce CSP™%"!(SAT k) to CSP™%%, (T ,q(n))- This is done as follows. Given an instance

nd
J ={Cy,...,Ca} to CSP(SATg), by a simple greedy procedure, we try to find n¢~! disjoint
subsets J7, ..., J;L 41 C J, such that for every t, the subset .J] consists of ¢(n) constraints and

each variable appears in at most one of the constraints in .J;. Now, from every .J; we construct a
Tk, q(n)-constraint that is the conjunction of all constraints in J{. If J is random, this procedure will
succeed w.h.p. and will produce a random T ,(,,)-formula. If J is satisfiable, this procedure will
either fail or produce a satisfiable T 4(,)-formula.

rand

Now, we reduce CSP}3™ (T 4(n)) to CSP;%“,dl (Tk,q(n)> Tk q(ny)- This is done by replacing
each constraint, with probability %, with a random — P constraint. Clearly, if the original instance
is a random instance of CSPZ%H_% (T ,q(n))» then the produced instance is a random instance of
CSP:ﬁ,",dl (T ,q(n)> Tk ,q(n))- Furthermore, if the original instance is satisfied by the assignment
¥ € {£1}", the same v, w.h.p., will satisfy all the new constraints. The reason is that the probability
that a random —T' 4(,,)-constraint is satisfied by ¢ is 1 — (1 — 27K )q(n), and hence, the probability

that all new constraints are satisfied by ¢ is at least 1 — n?=! (1 — 27K )q(n). Now, since g(n) =
w(log(n)), the last probability is 1 — 0, (1).

For the full proof see [17]].

C Improving the bounds on the support of D in the convolutional networks

We show that by increasing the number of hidden neurons from O(log?(n)) to O(n) we can improve
the bounds on the support of D. Note that our results so far on learning random CNNs, are for CNNs
with input dimension 7 = O(tlog?(t)) where t is the size of the patches. We now consider CNNs
with input dimension 7 = ¢ for some integer ¢ > 1. Note that such CNNs have t°~! = O(7) hidden
neurons.

Assume that there is an efficient algorithms £’ for learning D,¢.-random CNNs with input di-
mension 2 = t¢, where Dy, is a distribution over R!. Assume that £’ uses samples with
at most 7 = t°¢ inputs. We show an algorithm £ for learning a Dyc.-random CNN A%
with n = O(tlog®(t)). Let S = {(x1,h?%(x1)),. .., (Xped, K (X,ca))} be a sample, and let
S = {(x], Mg (x1)), - - -, (X],car Py (Xp,ca)) } where for every vector x € R™, the vector x” € R™ is
obtained from x by padding it with zeros. Thus, x’ = (x,0,...,0). Note that n°? > 79, Also, note
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that for every i we have A% (x;) = hZ (x}). Hence, S’ is realizable by the CNN A.. Now, given S,
the algorithm £ runs £’ on S’ and returns an hypothesis h(x) = £L'(S")(x’).

Therefore, if learning Dye.-random CNNs with input dimension 7 = O(tlog®(t)) is hard already
if the distribution D is over vectors of norm at most g(n), then learning Dye.-random CNNs with
input dimension n = t¢ is hard already if the distribution D is over vectors of norm at most

g(n) < g(t?) = g(i2?). Hence we have the following corollaries.

Corollary C.1. Let Dy, be a distribution over R such that each component is drawn i.i.d. from a
distribution D, over R. Let n = t° for some integer ¢ > 1, and let € = %

1. If D, = U([—r,7]), then learning a Dyec-random CNN R, (with O(n) hidden neurons) is
RSAT-hard, already if D is over vectors of norm at most "T‘

2. If D, = N(0,0?), then learning a Dye.-random CNN h%, (with O(n) hidden neurons) is
RSAT-hard, already if D is over vectors of norm at most %

Corollary C.2. Let 3 be a positive definite matrix of size t X t, and let Ay, be its minimal eigenvalue.
Let n = t€ for some integer ¢ > 1, and let € = % Then, learning a N (0, X)-random CNN hY, (with
O(n) hidden neurons) is RSAT-hard, already if the distribution D is over vectors of norm at most

ne

VAmin
Corollary C.3. Let Dy be the uniform distribution over the sphere of radius r in R. Let n = t¢
Sfor some integer c > 1, and let ¢ = % Then, learning a Dyec-random CNN hZ, (with O(n) hidden

neurons) is RSAT-hard, already if the distribution D is over vectors of norm at most *-.

As an example, consider a CNN A7, with n = ¢°. Note that since the patch size is ¢, then each
hidden neuron has ¢ input neurons feeding into it. Consider a distribution Dy, over R? such that
each component is drawn i.i.d. by a normal distribution with o = it This distribution corresponds
to the standard Xavier initialization. Then, by Corollary learning a Dye.-random CNN hi,
is RSAT-hard, already if D is over vectors of norm at most nevt =nt - ni. By choosing an
appropriate ¢, we have that learning a Dye.-random CNN hl, is RSAT-hard, already if D is over
vectors of norm at most /n.

Finally, note that Corollary [3.4 holds also for the values of n and the bounds on the support of D
from Corollaries and

22



