
A Omitted details from Section 3

In this section we present all the technical detailed omitted from Section 3.

Proof of Lemma 3.1. We prove the statement by analysing the Reyleigh quotient of LG with respect
to y, which is defined by y∗LGy

y∗y . Since ‖y‖ = 1, it suffices to analyse y∗LGy. By definition, we have
that
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1

k
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To analyse (5), first of all it is easy to see that
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χ∗jDχj
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=1, (6)

where the third equality follows by the fact that χ∗jχ` = 0 for any 0 6 j 6= ` 6 k − 1. On the other
hand, by definition we have that

1
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‖D1/2χj‖

∗A
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where Re(·) stands for the real part of a complex number. Combining (5), (6) with (7), we have that

y∗LGy

= 1− 1

k
·
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vol(Sj)

√
vol(S`)

·

(
2−

(
2π · (`+ 1− j)
d2π · ke

)2
)
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vol(Sj)

√
vol(S`)

(
`+ 1− j

k
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k
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∑
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√
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(
`+ 1− j

k
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k
·
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2 · w(Sj , Sj−1)√
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√
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6 1− 1

k
·
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2 · w(Sj , Sj−1)√
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= 1− 2

k
·
k−1∑
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vol(Sj)

√
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6 1− 4

k
·
k−1∑
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vol(Sj) + vol(Sj−1)

= 1− 4

k
· θk(G),

where the first inequality follows by the fact that cosx > 1− x2/2 and the last inequality follows by
the inequality 2ab 6 a2 + b2 for any a, b ∈ R. Therefore, we have that

y∗LGy
y∗y

6 1− 4

k
· θk(G).

By the Rayleigh characterisation of eigenvalues we know that

λ1(LG) = min
x∈Cn\{0}

x∗LGx
x∗x

6 1− 4

k
· θk(G),

which proves the first statement of the lemma.

Now we prove the second statement. Let G be a digraph, and S0, . . . , Sk−1 be the k clusters
maximising ΦG(S0, . . . , Sk−1), i.e., ΦG(S0, . . . , Sk−1) = θk(G). Since adding edges that are not
along the path only decreases the value of ΦG, we assume without loss of generality that all the edges
are along the path. For the base case of k = 2, we have that

ΦG(S0, S1) =
w(S0, S1)

vol(S0) + vol(S1)
=

1

2
=
k

4
.

Next, we will prove that θk(G) < k/4 for any k > 3. We set yj , w(Sj , Sj−1) for any 1 6 j 6 k−1,
and have that

ΦG(S0, . . . , Sk−1) =

k−1∑
j=1

w(Sj , Sj−1)

vol(Sj) + vol(Sj−1)

=
y1

2y1 + y2
+

k−2∑
j=2

yj
yj−1 + 2yj + yj+1

+
yk−1

yk−2 + 2yk−1
.
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By introducing y0 = 0 and assuming that all the indices of {yj}j are modulo b k, we can write
ΦG(S0, . . . , Sk−1) as

ΦG(S0, . . . , Sk−1) =

k−1∑
j=0

yj
yj−1 + 2yj + yj+1

.

Next we compute ∂ΦG/∂yj , and have that

∂ΦG
∂yj

=
∂ΦG
∂yj

k−1∑
j=0

yj
yj−1 + 2yj + yj+1

=
∂ΦG
∂yj

(
yj−1

yj−2 + 2yj−1 + yj
+

yj
yj−1 + 2yj + yj+1

+
yj+1

yj + 2yj+1 + yj+2

)
= − yj−1

(yj−2 + 2yj−1 + yj)
2 +

yj−1 + yj+1

(yj−1 + 2yj + yj+1)
2 −

yj+1

(yj + 2yj+1 + yj+2)
2 .

Notice that, when all the yj(0 6 j 6 k − 1) equal to the same non-zero value, it holds that
∂ΦG/∂yj = 0 for any j, and θG(S0, . . . , Sk−1) = k/4. Moreover, it’s easy to verify that k/4 is an
upper bound of θG. Since we effectively assume that y0 = 0, which cannot be always equal to all of
the y1, . . . , yk−1, we have that θG(S0, . . . , Sk−1) < k/4.

Proof of Theorem 3.2. We first prove the first statement. We write y as a linear combination of the
eigenvectors of LG by

y = α1f1 + · · ·+ αnfn
for some αi ∈ C and fi ∈ Cn, and define f̃1 by f̃1 , α1f1. By the definition of the Rayleigh
quotient for Hermitian matrices we have that

y∗LGy
‖y‖

= (α1f1 + · · ·+ αnfn)∗LG(α1f1 + · · ·+ αnfn)

= ‖α1‖2λ1(LG) + · · ·+ ‖αn‖2λn(LG)

> ‖α1‖2λ1(LG) + (‖α2‖2 + · · ·+ ‖αn‖2)λ2(LG)

> (1− ‖α1‖2)λ2(LG),

where the first inequality holds by the fact that λ1(LG) 6 . . . 6 λn(LG) and the second inequality
holds by the fact that ‖α2‖2 + · · ·+ ‖αn‖2 = 1− ‖α1‖2. We can see that∥∥∥y − f̃1

∥∥∥2

= ‖α2‖2 + · · ·+ ‖αn‖2 = 1− ‖α1‖2 6
1

λ2
· y
∗LGy
‖y‖

6
1

γk(G)
.

Setting α = α1 proves the first statement.

Next we prove the second statement. By the relationship between f1 and f̃1, we write

f1 = β1f̃1,

where β1 , 1/α1 is the multiplicative inverse of α1. Then, we define ỹ as
ỹ = β1y = β1 (α1f1 + · · ·+ αnfn) = f1 + β1(α2f2 + · · ·+ αnfn),

and this implies that

‖f1 − ỹ‖2 = ‖β1 (α2f2 + · · ·+ αnfn)‖2 = β1 ·

 n∑
j=2

‖αj‖2
 · β1 =

1

‖α1‖2
(

1− ‖α1‖2
)

6
1

‖α1‖2 · γk(G)
. (8)

Since 1− ‖α1‖2 6 1/γk(G) implies that

‖α1‖2 >
γk(G)− 1

γk(G)
,

we can rewrite (8) as

‖f1 − ỹ‖2 6
1

γk(G)− 1
,

and therefore setting β = β1 proves the second statement.
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B Omitted details from Section 4

In this section we present all the technical detailed omitted from Section 4.

Proof of Lemma 4.1. By definition, we have that
k−1∑
j=0

∑
u∈Sj

du ·
∥∥∥F (u)− p(j)

∥∥∥2

=

k−1∑
j=0

∑
u∈Sj

du ·

∥∥∥∥∥ 1√
du
· f1(u)− β√

k
·

(ωd2π·ke)
j√

vol(Sj)

∥∥∥∥∥
2

=

k−1∑
j=0

∑
u∈Sj

∥∥∥∥∥f1(u)−

√
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k · vol(Sj)
· β · (ωd2π·ke)j

∥∥∥∥∥
2

=

k−1∑
j=0

∑
u∈Sj

‖f1(u)− ỹ(u)‖2

= ‖f1 − ỹ‖2

6
1

γk(G)− 1
,

where the last inequality follows by Theorem 3.2.

Proof of Lemma 4.2. The proof is by direct calculation on
∥∥p(j)

∥∥2
.

Proof of Lemma 4.3. By definition of p(j) and p(`), we have that∥∥∥p(j) − p(`)
∥∥∥2

=
∥∥∥p(j)

∥∥∥2

+
∥∥∥p(`)

∥∥∥2

− 2 · Re
(
p(j) · p(`)

)
=

‖β‖2

k · vol(Sj)
+

‖β‖2

k · vol(S`)
− 2 · Re

(
β ·
(
ωd2π·ke

)j
√
k ·
√

vol(Sj)
·
β ·
(
ωd2π·ke

)−`
√
k ·
√

vol(S`)

)

=
‖β‖2

k · vol(Sj)
+

‖β‖2

k · vol(S`)
− 2 · ‖β‖2

k ·
√

vol(Sj) · vol(S`)
· cos

(
2π · (j − `)
d2π · ke

)
. (9)

For the case of calculation and the fact that cos(x) = cos(−x) for any x ∈ R, we denote

η ,
2π · |j − `|
d2π · ke

,

and rewrite (9) as∥∥∥p(j) − p(`)
∥∥∥2

=
‖β‖2

k · vol(Sj)
+

‖β‖2

k · vol(S`)
− 2 · ‖β‖2

k ·
√

vol(Sj) · vol(S`)
· cos η

=
‖β‖2

k ·max{vol(Sj), vol(S`)}
+
‖β‖2 · (sin2 η + cos2 η)

k ·min{vol(Sj), vol(S`)}
− 2 cos η · ‖β‖2

k ·
√

vol(Sj) · vol(S`)

=

(
‖β‖√

k ·max{vol(Sj), vol(S`)}
− cos η · ‖β‖√

k ·min{vol(Sj), vol(S`)}

)2

+
‖β‖2 · sin2 η

k ·min{vol(Sj), vol(S`)}

>
‖β‖2 · sin2 η

k ·min{vol(Sj), vol(S`)}

>
‖β‖2

k ·min{vol(Sj), vol(S`)}
·
(

2π · |j − `|
d2π · ke

· 2

π

)2
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‖β‖2

3k3 ·min{vol(Sj), vol(S`)}
,
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where the second inequality holds by the fact that sinx > (2/π) · x holds for any x ∈ [0, π/2]. This
finishes the proof of the lemma.

The following lemma will be used to prove Theorem 4.4. We remark that the following proof closely
follows the similar one from [23], however some constants need to be adjusted for our propose. We
include the proof here for completeness.
Lemma B.1. Let A0, . . . , Ak−1 be a partition of V . Assume that, for every permutation
σ : {0, . . . , k − 1} → {0, . . . , k − 1}, there exists some j′ such that vol

(
Aj′4Sσ(j′)

)
>

εvol
(
Sσ(j′)

)
for some 48 · k3 · (1 +APT)

/
(γk(G)− 1) 6 ε 6 1/2, then COST(A0, . . . , Ak−1) >

2APT
/

(γk(G)− 1).

Proof. We first consider the case where there exists a permutation σ : {0, . . . , k−1} → {0, . . . , k−1}
such that, for any 0 6 j 6 k − 1,

vol
(
Aj ∩ Sσ(j)

)
>

1

2
vol
(
Sσ(j)

)
. (10)

This assumption essentially says that A0, . . . , Ak−1 is a non-trivial approximation of the optimal
clustering S0, . . . , Sk−1 according to some permutation σ. Later we will show the statement of the
lemma trivially holds if no permutations satisfy (10).

Based on this assumption, there is 0 6 j′ 6 k − 1 such that vol
(
Aj′4Sσ(j′)

)
> 2εvol

(
Sσ(j′)

)
for

some 48 · k3 · APT
/

(γk(G)− 1) 6 ε 6 1/2. Since

vol
(
Aj′4Sσ(j′)

)
= vol

(
Aj′ \ Sσ(j′)

)
+ vol

(
Sσ(j′) \Aj′

)
=
∑
j 6=j′

vol
(
Aj′ ∩ Sσ(j)

)
+
∑
j 6=j′

vol
(
Sσ(j′) ∩Aj

)
,

one of the following two cases must hold:

1. A large portion of Aj′ belongs to clusters different from Sσ(j′), i.e., there exist
ε0, . . . , εk−1 > 0 such that εj′ = 0,

∑k−1
j=0 εj > ε, and vol

(
Aj′ ∩ Sσ(j)

)
> εjvol

(
Sσ(j′)

)
for any 0 6 j 6 k − 1.

2. Aj′ is missing a large portion of Sσ(j′), which must have been assigned to other clus-
ters. Therefore, we can define ε0, . . . , εk−1 > 0 such that εj′ = 0,

∑k−1
j=0 εj > ε, and

vol
(
Aj ∩ Sσ(j′)

)
> εjvol

(
Sσ(j′)

)
for any 0 6 j 6 k − 1.

In both cases, we can define sets B0, . . . , Bk−1 and D0, . . . , Dk−1 such that Bj and Dj belong
to the same cluster of the returned clustering but to two different optimal clusters Sj1 and Sj2 .
More precisely, in the first case, for any 0 6 j 6 k − 1, we define Bj = Aj′ ∩ Sσ(j). We
define D0, . . . , Dk−1 as an arbitrarily partition of Aj′ ∩ Sσ(j′) with the constraint that vol(Dj) >
εjvol(Sσ(j′)). This is possible since by (10)

vol
(
Aj′ ∩ Sσ(j′)

)
>

1

2
vol
(
Sσ(j′)

)
> εvol

(
Sσ(j′)

)
.

In the second case, instead, for any 0 6 j 6 k−1, we defineBj = Aj ∩Sσ(j′) andDj = Aj ∩Sσ(j).
Note that it also holds by (10) that vol(Dj) > εjvol(Sσ(j)). We can then combine the two cases
together (albeit using different definitions for the sets) and assume that there exist ε0, . . . , εk−1 > 0

such that εj′ = 0,
∑k−1
j=0 εj > ε, and such that we can find collections of pairwise disjoint sets

{B0, . . . , Bk−1} and {D0, . . . , Dk−1} with the following properties: for any j there exist indices j
and j1 6= j2 such that

1. Bj , Dj ⊆ Aj
2. Dj ⊆ Sj1 , Bj ⊆ Sj2
3. vol(Bj) > εj min{vol (Sj1) , vol (Sj2)}
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4. vol(Dj) > εj min{vol (Sj1) , vol (Sj2)}

For any j, we define cj as the centre of the corresponding cluster Aj to which both Bj and Dj are
subset of. We can also assume without loss of generality that

∥∥cj − p(j1)
∥∥ > ∥∥cj − p(j2)

∥∥ which
implies ∥∥∥p(j1) − cj

∥∥∥ > 1

2
·
∥∥∥p(j1) − p(j2)

∥∥∥ .
As a consequence, points in Bj are far away from cj . Notice that if instead

∥∥cj − p(j1)
∥∥ <∥∥cj − p(j2)

∥∥, we would just need to reverse the role of Bj and Dj without changing the proof.
We now bound COST(A0, . . . , Ak−1) by looking only at the contribution of the points in the Bj’s.
Therefore, we have that

COST(A0, . . . , Ak−1) =

k−1∑
j=0

∑
u∈Aj

du‖F (u)− cj‖2 >
k−1∑
j=0

∑
u∈Bj

du‖F (u)− cj‖2.

By applying the inequality a2 + b2 > (a− b)2/2, we have that

COST(A0, . . . , Ak−1) >
k−1∑
j=0

∑
u∈Bj

du

(∥∥p(j1) − cj
∥∥2

2
−
∥∥∥F (u)− p(j1)

∥∥∥2
)

>
k−1∑
j=0

∑
u∈Bj

du

∥∥p(j1) − cj
∥∥2

2
−
k−1∑
j=0

∑
u∈Bj

du

∥∥∥F (u)− p(j1)
∥∥∥2

>
k−1∑
j=0

∑
u∈Bj

du

∥∥p(j1) − cj
∥∥2

2
− 1

γk(G)− 1

>
k−1∑
j=0

∑
u∈Bj

du

∥∥p(j1) − p(j2)
∥∥2

8
− 1

γk(G)− 1

>
k−1∑
j=0

‖β‖2 · vol(Bj)

24k3 ·min {vol(Sj1), vol(Sj2)}
− 1

γk(G)− 1

>
k−1∑
j=0

‖β‖2 · εj min {vol(Sj1), vol(Sj2)}
24k3 ·min {vol(Sj1), vol(Sj2)}

− 1

γk(G)− 1

>
k−1∑
j=0

εj · ‖β‖2

24k3
− 1

γk(G)− 1

>
ε

24k3
− 1

γk(G)− 1

>
1

24k3
· 48k3 · (1 + APT)

γk(G)− 1
− 1

γk(G)− 1

>
2APT

γk(G)− 1
.

It remains to show that removing assumption (10) implies the Lemma as well. Notice that if (10)
is not satisfied, for all permutations σ there exists 0 6 `? 6 k − 1 such that vol

(
A`? ∩ Sσ(`?)

)
6

1
2vol

(
Sσ(`?)

)
. We can also assume the following stronger condition:

vol (A`? ∩ Sj) 6
1

2
vol (Sj) for any 0 6 j 6 k − 1. (11)

Indeed, if there would exist a unique j 6= σ(`?) such that vol (A`? ∩ Sj) > 1
2vol (Sj), then it would

just mean that σ is the “wrong” permutation and we should consider only permutations σ′ 6= σ such
that σ′(`?) = j. If instead there would exist j1 6= j2 such that vol (A`? ∩ Sj1) > 1

2vol (Sj1) and

17



vol (A`? ∩ Sj2) > 1
2vol (Sj2), then it is easy to see that the Lemma would hold, since in this case

A`? would contain large portions of two different optimal clusters, and, as clear from the previous
part of the proof, this would imply a high k-means cost.

Therefore, we just need to show that the statement of the Lemma holds when (11) is satisfied. For this
purpose we define sets C0, . . . , Ck−1 which are subsets of vertices in S0, . . . , Sk−1 that are close in
the spectral embedding to p(0), . . . , p(k−1). Formally, for any 0 6 j 6 k − 1,

Cj =

{
u ∈ Sj : ‖F (u)− p(j)‖2 6 100

vol(Sj)
· (γk(G)− 1)

}
.

Notice that by Lemma 4.1 vol(Cj) > 99
100vol(Sj). By assumption (11), roughly half of the volume

of all the Cj’s must be contained in at most k − 1 sets (all the Aj’s different from A`?). We prove
this implies that the k-means cost is high, from which the Lemma follows.

Let c0, . . . , ck−1 be the centres of A0, . . . , Ak−1. We are trying to assign a large portion of each of
the k optimal clusters to only k − 1 centres (namely all the centres different from c`?). Moreover,
any centre cj 6= c`? can either be close to p(`?) or to another optimal centre p(j′), but not to both.
As a result, there will be at least one Cj whose points are assigned to a centre which is at least
Ω(1/vol(Sj)) far from p(j) (in squared Euclidean distance). Therefore, by the definition of Cj and

the fact that vol(Cj) > 99
100vol(Sj), the k-means cost is at least Ω

(
1

vol(Sj) · vol(Cj)
)

= Ω(1). This
concludes the proof.

Proof of Theorem 4.4. Assume for contradiction that, for any permutation σ : {0, . . . , k − 1} →
{0, . . . , k−1}, there is an index j ∈ {0, . . . , k−1} such that vol

(
Aj4Sσ(j)

)
> εvol

(
Sσ(j)

)
. Then,

by Lemma B.1 we have that COST(A0, . . . , Ak−1) > 2APT
/

(γk(G)− 1), which contradicts the
fact that COST(A0, . . . , Ak−1) 6 APT

/
(γk(G)− 1).

Now we prove Theorem 4.5. The following two technical lemmas will be used in our proof.
Lemma B.2 (Bernstein’s Inequality, [8]). Let X1, ...Xn be independent random variables such that
|Xi| 6M for any i ∈ {1, ..., n}. Let X =

∑n
i=1Xi and let R =

∑n
i=1 E[X2

i ]. Then, it holds that

P [|X − E[X]| > t] 6 2 · exp

(
− t2

2(R+Mt/3)

)
.

Lemma B.3 (Matrix Chernoff Bound, [28]). Consider a finite sequence {Xi} of independent,
random, PSD matrices of dimension d that satisfy ‖Xi‖ 6 R. Let µmin , λmin (E [

∑
iXi ]) and

µmax , λmax (E [
∑
iXi ]). Then it holds that

P

[
λmin

(∑
i

Xi

)
6 (1− δ)µmin

]
6 d ·

(
e−δ

(1− δ)1−δ

)µmin/R

for δ ∈ [0, 1], and

P

[
λmax

(∑
i

Xi

)
> (1 + δ)µmax

]
6 d ·

(
eδ

(1 + δ)1+δ

)µmax/R

for δ > 0.

Proof of Theorem 4.5. We first analyse the size of F . Since∑
u∈V

∑
e=(u,v)

w(u, v) · α log n

dout
u · λ2

= O

(
n log n

λ2

)
,

and ∑
v∈V

∑
e=(u,v)

w(u, v) · α log n

din
v · λ2

= O

(
n log n

λ2

)
,

it holds by Markov inequality that the number of edges e = (u, v) with w(u, v) · α logn
dout
u ·λ2

> 1 and

w(u, v) · α logn
din
v ·λ2

> 1 is O
(
n logn
λ2

)
. Without loss of generality, we assume that these edges are in F ,

and in the remaining part of the proof we assume it holds for any edge e = (u, v) that

w(u, v) · α · log n

dout
u · λ2

< 1, w(u, v) · α · log n

din
v · λ2

< 1.
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Moreover, the expected number of edges in H equals to∑
e=(u,v)

pe 6
∑

e=(u,v)

pu(u, v) + pv(u, v) =
α · log n

λ2

∑
e=(u,v)

(
w(u, v)

dout
u

+
w(u, v)

din
v

)

= O

(
n log n

λ2

)
,

and thus by Markov’s inequality we have that with constant probability the number of sampled edges
|F | = O ((1/λ2) · n log n).

Proof of θk(H) = Ω(θk(G)). Next we show that the sparsified graph constructed by the algorithm
preserves θk(G) up to a constant factor. Without loss of generality, let S0, . . . , Sk−1 be the optimal k
clusters such that

ΦG(S0, . . . , Sk−1) = θk(G).

For any edge e = (u, v) satisfying u ∈ Sj and v ∈ Sj−1 for some 1 6 j 6 k − 1, we define a
random variable Ye by

Ye =

{
w(u, v)/pe with probability pe,
0 otherwise.

We also define random variables Z1, . . . , Zk−1, where Zj (1 6 j 6 k − 1) is defined by

Zj =
∑

e={u,v}∈E[G]
u∈Sj ,v∈Sj−1

Ye.

By definition, we have that

E[Zj ] =
∑

e={u,v}∈E[G]
u∈Sj ,v∈Sj−1

E[Ye] =
∑

e={u,v}∈E[G]
u∈Sj ,v∈Sj−1

w(u, v) = w(Sj , Sj−1).

Moreover, we look at the second moment and have that∑
e={u,v}∈E[G]
u∈Sj ,v∈Sj−1

E
[
Y 2
e

]
=

∑
e={u,v}∈E[G]
u∈Sj ,v∈Sj−1

pe ·
(
w(u, v)

pe

)2

=
∑

e={u,v}∈E[G]
u∈Sj ,v∈Sj−1

(w(u, v))2

pe

6
∑

e={u,v}∈E[G]
u∈Sj ,v∈Sj−1

(w(u, v))2

w(u, v)
· λ2 · dout

u

α log n

=
λ2

α log n
·

∑
e={u,v}∈E[G]
u∈Sj ,v∈Sj−1

w(u, v) · dout
u

6
λ2

α log n
·∆out

j · w(Sj , Sj−1),

where ∆out
j is the maximum of the out degree of vertices in Sj and the first inequality follows by the

fact that

pe = pu(u, v) + pv(u, v)− pu(u, v)pv(u, v) > pu(u, v) = w(u, v) · α log n

λ2 · dout
u

.

In addition, it holds for any e = (u, v), u ∈ Sj , v ∈ Sj−1 that∣∣∣∣w(u, v)

pe

∣∣∣∣ 6 ∣∣∣∣ w(u, v)

pu(u, v)

∣∣∣∣ 6 λ2 ·∆out
j

α · log n
.
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We apply Bernstein’s Inequality (Lemma B.2), and obtain for any 1 6 j 6 k − 1 that

P [|Zj − w(Sj , Sj−1)| > (1/2) · w(Sj , Sj−1)]

= P [|Zj − E[Zj ]| > (1/2) · E[Zj ]]

6 2 · exp

− E[Zj ]
2/4

2
(

λ2

α logn ·∆
out
j · w(Sj , Sj−1) +

λ2·∆out
j

α·logn ·
1
6 · w(Sj , Sj−1)

)


6 2 · exp

(
−α · log n · E[Zj ]

10 · λ2 ·∆out
j

)
.

Hence, with high probability cut values w(Sj , Sj−1) for all 1 6 j 6 k − 1 are approximated up to a
constant factor. Using the same technique, we can show that with high probability the volumes of all
the sets S0, . . . , Sk−1 are approximately preserved in H as well. Combining this with the definition
of Φ, we have that ΦG(S0, . . . , Sk−1) and ΦH(S0, . . . , Sk−1) are approximately the same up to a
constant factor. Since S0, . . . , Sk−1 are the sets that maximising the value of θk(G), we have that
θk(H) = Ω(θk(G)).

Proof of λ2 (LH) = Ω(λ2 (LG)). Finally, we prove that the top n− 1 eigenspace is approximately
preserved in H . Let LG be the projection of LG on its top n− 1 eigenspaces. We can write LG as

LG =

n∑
i=2

λifif
∗
i .

With a slight abuse of notation we call L−1/2

G the square root of the pseudoinverse of LG, i.e.,

L−1/2

G =

n∑
i=2

(λi)
−1/2fif

∗
i .

We call I the projection on span{f2, . . . , fn}, i.e.,

I =

n∑
i=2

fif
∗
i .

We will prove that the top n − 1 eigenspaces of LG are preserved. To prove this, recall that the
probability of any edge e = (u, v) being sampled in H is

pe = pu(u, v) + pv(u, v)− pu(u, v) · pv(u, v),

and it holds that 1
2 (pu(u, v) + pv(u, v)) 6 pe 6 pu(u, v) + pv(u, v). Now for each edge e = (u, v)

of G we define a random matrix Xe ∈ Cn×n by

Xe =

{
wH(u, v) · L−1/2

G beb
∗
eL
−1/2

G if e = (u, v) is sampled by the algorithm,
0 otherwise,

where the vector be is defined by be =
(
ω2d2π·keχu − ω∗2d2π·keχv

)
and for any vertex u the nor-

malised indicator vector χu is defined by χu(u) = 1/
√
du, and χu(v) = 0 for any v 6= u. Notice

that ∑
e∈E[G]

Xe =
∑

sampled edges e=(u,v)

wH(u, v) · L−1/2

G beb
∗
eL
−1/2

G = L−1/2

G L′HL
−1/2

G ,

where it follows by definition that

L′H =
∑

sampled edges e=(u,v)

wH(u, v) · beb∗e

is essentially the Laplacian matrix of H but is normalised with respect to the degrees of the vertices
in the original graph G, i.e., L′H = D−1

G DH − D−1/2
G AHD

−1/2
G . We will prove that, with high
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probability, the top n− 1 eigenspaces of L′H and LG are approximately the same. Later we will show
the same holds for LH and L′H , which implies that λ2(L′H) = Ω(λ2(LG)).

We will use the matrix Chernoff bound for our proof. We start looking at the first moment of the
expression above:

E

[∑
e∈E

Xe

]
=

∑
e=(u,v)∈E[G]

pe · wH(u, v) · L−1/2

G beb
∗
eL
−1/2

G

=
∑

e=(u,v)∈E[G]

pe ·
w(u, v)

pe
· L−1/2

G beb
∗
eL
−1/2

G

= L−1/2

G LGL
−1/2

G = I.

Moreover, for any sampled e = (u, v) ∈ E we have that

‖Xe‖ 6 wH(u, v) · b∗eL
−1/2

G L−1/2

G be =
w(u, v)

pe
· b∗eL

−1

G be 6
w(u, v)

pe
· 1

λ2
· ‖be‖2

6
2λ2

α · log n ·
(

1
dout
u

+ 1
din
v

) · 1

λ2

(
1

dout
u

+
1

din
v

)
6

2

α log n
,

where the second inequality follows by the min-max theorem of eigenvalues. Now we apply
the matrix Chernoff bound (Lemma B.3) to analyse the eigenvalues of

∑
e∈E Xe, and build a

connection between λ2(L′H) and λ2(LG). By setting the parameters of Lemma B.3 by µmax =

λmax

(
E
[∑

e∈E[G]Xe

])
= λmax

(
I
)

= 1, R = 2/ (α · log n) and δ = 1/2, we have that

P

λmax

 ∑
e∈E[G]

Xe

 > 3/2

 6 n ·( e1/2

(1 + 1/2)
3/2

)α logn/2

= O (1/nc)

for some constant c. This gives us that

P

λmax

 ∑
e∈E[G]

Xe

 6 3/2

 = 1−O(1/nc). (12)

On the other side, since our goal is to analyse λ2(L′H) with respect to λ2(LG), it suffices to work
with the top (n− 1) eigenspace of LG. Since E

[∑
e∈E Xe

]
= I, we can assume without loss of

generality that µmin = 1. Hence, by setting R = 2/ (α · log n) and δ = 1/2, we have that

P

λmin

 ∑
e∈E[G]

Xe

 6 1/2

 = n ·
(

e−1/2

(1/2)1/2

)α logn/2

= O (1/nc)

for some constant c. This gives us that

P

λmin

 ∑
e∈E[G]

Xe

 > 1/2

 = 1−O(1/nc). (13)

Combining (12), (13), and the fact of
∑
e∈E[G]Xe = L−1/2

G L′HL
−1/2

G , with probability 1−O (1/nc)

it holds for any non-zero x ∈ Cn in the space spanned by f2, . . . , fn that

x∗L−1/2

G L′HL
−1/2

G x

x∗x
∈ (1/2, 3/2) . (14)

By setting y = L−1/2

G x, we can rewrite (14) as

y∗L′Hy

y∗L1/2

G L
1/2

G y
=
y∗L′Hy
y∗LGy

=
y∗L′Hy
y∗y

y∗y

y∗LGy
∈ (1/2, 3/2).
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Since dim(span{f2, . . . , fn}) = n − 1, we have just proved there exist n − 1 orthogonal vectors
whose Rayleigh quotient with respect to L′H is Ω(λ2(LG)). By the Courant-Fischer Theorem, we
have

λ2(L′H) >
1

2
λ2(LG). (15)

It remains to show that λ2(LH) = Ω (λ2(L′H)), which implies that λ2(LH) = Ω (λ2(LG)) by
(15). By the definition of L′H , we have that for the Laplacian LH = D

−1/2
H D

1/2
G L′HD

1/2
G D

−1/2
H .

Therefore, for any x ∈ Cn and y = D
1/2
G D

−1/2
H x, it holds that

x∗LHx
x∗x

=
y∗L′Hy
x∗x

>
1

2
· y
∗L′Hy
y∗y

, (16)

where the last equality follows from the fact that the degrees in H and G differ just by a constant
multiplicative factor, and therefore,

y∗y =
(
D

1/2
G D

−1/2
H x

)∗ (
D

1/2
G D

−1/2
H x

)
= x∗DGD

−1
H x >

1

2
· x∗x.

Finally, we show that (16) implies that λ2(LH) > (1/2) · λ2(L′H). To see this, let S1 ⊆ Cn be a
(2)-dimensional subspace of Cn such that

λ2(LH) = max
x∈S1

x∗LHx
x∗x

.

Let S2 =
{
D

1/2
G D

−1/2
H x : x ∈ S1

}
. Notice that since D1/2

G D−1/2 is full rank, S2 has dimension 2.
Therefore,

λ2(L′H) = min
S : dim(S)=2

max
y∈S

y∗L′Hy
y∗y

6 max
y∈S2

y∗L′Hy
y∗y

6 2 max
x∈S1

x∗LHx
x∗x

= 2λ2(LH), (17)

where the last inequality follows by (16). Combining (15) with (17) gives us that λ2(LH) =
Ω(λ2(G)). This concludes the proof.

C Omitted details from Section 5

C.1 UN Comtrade Data Preparation

The API provided by the UN gives a lot of flexibility on the type of selected data. It is possible to
specify the product type to either trade in goods (e.g., oil, wood, and appliances) or services (e.g.,
financial services, and construction services). Moreover, the classification code can be selected, which
we set to the Harmonised System (HS). The HS categorises goods according to a 6-digit classification
code (e.g., 060240, where the first two digits “06” represents “plants”, the second two digits “02”
represents “alive”, and the last two digits “40” code for “roses”). The reporting countries and partner
countries can also be specified, where the reporting country reports about its own reported tradeflow
with partner countries. The settings we used to download the data for our experiments were Goods on
an annual frequency, the HS code as reported, over the period from 2002 to 2017, with all reporting
and all partner countries, all trade flows and all HS commodity codes. The total size of the data in
zipped files is 99.8GB, where each csv file (for every year) contains around 20, 000, 000 lines.

For every pair of countries j and `, where j is the reporting country and ` is the partner country, the
database contains the amount that country j imports from country ` for a specific commodity, and
also the amount j exports to `. There are several cases where countries j and ` report different trading
amounts with each other. Usually, the larger value is considered more accurate and is used instead of
the average [12]. To construct the digraph of the world trade network and its corresponding adjacency
matrix, we fill in each entry of the adjacency matrix M c for commodity c as follows: for each pair of
countries j and `, we compute dcj` = ecj` − ec`j , where ecj` is the amount country j exports to country
` for commodity c. If dcj` > 0, we set M c

j` = dcj` and M c
`j = 0. If dcj` < 0 (and thus dc`j > 0), we

set M c
`j = dc`j and M c

j` = 0.

For our experiments we investigate the trade in “Mineral Fuels, mineral oils, and products of their
distillation” (HS code 27), and the trade in “Wood and articles of wood” (HS code 44).
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Figure 6: Change in clustering of the IOTN over period 2006–2009 with k = 4 using DD-SYM method.
Red countries form the start of the trade chain, and yellow countries the end of the trade chain.
Countries coloured white have no data.

C.2 DD-SYM Plots International Oil Trade

We plot the cluster visualisations for the DD-SYM algorithm in Figure 6 on the international oil trade
network, over the period 2006-2009. The clusters between 2006 and 2007 are almost identical, and
then there is a shift in the clustering structure between 2007 and 2008. This change occurs one
year before the change in the SimpleHerm method, and this change is also one year earlier than the
changes found in the complex network analysis literature [1, 33]. This indicates that the SimpleHerm
clustering result is more in line with other literature.

C.3 International Wood Trade

For comparison we visualise the clustering result of the DD-SYM method over the period of 2006 –
2009, see Figure 7. In addition, Figure 8 compares the symmetric difference of the clusters returned
by different algorithms over the consecutive years. Again, we notice that our algorithm finds a peak
around the economic crisis of 2008, and another peak is found between 2005 and 2006. We could not
find any literature reasoning about the peak between 2005 and 2006, but it would be interesting to
analyse this further. The symmetric difference returned by the DD-SYM method is more noisy.

C.4 Results on Data Science for COVID-19 Dataset

The Data Science for COVID-19 Dataset (DS4C) [19] contains information about 3519 South Korean
COVID-19 cases, and we use directed edges to represent how the virus is transmitted among the
individuals. We notice that there are only 831 edges in the graph and there are many connected
components of size 2. To take this into account, we run our algorithm on the largest connected
component of the infection graph, which consists of 67 vertices and 66 edges. Applying the complex-
valued Hermitian matrix and the eigenvector associated with the smallest eigenvalue, the spectral
embedding is visualised in Figure 9.

We notice several interesting facts. First of all, we do not see all the individual nodes of the graph
in this embedding. This is because many embedded points are overlapped, which happens if they
have the same in and outgoing edges. Moreover, from cluster S0 to S1 there is 1 edge, from S1 to S2

there are 51 edges and from S2 to S3 there are 5 edges. That means there are 1 + 51 + 5 = 57 edges
that lie along the path, out of 66 edges in total. This concludes that our algorithm has successfully
clustered the vertices such that there is a large flow ratio along the clusters.
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Figure 7: Change in clustering of the IWTN over period 2006-2009 with k = 4 using DD-SYM
method. Red countries form the start of the trade chain, and yellow countries the end of the trade
chain. Countries coloured white have no data.
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Figure 8: Comparison of the symmetric difference of the returned clusters between two consecutive
years on the IWTN.

Secondly, due to the limited size of the dataset, it is difficult for us to draw a more significant
conclusion from the experiment. However, we do notice that the cluster S1 actually consists of one
individual: a super spreader. This individual infected 51 people in cluster S2. We believe that, with
the development of many tracing Apps across the world and more data available in the near future,
our algorithm could become a useful tool for disease tracking and policy making.
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Figure 9: Clustering output on the largest connected component of the DS4C dataset, where k = 4.
Clusters are labelled according to their position in the ordering that maximises the flow ratio.
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