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In the main paper [1] 1, we have reported the attack results of Inc-v3 on four normal trained models
and four defense models, and compared with 14 attack instances on the transferability and the image
quality. In this supplementary material, (1) we present the evaluation details of our method regarding
the transferability on five more defense models, comparing the visualization results with SOTA
attacks, and discussing the attack results of another three DNNs. (2) We also conducted an in-depth
hyper-parameter analysis and ablation study of our method, and posted an interpretable explanation
about the difference between our method and baselines on the transferability. (3) We validated
the generalization of our method by attacking an STN-based CNN. (4) We demonstrated that our
method could help enhance the blur robustness of DNNs for the classification task with the results on
ImageNetC. (5) We show more adversarial attack results in the real world. (6) We discuss the defense
results via re-trained DeblurGANv2 with the blurred images from our methods.

Overall, the results of this supplementary material further demonstrated that the proposed adversarial
blur attack can fool DNNs effectively while generating visually natural blurred images. All exper-
imental results and discussions infer that motion blur as a common effect in the real world has a
high risk of fooling SOTA DNNs and our attack methods initiate the first step to study the potential
hazards of motion blur for DNNs.

1 Attack Results on Eight Defense Models

Besides the results on the four defense models reported in the main paper, we also compared our
method with baselines on another five defense models including R&P [2], NeurIPS-r32, and three
models from the stae-of-the-art feature denoise-based (FD) defense method [3] (i.e., ResNetXt101
with all denoising (FDR101), ResNet152 with four denoising blocks (FDR152), and adversarial trained
baseline model ResNet152 (FDR152B)). The R&P method transforms input images through random
resizing and padding, which ranked the second in the NeurIPS 2017 defense competition. NeurIPS-r3
is the third rank submission of NeurIPS 2017 defense competition and combines adversarial trained
VGG16, Inc-v3, IncRes-v2, and ResNet152v2 models in an ensemble way. Besides, NeurIPS-r3
also performs transformations, i.e., shear, shifting, zoom, rotation, JPEG compression, and noise
corruption, on input images. The FD method ranked the first in Competition on Adversarial Attacks
and Defenses (CAAD)-2018. Note that, all other results of above baselines in our main paper and
supplementary material are based on L∞ norm bound.
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Figure I. Three visualization results of ABBApixel, ABBA, DIM, and TIDIM. All adversarial examples mislead the Inc-v3 model.

As reported in Table I, our method, i.e., ABBApixel, achieves the highest transferability across all
defense models and ABBA has competitive results with the state-of-the-art baseline TIDIM. Such
results reveal a potential big shortcoming of existing studies of defense methods, i.e., only considering
the adversarial noise while ignoring other potential factors in physical environment. Note that,
compared with adversarial noise, motion blur frequently happens in our daily life and widely exists
among various computer vision-based applications, thus its influence to DNNs should be carefully
studied and addressed.

Table I. Adversarial comparison results on NeurIPS’17 adversarial competition dataset according to the success rate. We use nine defense
models to evaluate all attacks. The adversarial examples are generated from Inc-v3. There are two comparison groups. For the first one,
we compare blur-based methods, i.e., Interpretation-based blur (Interpblur), GaussBlur, and DefocusBlur with our ABBA by considering the
effects of attacking different regions, i.e., object or background regions, of inputs. In addition to above methods, the second group comparison
contains additive-perturbation-based attacks, i.e., Interpretation-based noise (Interpnoise) [4], FGSM [5], MIFGSM [6], DIM [7], and TIFGSM,
TIMIFGSM, and TIDIM [8]. We highlight the top three results with pink , yellow , and blue , respectively.

Defence Results (Adv. Examples from Inc-v3)
Inc-v3env3 Inc-v3env4 IncRes-v2ens HGD R&P NeurPIS-r3 FDR101 FDR152 FDR152B

GaussBlur 23.6 23.8 19.3 16.9 17.2 17.6 35.6 35.8 35.9
GaussBlurobj 8.6 7.8 6.3 4.6 4.8 5.1 13.9 13.9 14.6
GaussBlurbg 13.0 13.1 10.9 8.7 10.0 9.3 19.5 19.2 20.1
DefocBlur 17.5 18.3 15.0 12.9 14.6 14.2 31.1 30.9 31.1
DefocBlurobj 5.2 4.6 3.8 2.7 3.3 2.9 10.8 10.5 11.1
DefocBlurbg 10.1 10.3 9.2 7.8 9.0 8.1 19.5 17.6 18.5
Interpblur 7.1 7.1 4.3 1.4 2.9 2.9 25.5 25.8 28.6

ABBAobj 10.1 10.5 8.3 4.9 6.2 7.1 18.7 18.4 19.1
ABBAbg 1.2 0.8 1.2 0.5 0.6 0.7 43.5 44.1 45.5
ABBAimage 43.2 43.8 38.9 28.4 34.1 35.0 61.1 61.9 62.4
ABBApixel 69.8 72.5 68.0 63.1 65.0 65.7 79.6 81.0 82.1
ABBA 46.6 48.7 41.2 31.0 36.7 38.5 64.2 64.6 65.6

Interpnoise 16.8 16.1 9.4 3.3 4.1 4.4 39.6 41.4 46.8
FGSM 15.6 14.7 7.0 2.1 6.5 9.8 39.2 41.4 45.3
MIFGSM 20.5 17.4 9.5 6.9 8.7 12.9 39.0 40.2 44.6
DIM 24.2 24.3 13.0 9.7 13.3 18.0 39.1 40.3 45.1
TIFGSM 28.2 28.9 22.3 18.4 19.8 24.5 39.7 41.8 45.4
TIMIFGSM 35.8 35.1 25.8 25.7 23.9 26.7 39.3 41.2 45.8
TIDIM 46.9 47.1 37.4 38.3 36.8 41.4 40.0 42.2 45.8

2 Visualization Comparison with Baselines

We show several adversarial examples of ABBApixel, ABBA, DIM, and TIDIM in Fig. I, Fig. IX and
Fig. X. All examples can mislead the Inc-v3 model.

Obviously, our method ABBA can generate visually natural motion-blurred examples on various
objects and these examples are very similar to real images captured by real-world cameras where the
motion blur is caused by object or camera moving. In contrast, the adversarial examples of DIM and
TIDIM have obvious unreal patterns. The noise-like pattern of DIM is drastically different from the
natural noise usually caused by the camera sensor, e.g., Gaussian noise. The perturbation pattern of
TIDIM is more perceptible than that of DIM, although TIDIM achieves much higher transferability
than DIM. Compared with ABBA, our another method, i.e., ABBApixel, breaks local pattern of the
original input. However, ABBApixel’s examples look more imperceptible than TIDIM’s results. More
comparison results are shown in Fig. IX and Fig. X.
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Figure II. Comparison between adversarial-blurred images and blurred images for training deblurring models.

Table II. Adversarial comparison results on NeurIPS’17 adversarial competition dataset. There is no available Xception model based on the
author’s implementations [8] of baselines, i.e., FGSM, MIFGSM, DIM, TIFGSM, TIFMIFGSM, and TIDIM. Hence, we leave these baselines’
results empty for the Xception model. We highlight the top three results with pink , yellow , and blue , respectively.

Attacking Results (Inc-v3) Attacking Results (Inc-v4) Attacking Results (IncRes-v2) Attacking Results (Xception)
Inc-v3 Inc-v4 IncRes-v2 Xception Inc-v3 Inc-v4 IncRes-v2 Xception Inc-v3 Inc-v4 IncRes-v2 Xception Inc-v3 Inc-v4 IncRes-v2 Xception

GaussBlur 34.7 22.7 18.4 26.1 14.2 26.7 10.9 17.2 12.1 11.8 20.1 13.8 16.1 15.7 11.9 32.5
GaussBlurobj 13.6 6.0 5.2 7.1 3.5 9.5 2.2 3.9 3.2 2.8 6.4 2.7 3.7 3.4 2.6 10.9
GaussBlurbg 18.8 10.8 9.2 12.0 6.7 13.4 5.5 7.3 6.7 6.5 11.8 6.8 7.6 7.1 6.3 16.3
DefocBlur 30.0 16.8 11.1 18.8 18.7 36.2 13.2 22.3 15.8 14.7 23.4 17.4 18.5 18.7 12.9 36.8
DefocBlurobj 10.0 3.0 2.9 3.6 3.9 10.3 3.1 4.4 3.8 3.2 7.5 3.2 4.4 4.4 2.6 11.8
DefocBlurbg 16.9 9.2 7.0 10.5 10.4 20.1 8.3 12.8 8.9 9.4 15.3 10.1 10.2 11.4 8.4 21.6
Interpblur 34.7 3.6 0.5 3.4 2.7 26.7 0.8 3.1 3.1 3.1 20.1 3.4 3.0 3.1 0.8 32.5

ABBAobj 21.0 4.9 4.2 7.0 11.6 28.9 9.7 11.5 11.2 11.9 29.0 12.7 9.1 9.6 7.7 30.2
ABBAbg 30.9 11.6 10.1 12.9 14.0 31.7 13.3 15.7 14.0 14.0 25.8 13.2 12.5 14.3 11.4 33.3
ABBAimage 62.4 29.8 28.8 34.1 32.0 66.7 28.8 36.2 33.0 30.7 63.4 37.0 28.9 28.4 26.1 66.7
ABBApixel 89.2 65.5 65.8 71.2 77.7 88.1 71.3 76.0 81.8 78.3 92.0 80.6 74.0 67.5 66.8 86.2
ABBA 65.6 31.2 29.7 33.5 39.5 74.9 37.3 43.2 38.4 38.6 71.6 44.2 32.3 35.2 35.9 73.1

Interpnoise 95.8 20.5 15.6 22.9 5.2 92.6 1.6 6.0 6.7 6.0 91.8 8.3 3.5 2.3 0.4 93.4
FGSM 79.6 35.9 30.6 42.1 43.1 72.6 32.5 45.2 44.3 36.1 64.3 45.4
MIFGSM 97.8 47.1 46.4 47.7 67.1 98.8 54.3 58.5 74.8 64.8 100.0 61.7
DIM 98.3 73.8 67.8 71.6 81.8 98.2 74.2 79.1 86.1 83.5 99.1 80.8
TIFGSM 75.4 37.3 32.1 38.6 45.3 68.1 33.7 39.4 49.7 41.5 63.7 44.0
TIMIFGSM 97.9 52.4 47.9 44.6 68.6 98.8 55.3 50.8 76.1 69.5 100.0 59.9
TIDIM 98.5 75.2 69.2 61.3 80.7 98.7 73.2 65.5 86.4 85.5 98.8 71.0

Besides above visualization results, we further conduct an experiment to compare our adversarial blur
images with the blur images for training deblurring models [9]. Specifically, given a sharp image,
e.g., the left sub-figures in Fig. II, we use ABBA to generate corresponding adversarial blur images
and compare them with the blur images for training. Obviously, both blur looks realistic, which
demonstrates the capability of ABBA to generate visually natural blur images.

3 Attack Results of Inc-v3, Inc-v4, IncRes-v2, and Xception

Besides the attack results of Inc-v3 reported in our main paper, we further show the results of Inc-v4,
IncRes-v2, and Xception in Table II. Note that, there is no available Xception model based on the
authors’ implementations [8] of FGSM, MIFGSM, DIM, TIFGSM, TIFMIFGSM, and TIDIM. Hence,
we leave these baselines’ results empty for the Xception model. Similar to the results of Inc-v3, for
the transferability results, our method, i.e., ABBApixel, achieves slightly lower success rate than the
state-of-the-art additive-perturbation-based attacks, i.e., DIM and TIDIM, when attacking Inc-v3,
Inc-v4, and IncRes-v2, and obtains higher success rate than TIDIM when attacking the Xception
model. For the whitebox attacks, TIMIFGSM and MIFGSM usually achieve the highest success rate.

4 Hyper-parameter Analysis and Ablation Study

Effect of ε and εθ. We calculate the success rate of our method with different ε and εθ in the Eq. (5)
of our main paper, respectively. Specifically, we try ε with the range [5, N ] where N = 51 and εθ in
[0, 1]. As shown in Fig. III (a), the success rates become gradually higher with the increase of ε and
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Figure III. Up: shows the success rate of ABBA w.r.t. the variation of both ε and εθ in Eq. (5) of our main paper where ε is within [5, 50] with
step size 5 and εθ is in [0, 1] with step size 0.1. Down: shows an example of .

Figure IV. Up: two examples of ABBApixel, ABBAobj, ABBAbg, ABBAimage, and ABBA. Bottom: Success rates of our method with respect to the
object motion directions.

εθ. The highest success rates are 94.8%, 68.5% 68.4%, and 72.1% on Inc-v3, Inc-v4, IncRes-v2, and
Xception, respectively. We also visualize adversarial examples of an image that has been successfully
attacked on all ε > 0 and εθ > 0. Obviously, as ε and εθ increase, the visual effects of adversarial
examples gradually become worse and the perturbations are more easily perceived. According to
numerous attacking on different images, we choose the ε = 15.0 and εθ = 0.4 to balance the success
rate and visual effects when comparing with baselines on transferability in Sec. 3.2 in our main paper.

Effect of motion directions. we fix εθ = 0.4 and ε = 15.0 and tune the motion direction of
object and background by setting different x-axis and y-axis translations. For each object motion
direction, we calculate the mean and standard variation of the success rates on different background
moving directions. As shown in Fig. IV (B), the success rate increases as the object motion direction
becomes larger in [10◦, 50◦] while decreasing as the direction is smaller in [50◦, 70◦]. The success
rate variation has symmetrical trend in the range of [90◦, 170◦]. Such results are mostly caused by the
L∞ used for constraining the translation. The motion direction is directly related to the translation
and the success rate reaches the highest value around 45◦.

Effect of blurred regions and importance of adaptive translations. As reported in Tab. 1 in our
main paper and cases shown in Fig. IV (U), ABBApixel achieves the highest attack success rate and
transferability among all variants, which, however, changes the original image obviously and looks
unnatural. ABBAobj and ABBAbg have the worst success rate on all models although they tend to
generate visually natural motion blur. ABBAimage and ABBA make good balance between the attack
success rate and visual effects. In particular, ABBA that jointly tunes the object and background
translations can obtain much better transferability across normal trained and defense-based models.
Note that, when compared with the results using fixed motion directions in Fig. IV (B), ABBA obtains
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Figure V. Left: the interpretable maps of six adversarial examples generated by FGSM, MIFGSM, and ABBA, respectively, with four models.
Right: the transferability & consistency distributions of adversarial examples generated by the three attacks.

the highest success rate among all motion direction, further demonstrating usefulness of adaptive
translations.

5 Interpretable Explanation of the Transferability

In the following, we explore the difference between ABBA, FGSM, and MIFGSM on the transferability.
Note that, we implement FGSM and MIFGSM on the same platform (i.e., pytorch with foolbox 2.3.0)
with ABBA for fair comparison. We modify the method in [4] that generates an interpretable map
for a classification model f(·) with a given perturbation. Then, we observe that the transferability of
an adversarial example generated by an attack correlates with the consistency of interpretable maps
of different models. Specifically, given an adversarial example Xadv generated by an attack and the
original image Xreal, we can calculate an interpretable map Mf for f(·) by optimizing:

argmin
Mf

fy(M
f �Xadv + (1−Mf)�Xreal) + λ1‖Mf‖1 + λ2TV(Mf) (1)

where fy(·) denotes the score at label y that is the ground truth label of Xreal and TV(·) is the
total-variation norm. Intuitively, optimizing Eq. (1) is to find the region that causes misclassification.
We optimize Eq. (1) via gradient decent in 150 iterations and fix λ1 = 0.05 and λ2 = 0.2. We can
calculate four interpretable maps for each adversarial example based on four models, i.e., Inc-v3,
Inc-v4, IncRes-v2, and Xception, as shown in Fig. V(L). We observe that the interpretable maps of
our method have similar distributions across the four models while the maps of FGSM and MIFGSM
do not exhibit this phenomenon. To further validate this observation, we calculate the standard
variation across the four maps at each pixel and get a value by mean pooling. We normalize the value
and regard it as the consistency measure for the four maps. As shown in Fig. V(R), the consistency of
adversarial examples of our method is generally higher than that of FGSM and MIFGSM. We further
study the transferability of an adversarial example across models. Given an adversarial example
from Inc-v3 and a model f(·), we calculate a score to measure the transferability under this model:
tf = fc(X

adv)− fy(X
adv) where c 6= y is the label having maximum score among non-ground-truth

labels. If tf > 0 means the adversarial example fool f(·) successfully, and vice versa. As shown in
Fig. V(R), the transferability of adversarial examples of our method is generally higher than that of
FGSM and MIFGSM.

6 Attack results of STN-based model

As introduced in Sec. 2.3 in the main paper, we employ the spatial transformer network (STN)
to tune the translation parameters of the object and background, and it may post a ques-
tion if our method could also be useful in attacking STN-based CNN models. Towards
more comprehensive evaluation and answering this question, we further conduct an exper-
iment to attack the STN-based CNN implemented by [10] on the MNIST dataset. First,
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Table III. Succ. rates of ABBA and NormalBlur before (Adv. from Inc-v3) and after deblurring via original and re-trained DeblurGANv2s.
Adv. from Inc-v3 DeblurGANv2 Re-DeblurGANv2

Inc-v3 Inc-v4 IncRes-v2 Inc-v3 Inc-v4 IncRes-v2 Inc-v3 Inc-v4 IncRes-v2

ABBA 65.3 31.1 30.0 31.4 24.2 18.4 22.9 22.5 16.8
NormalBlur 36.4 20.8 18.5 15.2 10.0 4.7 26.4 18.1 13.7

we use our ABBA to attack the STN-based CNN with different hyper-parameters, i.e.,
the maximum translations (εθ) and the maximum number of valid kernel elements (εθ).
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Figure VI. Success rate of ABBA w.r.t. different εθ and ε that are
maximum translations and maximum number of valid kernel ele-
ments.

As shown in Fig. VI, the success rate of our
method gradually increases as the εθ and ε be-
come larger, which demonstrates the effectiveness
of our method. Second, we show several examples
of our attack results in Fig. VIII with two groups
of hyper-parameters, i.e., εθ = 0.5, ε = 15.0
and εθ = 1.0, ε = 15.0. As shown in Fig. VIII,
with the small εθ = 0.5, our method can generate
slightly blurred handwritten digits that look natu-
rally but fool the STN-based CNN. When using
larger εθ = 1.0, the adversarial images become
more blurred but still natural.

7 Benefits
to Blur-Robustness Enhancement

We conduct an experiment that trains the IncResv2 on the clean imagenet containing 1.1 million
images and a modified imagenet with 1.3 million images including 0.2 million ABBA-blurred images,
and evaluate the accuracy on the motion-blur subsets of ImageNetC [11]. We see that the Top-1 error
of IncResv2 decreases from 73.0% to 53.2% with our blurred images, which strongly demonstrates
the impact of ABBA to enhance the blur-robustness of DNNs.

8 More results of ABBAphysical

In Figure VII, we present four more examples generated by ABBAphysical that captures real-world
images according the camera moving parameters estimated by ABBA. We try our best to compare
synthesis images from ABBA with the physical images from ABBAphysical, demonstrating the motion
blurred images generated by our method could be really found in the real world.

9 Defense Results of Re-trained DeblurGANv2 on ABBA and NormalBlur

NormalBlur generates motion-blurred image by optimizing Eq. (5) while fixing all kernel elements
as 1

N , which is equivalent to averaging neighbouring video frames where object and background
move uniformly. In contrast, ABBA effectively tunes kernel elements to fool DNNs. Actually, the
intention of Sec 3.5 is to study the effectiveness of existing deblurring method (i.e., the ‘already-
deployed’ deblurring modules) in defending the attack of ABBA with the tunable kernels. More
detailed response: ¶ NormalBlur utilizes Eq. (5) to generate motion blur and has considered
background motion via optimizing θb. · In practice, our assumption is that we cannot get real
motion information in the scene and there is only one given static image. Hence, our attack is
conducted under this assumption, i.e., the object and background move uniformly (i.e., at fixed speed)
in a short time, which is a common phenomenon in the real world (e.g., walking). Our attack could be
easily extended to other cases where more motion information is available (e.g., video). ¸ With the
DeblurGANv2 trained on normal motion blur dataset (e.g., GOPRO [22]), the decrease in succ. rate
before and after deblurring in Table III have shown that the NormBlur can be defended more easily
than ABBA, which demonstrates ABBA’s tunable kernels facilitate achieving high attack success
rate and anti-deblurring capability. As suggested by the reviewer, when we further retrained the
DeblurGANv2 with blurred images from ABBA. ABBA can be defended more easily, which further
indicates a promising direction of combining ABBA and the existing deblurring method for effective
defense.
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Figure VII. Comparing the visualization examples of ABBAphysical with those of ABBA.

 
Original
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Original
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Figure VIII. Visualization examples of ABBA for attacking STN-based CNN with two group hyper-parameters, i.e., εθ = 0.5, ε = 15.0 and
εθ = 1.0, ε = 15.0.
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Figure IX. Seven visualization results of ABBApixel, ABBA, DIM, and TIDIM. All adversarial examples fool the Inc-v3 model.
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Figure X. Seven visualization results of ABBApixel, ABBA, DIM, and TIDIM. All adversarial examples fool the Inc-v3 model.
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