
A Preliminaries on the Sinkhorn Potentials

Lemma A.1 (Lemma A.2 elaborated). For a probability measure α ∈M+
1 (X ), use α−a.e. to denote

“almost everywhere w.r.t. α". The pair (f, g) are the Sinkhorn potentials of the entropy-regularized
optimal transport problem (5) if they satisfy

f = A(g, β), α− a.e. and g = A(f, α), β − a.e., (22)

or equivalently ∫
X
h(x, y)dβ(y) = 1, α− a.e., (23)∫

X
h(x, y)dα(x) = 1, β − a.e., (24)

where h(x, y):= exp
(

1
γ (f(x) + g(y)− c(x, y))

)
.

One can observe that the Sinkhorn potentials are not unique. In fact, for α 6= β, the pair (fα,β , gα,β)
remains optimal under a constant shift, i.e. (fα,β + C, gα,β − C) are still the Sinkhorn potentials of
OTγ(α, β) for an arbitrary finite C ∈ R. Fortunately, it is proved in Cuturi [2013] that the Sinkhorn
potentials are unique up to such scalar translation.
To reduce the ambiguity, we fix an xo ∈ X and choose fα,β(xo) = 0, since otherwise we can always
shift fα,β and gα,β by the amount of fα,β(xo). While it is possible that xo /∈ supp(α), such choice
of fα,β is still feasible. This is because the Sinkhorn potentials can be naturally extended to the entire
X from Lemma 2.1, even though the above optimality condition characterizes the Sinkhorn potentials
on supp(α), supp(β) only.
Further, this choice of fα,β allows us to bound ‖fα,β‖∞ given that the ground cost function c is
bounded on X .

Assumption A.1. The cost function c(x, y) is bounded: ∀x, y ∈ X , c(x, y) ≤Mc.

Lemma A.2 (Boundedness of the Sinkhorn Potentials). Let (f, g) be the Sinkhorn potentials of
problem (5) and assume that there exists xo ∈ X such that f(xo) = 0 (otherwise shift the pair by
f(xo)). Then, under Assumption A.1, ‖f‖∞ ≤ 2Mc and ‖g‖∞ ≤ 2Mc.

Next, we analyze the Lipschitz continuity of the Sinkhorn potential fα,β(x) with respect to x.

Assumption A.2. The cost function c is Gc-Lipschitz continuous with respect to one of its inputs:

∀x, x′ ∈ X , |c(x, y)− c(x′, y)| ≤ Gc‖x− x′‖.

Assumption A.2 implies that ∇xc(x, y) exists and for all x, y ∈ X , ‖∇xc(x, y)‖ ≤ Gc. It further
ensures the Lipschitz-continuity of the Sinkhorn potential.

Lemma A.3 (Proposition 12 of Feydy et al. [2019]). Under Assumption A.2, for a fixed pair of
measures (α, β), the Sinkhorn potential fα,β : X → R is Gc-Lipschitz continuous,

∀x, x′ ∈ X , |fα,β(x)− fα,β(x′)| ≤ Gc‖x− x′‖. (25)

Further, the gradient∇fα,β exists at every point x ∈ X , and ‖∇fα,β(x)‖ ≤ Gc,∀x ∈ X .

Assumption A.3. The gradient of the cost function c is Lc-Lipschitz continuous: for all x, x′ ∈ X ,

‖∇1c(x, y)−∇1c(x
′, y)‖ ≤ Lc‖x− x′‖.

Lemma A.4. Assume Assumptions A.2 and A.3, and denoteLf :=4G2
c/γ+Lc. For a pair of measures

(α, β), the gradient of the corresponding Sinkhorn potential fα,β : X → R is Lipschitz continuous,

∀x, x′ ∈ X , ‖∇fα,β(x)−∇fα,β(x′)‖ ≤ Lf‖x− x′‖. (26)

A.1 Computation of Sinkhorn Potentials

The Sinkhorn potential is the cornerstone of the entropy regularized OT problem OTγ(α, β). Hence,
a key component of our method is to efficiently compute this quantity. An efficient method is given
in Genevay et al. [2016] when both α and β are discrete measures (discrete case), as well as when α
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is discrete but β is continuous (semi-discrete case). More precisely, by plugging in the optimality
condition on g in (7), the dual problem (5) becomes

OTγ(α, β) = max
f∈C
〈f, α〉+ 〈A(f, α), β〉. (27)

Note that (27) only depends on the values of f on the support of α, supp(α), which can be represented
by a finite dimensional vector f ∈ R|supp(α)|. Viewing the discrete measure α as a weight vector ωα
on supp(α), we have

OTγ(α, β) = max
f∈Rd

{
F (f) := f>ωα + Ey∼β [A(f , α)(y)]

}
,

that is, OTγ(α, β) is equivalent to a standard concave stochastic optimization problem, where
randomness of the problem comes from β (see Proposition 2.1 in Genevay et al. [2016]). Hence, the
problem can be solved using off-the-shelf stochastic optimization methods, e.g. stochastic gradient
descent (SGD). Since the entropy regularized optimal transport problem is strongly convex, SGD
converges at the rate O(1/k) for such problem, where k is the number of SGD steps. Besides, the
per-iteration complexity is O(n2) where n is the support size of input measures. In the main body,
this method is referred as SPγ(α, β).

B Lipschitz Continuity of the Sinkhorn Potential

In this section, we provide several lemmas to show the Lipschitz continuity (w.r.t. the underlying
probability measures) of the Sinkhorn potentials and the functional gradients we derived in Proposition
3.1. These lemmas will be used in the convergence analysis and the mean field analysis for SD .

B.1 Lipschitz Continuity Study: Sinkhorn Potentials

We first show the Lipschitz continuity of the Sinkhorn potential w.r.t. the bounded Lipschitz norm
of the input measures. The bounded Lipschitz metric of measures dbl :M+

1 (X )×M+
1 (X )→ R+

with respect to the bounded continuous test functions is defined as

dbl(α, β):= sup
‖ξ‖bl≤1

|〈ξ, α〉 − 〈ξ, β〉|,

where, given a function ξ ∈ C(X ), we denote

‖ξ‖bl:= max{‖ξ‖∞, ‖ξ‖lip}, with‖ξ‖lip:= max
x,y∈X

|ξ(x)− ξ(y)|
‖x− y‖

.

We note that dbl metrizes the weak convergence of probability measures (see Theorem 1.12.4 in Van
Der Vaart and Wellner [1996]), i.e. for a sequence of probability measures {αn},

lim
n→∞

dbl(αn, α) = 0⇔ αn ⇀ α.

Lemma B.1. (i) Under Assumptions A.1 and A.2, for two given pairs of measures (α, β) and (α′, β′),
the Sinkhorn potentials are Lipschitz continuous with respect to the bounded Lipschitz metric:

‖fα,β − fα′,β′‖∞ ≤ Gbl[dbl(α′, α) + dbl(β
′, β)],

‖gα,β − gα′,β′‖∞ ≤ Gbl[dbl(α′, α) + dbl(β
′, β)].

where Gbl = 2γ exp(2Mc/γ)G′bl/(1− λ2) with G′bl = max{exp(3Mc/γ), 2Gc exp(3Mc/γ)/γ}
and λ = exp(Mc/γ)−1

exp(Mc/γ)+1 .
(ii) If (α′, β′) are of the particular form α′ = Tφ]α and β′ = β where Tφ(x) = x+ φ(x), φ ∈ Hd,
we further have that the Sinkhorn potentials are Lipschitz continuous with respect to the mapping φ.
That is, letting GT :=2Gc exp(3Mc/γ)/γ and ε > 0, we have

‖fT]α,β − fα,β‖∞ ≤ GT ‖φ‖2,∞,
‖gT]α,β − gα,β‖∞ ≤ GT ‖φ‖2,∞.

Please see the proof in Appendix C.3. Importantly, this lemma implies that the weak convergence of
(α, β) ensures the convergence of the Sinkhorn potential: (α′, β′) ⇀ (α, β)⇒ (fα′,β′ → fα,β) in
terms of the L∞ norm.
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Remark B.1. While we acknowledge that the factor exp 1/γ is non-ideal, such quantity constantly
appears in the literature related to the Sinkhorn divergence, e.g. Theorem 5 in Luise et al. [2019] and
Theorem 3 in Genevay et al. [2019b]. It would be an interesting future work to remove this factor.

Remark B.2. We note that the Lemma B.1 is strictly stronger than preexisting results: (1) Proposition
13 of Feydy et al. [2019] only shows that the dual potentials are continuous (not Lipschitz continuous)
with the input measures, which is insufficient for the mean field limit analysis conducted in Section
4.2. (2) Under the infinity norm ‖ · ‖∞, Luise et al. [2019] bound the variation of the Sinkhorn
potential by the total variation distance of probability measures (α, β) and (α′, β′). Such result
means that strong convergence of (α, β) implies the convergence of the corresponding Sinkhorn
potential. This is strictly weaker than (i) of Lemma B.1. (3) Further, to prove the weak convergence of
the corresponding Sinkhorn potential, Proposition E.5 of the above work Luise et al. [2019] requires
the cost function c ∈ Cs+1 with s > d/2, where d is the problem dimension. However, Lemma B.1
only assumes c ∈ C1, independent of d. Hence, Lemma B.1 makes a good contribution over existing
results.

The continuity results in Lemma B.1 can be further extended to the gradient of the Sinkhorn potentials.

Lemma B.2. (i) Under Assumptions A.1 and A.2, for two given pairs of measures (α, β) and (α′, β′),
with Gbl[dbl(α′, α) + dbl(β

′, β)] ≤ 1, the gradient of the Sinkhorn potentials are locally Lipschitz
continuous with respect to the bounded Lipschitz metric: With Lbl = 2GcGbl,

‖∇fα,β −∇fα′,β′‖∞ ≤ Lbl[dbl(α′, α) + dbl(β
′, β)],

‖∇gα,β −∇gα′,β′‖∞ ≤ Lbl[dbl(α′, α) + dbl(β
′, β)].

(ii) If (α′, β′) are of the particular form α′ = Tφ]α and β′ = β where Tφ(x) = x+φ(x) for φ ∈ Hd,
we further have that the Sinkhorn potentials are Lipschitz continuous with respect to the mapping φ:
Let GT :=2Gc exp(3Mc/γ)/γ and assume 2GT ‖φ‖2,∞ ≤ 1. We have with LT = 2GcGT

‖∇fT]α,β −∇fα,β‖∞ ≤ LT ‖φ‖2,∞,
‖∇gT]α,β −∇gα,β‖∞ ≤ LT ‖φ‖2,∞.

The proof is given in Appendix C.4. The two lemmas B.1 B.2 are crucial to the analysis of the
finite-time convergence and the mean field limit of Sinkhorn Descent .

B.2 Lipschitz Continuity Study: Fréchet Derivative
From Definition 1.1, the Fréchet derivatives derived in Proposition 3.1 are functions inHd mapping
from X to Rd. They are Lipschitz continuous provided that the kernel function k is Lipschitz.

Assumption B.1. The kernel function k : X × X → R+ is Lipschitz continuous on X : for any y
and x, x′ ∈ X

|k(x, y)− k(x′, y)| ≤ Gk‖x− x′‖. (28)

Lemma B.3. Define the functional on RKHS F [ψ]:=OTγ
(
(I + ψ)]α, β

)
. Assume Assumptions A.1,

A.2, A.3, and B.1. The Fréchet derivative DF [0] ∈ Hd is Lipschitz continuous: Denote Lψ = GcGk.
For any x, x′ ∈ X ,

‖DF [0](x)−DF [0](x′)‖ ≤ Lψ‖x− x′‖.

Using the above result, the functional gradient (13) can be shown to be Lipschitz continuous.

Corollary B.1. Assume Assumptions A.1, A.2, A.3, and B.1. Recall Lψ = GcGk from the above
lemma. The Fréchet derivative DSα[0] ∈ Hd is Lipschitz continuous: For any x, x′ ∈ X ,

‖DSα[0](x)−DSα[0](x′)‖ ≤ Lψ‖x− x′‖.

B.3 Last term convergence of SD

With a slight change to SD , we can claim its last term convergence: In each iteration, check if
S(αt, {βi}ni=1) ≤ ε. If it holds, then we have already identified an ε approximate stationary point
and we terminate SD ; otherwise we proceed. The termination happens within O(1/ε) loops as the
nonnegative objective (4) is reduced at least O(ε) per-round.

14



C Proof of Lemmas

C.1 Proof of Lemma A.3

For simplicity, we omit the subscript of the Sinkhorn potential fα,β and simply use f . Recall the
definition of h(x, y) in Lemma A.1:

h(x, y) = exp

(
1

γ
(f(x) + g(y)− c(x, y))

)
.

Subtract the optimality condition (23) at different points x and x′ to derive∫
X

(
h(x, y)− h(x′, y)

)
dβ(y) = 0⇒∫

X
h(x′, y)

(
exp(

f(x)− f(x′)− c(x, y) + c(x′, y)

γ
)− 1

)
dβ(y) = 0

Since
∫
X h(x′, y)dβ(y) = 1 (Lemma A.1), we have∫
X
h(x′, y) exp(

f(x)− f(x′)− (c(x, y)− c(x′, y))

γ
)dβ(y) = 1

⇒
∫
X
h(x′, y) exp(

c(x′, y)− c(x, y)

γ
)dβ(y) = exp(

f(x′)− f(x)

γ
).

Further, since we have h(x′, y) ≥ 0 and from Assumption A.1 we have

exp(
c(x′, y)− c(x, y)

γ
) ≤ exp(

|c(x′, y)− c(x, y)|
γ

) ≤ exp(
Gc‖x′ − x‖

γ
),

we derive

|f(x′)− f(x)

γ
| ≤ | log(

∫
X
h(x′, y) exp(

Gc‖x′ − x‖
γ

)dβ(y))| ≤ Gc‖x′ − x‖
γ

,

by using
∫
X h(x′, y)dβ(y) = 1 again, which consequently leads to

|f(x′)− f(x)| ≤ Gc‖x′ − x‖.

C.2 Proof of Lemma A.4

Recall the expression of∇f in (14):

∇f(x) =

∫
X
h(x, y)∇xc(x, y)dβ(y), (29)

where h(x, y):= exp
(

1
γ (fα,β(x) +A[fα,β , α](y)− c(x, y))

)
. For any x, x′ ∈ X such that ‖x1 −

x2‖ ≤ γ
2Gc

, we bound

‖∇f(x)−∇f(x′)‖ = ‖
∫
X
h(x, y)∇xc(x, y)− h(x′, y)∇xc(x′, y)dβ(y)‖

≤
∫
X
‖h(x, y)∇xc(x, y)− h(x′, y)∇xc(x′, y)‖dβ(y)

To bound the last integral, observe that

h(x, y)∇xc(x, y)− h(x′, y)∇xc(x′, y)

= h(x, y)
(
∇xc(x, y)−∇xc(x′, y)

)
+
(
h(x, y)− h(x′, y)

)
∇xc(x′, y),

and therefore

‖h(x, y)∇xc(x, y)− h(x′, y)∇xc(x′, y)‖
≤ h(x, y)‖∇xc(x, y)−∇xc(x′, y)‖+ |h(x, y)− h(x′, y)|‖∇xc(x′, y)‖.
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For the first term, we use the Lipschitz continuity of∇xc from Assumption A.3 to bound

h(x, y)‖∇xc(x, y)−∇xc(x′, y)‖ ≤ Lch(x, y)‖x− x′‖.

For the second term, observe that ‖∇xc(x′, y)‖ ≤ Gc from Assumption A.2 and

|h(x, y)− h(x′, y)| = h(x′, y)| exp(
f(x)− f(x′)− c(x, y) + c(x′, y)

γ
)− 1|

< 2h(x′, y)|f(x)− f(x′)− c(x, y) + c(x′, y)

γ
|.

Since | exp(z) − 1| < 2|z| when |z| ≤ 1 (z = | f(x)−f(x′)−c(x,y)+c(x′,y)
γ | ≤ 1 from the restriction

on ‖x− x′‖), we further derive

|h(x, y)− h(x′, y)| ≤ 2Gc
γ
h(x′, y)[2Gc‖x− x′‖] =

4G2
c

γ
h(x′, y)‖x− x′‖.

Using the optimality condition
∫
X h(x′, y)dβ(y) = 1 and

∫
X h(x, y)dβ(y) = 1 from Lemma 2.1,

we derive

‖∇f(x)−∇f(x′)‖ ≤
∫
X
Lch(x, y)‖x−x′‖+ 4G2

c

γ
h(x′, y)‖x−x′‖dβ(y) = (Lc+

4G2
c

γ
)‖x−x′‖.

This implies that ∇2f(x) exists and is bounded from above: ∀x ∈ X , ‖∇2f(x)‖ ≤ Lf , which
concludes the proof.

C.3 Proof of Lemma B.1

Let (f, g) and (f ′, g′) be the Sinkhorn potentials to OTγ(α, β) and OTγ(α′, β′) respectively. Denote
u:= exp(f/γ), v:= exp(g/γ) and u′:= exp(f ′/γ), v′:= exp(g′/γ). From Lemma A.2, u is bounded
in terms of the L∞ norm:

‖u‖∞ = max
x∈X
|u(x)| = max

x∈X
exp(f/γ) ≤ exp(2Mc/γ),

which also holds for v, u′, v′. Additionally, from Lemma A.3,∇u exists and ‖∇u‖ is bounded:

max
x
‖∇u(x)‖ = max

x

1

γ
|u(x)|‖∇f(x)‖ ≤ 1

γ
‖u(x)‖∞max

x
‖∇f(x)‖ ≤ Gc exp(2Mc/γ)/γ.

Define the mapping Aαµ:=1/(Lαµ) with

Lαµ =

∫
X
l(·, y)µ(y)dα(y),

where l(x, y):= exp(−c(x, y)/γ). From Assumption A.1, we have ‖l‖∞ ≤ exp(Mc/γ) and from
Assumption A.2 we have ‖∇xl(x, y)‖ ≤ exp(Mc/γ)Gcγ . From the optimality condition of f
and g, we have v = Aαu and u = Aβv. Similarly, v′ = Aα′u

′ and u′ = Aβ′v
′. Further use

dH : C(X )× C(X )→ R to denote the Hilbert metric of continuous functions,

dH(µ, ν) = log max
x,x′∈X

µ(x)ν(x′)

µ(x′)ν(x)
.

Note that dH(µ, ν) = dH(1/µ, 1/ν) if µ(x) > 0 and ν(x) > 0 ∀x ∈ X and hence dH(Lαµ,Lαν) =
dH(Aαµ,Aαν). Under the above notations, we introduce the following existing result.

Lemma C.1 (Birkhoff-Hopf Theorem Lemmens and Nussbaum [2012], see Lemma B.4 in Luise
et al. [2019]). Let λ = exp(Mc/γ)−1

exp(Mc/γ)+1 and α ∈ M+
1 (X ). Then for every u, v ∈ C(X ), such that

u(x) > 0, v(x) > 0 for all x ∈ X , we have

dH(Lαu, Lαv) ≤ λdH(u, v).
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Note that from the definition of dH , one has

‖ logµ− log ν‖∞ ≤ dH(µ, ν) = max
x

[logµ(x)− log ν(x)] + max
x

[log ν(x)− logµ(x)]

≤ 2‖ logµ− log ν‖∞.

In the following, we derive upper bound for dH(µ, ν) and use such bound to analyze the Lipschitz
continuity of the Sinkhorn potentials f and g.
Construct ṽ:=Aαu

′. Using the triangle inequality (which holds since v(x), v′(x), ṽ(x) > 0 for all
x ∈ X ), we have

dH(v, v′) ≤ dH(v, ṽ) + dH(ṽ, v′) ≤ λdH(u, u′) + dH(ṽ, v′),

where the second inequality is due to Lemma C.1. Similarly, Construct ũ:=Aβv
′. Apply Lemma C.1

again to obtain

dH(u, u′) ≤ dH(u, ũ) + dH(ũ, u′) ≤ λdH(v, v′) + dH(ũ, u′).

Together, we obtain

dH(v, v′) ≤ λ2dH(v, v′) + dH(ṽ, v′) + λdH(ũ, u′) ≤ λ2dH(v, v′) + dH(ṽ, v′) + dH(ũ, u′),

which leads to
dH(v, v′) ≤ 1

1− λ2
[dH(ṽ, v′) + dH(ũ, u′)].

To bound dH(ṽ, v′) and similarly dH(ũ, u′), observe the following:

dH(v′, ṽ) =dH(Lα′u
′, Lαu

′) ≤ 2‖ logLα′u
′ − logLαu

′‖∞

=2 max
x∈X
|∇ log(ax)([Lα′u

′](x)− [Lαu
′](x))| = 2 max

x∈X

1

ax
|[Lα′u′](x)− [Lαu

′](x)|

≤2 max{‖1/Lα′u′‖∞, ‖1/Lαu′‖∞}‖Lα′u′ − Lαu′‖∞, (30)

where ax ∈ [[Lα′u
′](x), [Lαu

′](x)]] in the second line is from the mean value theorem. Fur-
ther, in the inequality we use max{‖1/Lαu′‖∞, ‖1/Lαu′‖∞} = max{‖Aα′u′‖∞, ‖Aαu′‖∞} ≤
exp(2Mc/γ). Consequently, all we need to bound is the last term ‖Lα′u′ − Lαu′‖∞.

Result (i) We first note that ∀x ∈ X , ‖l(x, ·)u′(·)‖bl <∞: In terms of ‖ · ‖∞
‖l(x, ·)u′(·)‖∞ ≤ ‖l(x, ·)‖∞‖u′‖∞ ≤ exp(3Mc/γ) <∞.

In terms of ‖ · ‖lip, we bound

‖l(x, ·)u′(·)‖lip ≤ ‖l(x, ·)‖∞‖u′‖lip + ‖l(x, ·)‖lip‖u′‖∞
≤ exp(Mc/γ)Gc exp(2Mc/γ)/γ + exp(Mc/γ)Gc exp(2Mc/γ)/γ

= 2Gc exp(3Mc/γ)/γ <∞.

Together we have ‖l(x, y)u′(y)‖bl ≤ max{exp(3Mc/γ), 2Gc exp(3Mc/γ)/γ}. From the definition
of the operator Lα, we have

‖Lα′u′ − Lαu′‖∞ = max
x
|
∫
X
l(x, y)u′(y)dα′(y)−

∫
X
l(x, y)u′(y)dα(y)|

≤ ‖l(x, y)u′(y)‖bldbl(α′, α).

All together we derive

dH(v′, v) ≤ 2 exp(2Mc/γ)‖l(x, y)u′(y)‖bl
1− λ2

[dbl(α
′, α) + dbl(β

′, β)] (λ =
exp(Mc/γ)− 1

exp(Mc/γ) + 1
).

Further, since dH(v′, v) ≥ ‖ log v′ − log v‖∞ = 1
γ ‖f

′ − f‖∞, we have the result:

‖f ′ − f‖∞ ≤
2γ exp(2Mc/γ)‖l(x, y)u′(y)‖bl

1− λ2
[dbl(α

′, α) + dbl(β
′, β)]. (31)

Similar argument can be made for ‖g′ − g‖∞.
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Result (ii) Recall that α′ = Tφ]α and β′ = β with Tφ(x) = x + φ(x). For simplicity we denote
f ′ = fTφ]α,β and g′ = gTφ]α,β and f = fα,β and g = gα,β . We denote similarly u′, v′, u, and v.
Use (30) and the change-of-variables formula of the push-forward measure to obtain

‖LTφ]αu′ − Lαu′‖∞ = max
x

∫
[l(x, Tφ(y))u′(Tφ(y))− l(x, y)u′(y)]dα(y).

We now bound the integrand:

|l(x, Tφ(y))u′(Tφ(y))− l(x, y)u′(y)|
=|l(x, Tφ(y))u′(Tφ(y))− l(x, Tφ(y))u′(y)|+ |l(x, Tφ(y))u′(y)− l(x, y)u′(y)|

≤ exp(Mc/γ) · Gc exp(2Mc/γ)

γ
‖φ(y)‖+ exp(Mc/γ)

Gc
γ
· exp(2Mc/γ) · ‖φ(y)‖

≤2Gc exp(3Mc/γ)

γ
· ‖φ(y)‖,

where we use the Lipschitz continuity of u′ for the first term and the Lipschitz continuity of l for the
second term.

C.4 Proof of Lemma B.2

From the restriction on dbl(α′, α) + dbl(β
′, β) or the size of the mapping ‖φ‖∞, we always have

|f(x) + g(y)− f ′(x)− g′(y)| < 1 from Lemma B.1.
Denote the Sinkhorn potentials to OTγ(α, β) and OTγ(α′, β′) by (f, g) and (f ′, g′) respectively.
From the expression (14) of∇f (and∇f ′), we have

‖∇f(x)−∇f ′(x)‖ =‖
∫
X

(h(x, y)− h′(x, y))∇xc(x, y)dβ(y)‖

=‖
∫
X
h′(x, y)(exp(f(x) + g(y)− f ′(x)− g′(y))− 1)∇xc(x, y)dβ(y)‖

≤
∫
X
h′(x, y)| exp(f(x) + g(y)− f ′(x)− g′(y))− 1|‖∇xc(x, y)‖dβ(y)

≤
∫
X

2h′(x, y)|f(x) + g(y)− f ′(x)− g′(y)|‖∇xc(x, y)‖dβ(y),

where h′(x, y):= exp( 1
γ (f ′(x) + g′(y)− c(x, y))), the second inequality holds since |exp(x)− 1| <

2|x| when |x| ≤ 1 and |f(x) + g(y)− f ′(x)− g′(y)| < 1. We can use results from Lemma B.1 to
bound the term |f(x) + g(y)− f ′(x)− g′(y)|.
Result (i): Using (i) of Lemma B.1, we bound

‖∇f(x)−∇f ′(x)‖ ≤ 2GcGbl[dbl(α
′, α) + dbl(β

′, β)].

Result (ii): Using (ii) of Lemma B.1, we bound

‖∇f(x)−∇f ′(x)‖ ≤ 2GcGT ‖φ‖∞.

C.5 Proof of Proposition 3.1

We will compute DF1[0] based on the definition of the Fréchet derivatives in Definition 1.1. The
computation of DF2[0] follows similarly.
Denote Tψ = I + ψ. Note that we are interested in the case when ψ = 0 and hence Tψ+εφ(x) =
Tεφ(x) = x + εφ(x). Additionally, Tψ is the identity operator when ψ = 0 and hence F1[0] =
OTγ(α, β). For simplicity, we drop the subscript of Tεφ (ψ = 0) and simply denote it by T in the
rest of the proof. Let f and g be the Sinkhorn potentials to OTγ(α, β), by (5) and the optimality of f
and g, one has

OTγ(α, β) = 〈f, α〉+ 〈g, β〉.
However, f and g are not necessarily the optimal dual variables for OTγ(T]α, β), so one has

OTγ(T]α, β) ≥ 〈f, T]α〉+ 〈g, β〉 − γ〈h− 1, T]α⊗ β〉.
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Using the optimality from Lemma A.1, we have
∫
X h(x, y)dβ(y) = 1 and hence 〈h−1, T]α⊗β〉 = 0.

Subtracting the 1st equality from the last inequality,

OTγ(T]α, β)−OTγ(α, β) ≥ 〈f, T]α− α〉.
Use the change-of-variables formula of the push-forward measure to obtain

1

ε
〈f, T]α− α〉 =

1

ε

∫
X

(
(f ◦ T )(x)− f(x)

)
dα(x) =

∫
X
∇f(x+ ε′φ(x))φ(x)dα(x),

where ε′ ∈ [0, ε] is from the mean value theorem. Further use the Lipschitz continuity of ∇f in
Lemma A.4, we have

lim
ε→0

1

ε
〈f, T]α− α〉 =

∫
X
∇f(x)φ(x)dα(x).

Since φ ∈ Hd, we have φ(x) = 〈φ, k(x, ·)〉Hd and hence

lim
ε→0

1

ε

(
OTγ(T]α, β)−OTγ(α, β)

)
≥ 〈
∫
∇f(x)k(x, ·)dα(x), φ〉Hd .

Similarly, let f ′ and g′ be the Sinkhorn potentials to OTγ(T]α, β), using f ′ → f as ε→ 0, we can
have an upper bound

lim
ε→0

1

ε

(
OTγ(T]α, β)−OTγ(α, β)

)
≤ 〈
∫
X

lim
ε→0
∇f ′(x+ ε′φ(x))k(x, ·)dα(x), φ〉Hd .

Since φ ∈ Hd, we have ‖φ‖2,∞ ≤MH‖φ‖Hd <∞ withMH ∈ R+ being a constant. Using Lemma
B.1, we have that∇f ′ is Lipschitz continuous with respect to the mapping

lim
ε→0
‖∇f ′(x+ ε′φ(x))−∇f(x+ ε′φ(x))‖ ≤ lim

ε→0
εGT ‖φ‖2,∞ = 0.

Besides, using Lemma A.4 we have that ∇f is continuous and hence limε→0∇f(x + ε′φ(x)) =
∇f(x). Consequently we have limε→0∇f ′(x+ ε′φ(x)) = ∇f(x) and hence

lim
ε→0

1

ε

(
OTγ(T]α, β)−OTγ(α, β)

)
= 〈∇f(x)k(x, ·)dα(x), φ〉Hd .

From Definition 1.1, we have the result of DF1[0]. The result of DF2[0] can be obtained similarly.

C.6 Proof of Lemma 4.2

From Proposition 3.1 and (13), we recall the expression of DSα[0] by

DSα[0] =

∫
X

[
1

n

n∑
i=1

∇fα,βi(x)−∇fα,α(x)]k(x, y)dα(x), (32)

and we have T [α](x) = x− ηDSα[0](x). Consequently, using Corollary B.1 we have

‖T [α]‖lip = max
x 6=y

‖T [α](x)− T [α](y)‖
‖x− y‖

= max
x 6=y

‖x− y − η(DSα[0](x)−DSα[0](y))‖
‖x− y‖

≤ 1 + η‖DSα[0]‖lip ≤ 1 + ηGcGk.

The following lemma states that T [α] is Lipschitz w.r.t. α in terms of the bounded Lipschitz norm.

Lemma C.2. For any y ∈ X and any α, α′ ∈M+
1 (X ), we have

‖T [α](y)− T [α′](y)‖2,∞ ≤ ηmax{dLfDk + dGcGk, DkLbl}dbl(α′, α).

We defer the proof to Appendix C.6.1. Based on such lemma, for any h with ‖h‖bl ≤ 1, we have

|〈h, T [α]]α〉 − 〈h, T [α′]]α
′〉| = |〈h ◦ T [α], α〉 − 〈h ◦ T [α′], α′〉|

≤|〈h ◦ T [α], α〉 − 〈h ◦ T [α], α′〉|+ |〈h ◦ T [α], α′〉 − 〈h ◦ T [α′], α′〉|.
We now bound these two terms individually: For the first term,

|〈h ◦ T [α], α〉 − 〈h ◦ T [α], α′〉| ≤ ‖h ◦ T [α]‖bldbl(α, α′)
≤ max{‖h‖∞, ‖h‖lip‖T [α]‖lip}dbl(α, α′) ≤ (1 + ηGcGk)dbl(α, α

′);
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And for the second term, use Lemma C.2 to derive

|〈h ◦ T [α], α′〉 − 〈h ◦ T [α′], α′〉|
≤ ‖h ◦ T [α]− h ◦ T [α′]‖∞ ≤ ‖h‖lip max

x∈X
‖T [α](x)− T [α′](x)‖

≤ ηmax{dLfDk + dGcGk, DkLbl}dbl(α′, α).

Combining the above inequalities, we have the result

dbl(T [α]]α, T [α′]]α
′) ≤ (1 + ηGcGk + ηmax{dLfDk + dGcGk, DkLbl})dbl(α′, α).

C.6.1 Proof of Lemma C.2

Recall the definition of T [α](x) = x − ηDSα[0](x), where the functional Sα is defined in (9)
and the Fréchet derivative is computed in (13). Denote ξ(x):= 1

n

∑n
i=1∇fα,βi(x)−∇fα,α(x) and

ξ′(x):= 1
n

∑n
i=1∇fα′,βi(x)−∇fα′,α′(x). For any y ∈ X , we have

‖T [α](y)− T [α′](y)‖ ≤ η‖DSα[0](y)−DSα′ [0](y)‖

≤η‖
∫
X
ξ(x)k(x, y)dα(x)−

∫
X
ξ′(x)k(x, y)dα′(x)‖

≤η‖
∫
X

(ξ(x)− ξ′(x)) k(x, y)dα(x)‖+ η‖
∫
X
ξ′(x)k(x, y)d (α(x)− α′(x)) ‖.

For the first term, use Lemma B.2 to bound

‖
∫
X

(ξ(x)− ξ′(x)) k(x, y)dα(x)‖

=‖
∫
X

(
1

n
[

n∑
i=1

∇fα,βi(x)−∇fα′,βi(x)]−∇fα,α(x) +∇fα′,α′(x)

)
k(x, y)dα(x)‖

≤DkLbldbl(α
′, α).

For the second term, we bound

‖
∫
X
ξ′(x)k(x, y)d (α(x)− α′(x)) ‖ ≤ ‖

∫
X
ξ′(x)k(x, y)d (α(x)− α′(x)) ‖1

≤
d∑
i=1

|
∫
X

[ξ′(x)]ik(x, y)d (α(x)− α′(x)) |

≤
d∑
i=1

‖[ξ′(x)]ik(·, y)‖bldbl(α′, α).

Therefore, we only need to bound
∑d
i=1 ‖[

1
n

∑n
i=1∇fα′,βi(x)−∇fα′,α′(x)]ik(x, y)‖bl. In terms

of L∞ norm, we have
d∑
i=1

‖[ 1

n

n∑
i=1

∇fα′,βi(·)−∇fα′,α′(·)]ik(·, y)‖∞ ≤ dDk‖[∇fα′,βi ]i‖∞ ≤ dDkGc.

In terms of ‖ · ‖lip, denote ∇̃(x) = 1
n

∑n
i=1∇fα′,βi(x)−∇fα′,α′(x). For all x, x′ ∈ X , we have

|[∇̃(x)]ik(x, y)− [∇̃(x′)]ik(x′, y)|
‖x− x′‖

≤ |[∇̃(x)]ik(x, y)− [∇̃(x′)]ik(x, y)|+ |[∇̃(x′)]ik(x, y)− [∇̃(x′)]ik(x′, y)|
‖x− x′‖

≤ LfDk +GcGk,

and hence
∑d
i=1 ‖[

1
n

∑n
i=1∇fα′,βi(·)−∇fα′,α′(·)]ik(·, y)‖lip ≤ dLfDk + dGcGk. All together,

we have for any y ∈ X
‖T [α](y)− T [α′](y)‖ ≤ ηmax{dLfDk + dGcGk, DkLbl}dbl(α′, α).

20



C.7 Proof of Lemma 4.1

We first recall a proposition from Feydy et al. [2019], which shows that the dual potentials (more
precisely, their extensions to the whole domain) are the variations of OTγ w.r.t. the underlying
probability measure.
Definition C.1. We say h ∈ C(X ) is the first-order variation of a functional F :M+

1 (X )→ R at
α ∈M+

1 (X ) if for any displacement ξ = β − α with β ∈M+
1 (X ), we have

F (α+ tξ) = F (α) + t〈h, ξ〉+ o(t).

Further we denote h = ∇αF (α).
Lemma C.3. The first-order variation of OTγ(α, β)(α 6= β) with respect to the measures α and β
is the corresponding Sinkhorn potential, i.e. ∇(α,β)OTγ(α, β) = (fα,β , gα,β). Further, if α = β,
we have∇αOTγ(α, α) = 2fα,α.

Recall that αt+1 = T [αt]]α
t where the push-forward mapping is of the form T [αt](x) = x −

ηDSαt [0](x) with DSαt [0] given in (13). Using the convexity of Sγ and Lemma C.3, we have
Sγ(αt+1)− Sγ(αt)

≤〈∇αSγ(α)|α=αt+1 , αt+1 − αt〉 # convexity of Sγ

=〈 1
n

n∑
i=1

fαt+1,βi − fαt+1,αt+1 , T [αt]]α
t − αt〉 # Lemma C.3

=〈[ 1

n

n∑
i=1

fαt+1,βi − fαt+1,αt+1 ] ◦ T [αt]− [
1

n

n∑
i=1

fαt+1,βi − fαt+1,αt+1 ], αt〉. # change-of-variables

For succinctness, denote ξt:= 1
n

∑n
i=1 fαt,βi − fαt,αt . Hence, we have

Sγ(αt+1)− Sγ(αt) ≤ 〈ξt+1 ◦ T [αt]− ξt+1, αt〉 =

∫
ξt+1(x− ηDSαt [0](x))− ξt+1(x)dαt(x)

= − η
∫
〈∇ξt+1(x− η′DSαt [0](x)), DSαt [0](x)〉dαt(x),

where the last equality is from the mean value theorem with η′ ∈ [0, η]. We now bound the integral
by splitting it into three terms and analyze them one by one.∫

X
〈∇ξt+1(x− η′DSαt [0](x)), DSαt [0](x)〉dαt(x)

=

∫
X
〈∇ξt(x), DSαt [0](x)〉dαt(x) 1©

+

∫
X
〈∇ξt(x− η′DSαt [0](x))−∇ξt(x), DSαt [0](x)〉dαt(x) 2©

+

∫
X
〈∇ξt+1(x− η′DSαt [0](x))−∇ξt(x− η′DSαt [0](x)), DSαt [0](x)〉dαt(x). 3©

For 1©, since DSαt [0] ∈ Hd, we have DSαt [0](x) = 〈DSαt [0], k(x, ·)〉 and hence∫
X
〈∇ξt(x), DSαt [0](x)〉dαt(x) =

∫
〈∇ξt(x)k(x, ·), DSαt [0]〉Hddαt(x)

= ‖DSαt [0]‖2Hd = S(αt, {βi}ni=1),

where the last equality is from the Definition 4.1 and the expression of DSα[0] in (13).
For 2©, note that the summands of ∇ξt are of the form ∇fα,β (or ∇fα,α) which is proved to be
Lipschitz in Lemma A.4. Consequently, we bound

|
∫
〈∇ξt(x− η′DSαt [0](x))−∇ξt(x), DSαt [0](x)〉dαt(x)|

≤
∫
‖∇ξt(x− η′DSαt [0](x))−∇ξt(x)‖‖DSαt [0](x)‖dαt(x)

≤
∫

2Lfη‖DSαt [0](x)‖2dαt(x) # Lemma A.4

≤2ηLfM
2
H‖DSαt [0]‖2Hd = 2ηLfM

2
HS(αt, {βi}ni=1). # see (1)
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where we use ∀f ∈ Hd,∃MH > 0 s.t. ‖f(x)‖ ≤MH‖f‖Hd ,∀x ∈ X in the third inequality.
For 3©, similar to 2©, the summands of ∇ξt are proved to be Lipschitz in (ii) of Lemma B.2, and
hence we bound

|
∫
〈∇ξt+1(x− η′DSαt [0](x))−∇ξt(x− η′DSαt [0](x)), DSαt [0](x)〉dαt(x)|

≤
∫
‖∇ξt+1(x− η′DSαt [0](x))−∇ξt(x− η′DSαt [0](x))‖‖DSαt [0](x)‖dαt(x)

≤
∫ √

dηLT ‖DSαt [0]‖2,∞‖DSαt [0](x)‖dαt(x) # Lemma B.2

≤2η
√
dLTM

2
H‖DSαt [0]‖2Hd = 2η

√
dLTM

2
HS(αt, {βi}ni=1) # see (1)

Combining the bounds on 1©, 2©, 3©, we have:

Sγ(αt+1)− Sγ(αt) ≤ −η(1− 2ηLfM
2
H − 2η

√
dLTM

2
H)S(αt, {βi}ni=1),

which leads to the result when we set η ≤ min{ 1
8LfM2

H
, 1

8
√
dLTM2

H
}.
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D A Discussion on the Global Optimality

D.1 Proof of Theorem 4.3

We first show
∫
X ‖ξ(x)‖2dα(x) <∞:

∫
X
‖ξ(x)‖2dα(x) =

∫
X
|| 1
n

n∑
i=1

∇fα,βi(x)−∇fα,α(x)||22dα(x)

=

∫
X

2|| 1
n

n∑
i=1

∇fα,βi(x)‖2 + 2‖∇fα,α(x)||22dα(x) ≤ 4Gf <∞

(i) S(α, {βi}ni=1) = 0 & supp(α) = X ⇒ maxβ∈M+
1 (X )〈−∇αSγ(α), β − α〉 ≤ 0:

From the integrally strictly positive definiteness of the kernel function k(x, x′), we have that∫
X ‖ξ(x)‖2dα(x) = 0 which implies ∇ξ = 1

n

∑n
i=1∇fα,βi −∇fα,α(x) = 0 for all x ∈ supp(α).

Further, we have that ξ is a constant function on X by supp(α) = X . Since we can shift the
Sinkhorn potential by a constant amount without losing its optimality, we can always ensure that ξ is
exactly a zero function. This implies the optimality condition of the Sinkhorn barycenter problem:
maxβ∈M+

1 (X )〈−∇αSγ(α), β − α〉 ≤ 0.
(ii) Using Theorem 4.1 and (i), one directly has the result.

D.2 Fully Supported Property of SD at Finite Time

WLOG, suppose that c(x, y) = ∞ if x /∈ X . From the monotonicity of Lemma 4.1, the support
of αt will not grow beyond X . Let pt be the density function of αt. The density pt+1 is given by
pt+1(x) = pt(T [αt]−1(x))

∣∣ det(∇T [αt]−1(x))
∣∣, where T [αt] is the mapping defined in (11). For a

sufficiently small step size, the determinant is always positive. Consequently, pt+1(x) = 0 implies
pt(T [αt]−1(x)) = 0 which is impossible since pt is f.s. Therefore, pt+1 is also a.c. and f.s.

D.3 Review the Assumptions for Global Convergence in Previous Works

We briefly describe the assumptions required by previous works Arbel et al. [2019], Mroueh et al.
[2019] to guarantee the global convergence to the MMD minimization problem. We emphasize that
both of these works make assumptions on the ENTIRE measure sequence. In the following, we use
νp to denote the target measure.

In Mroueh et al. [2019], given a measure ν ∈ M+
1 (X ), Mroueh et al. [2019] define the Kernel

Derivative Gramian Embedding (KDGE) of ν by

D(ν):=Ex∼ν
(
[JΦ(x)]>JΦ(x)

)
, (33)

where Φ is the feature map of a given RKHS and JΦ denotes its Jacobian matrix. Further denote the
classic Kernel Mean Embedding (KME) by

µ(ν):=Ex∼νΦ(x). (34)

SoD requires the entire variable measure sequence {νq}, q ≥ 0 to satisfy for any measure νq such
that δp,q:=µ(νq)− µ(νp) 6= 0

D(ν)δp,q 6= 0. (35)

In Arbel et al. [2019], Arbel et al. [2019] proposed two types of assumptions such that either of
them leads to the global convergence of their (noisy) gradient flow algorithm. Specifically, denote
the squared weighted Sobolev semi-norm of a function f in an RKHS with respect to a measure ν
by ‖f‖Ḣ(ν) =

∫
X ‖∇f(x)‖2dν(x). Given two probability measures on X , νp and νq, define the

weighted negative Sobolev distance ‖νp − νq‖Ḣ(ν)−1(ν) by

‖νp − νq‖Ḣ(ν)−1(ν) = sup
f∈L2(ν),‖f‖Ḣ(ν)≤1

∣∣ ∫
X
f(x)νp(x)−

∫
X
f(x)νq(x)

∣∣. (36)

In Proposition 7 of Arbel et al. [2019], if for the entire variable measure sequence {νq} generated by
their gradient flow algorithm, ‖νp − νq‖Ḣ(ν)−1(ν) is always bounded, then νq weakly converges to
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νp under the MMD sense.
Further, the authors also propose another noisy gradient flow algorithm and provide its global
convergence guarantee under a different assumption: Let fνp,νq be the unnormalized witness function
to MMD(νp, νq). Let µ be the standard gaussian distribution and let β > 0 be a noise level. Denote
Dβ(νq):=Ex∼νq,µ[‖∇fνp,νq (x+ βµ)‖2]. The noisy gradient flow algorithm globally converges if
for all n there exists a noise level βn such that

8λ2β2
nMMD(νp, νn) ≤ Dβn(νn), (37)

and
∑n
i=0 β

2
i →∞. Here λ is some problem dependent constant.

E Implementation

The code to reproducing the experimental results can be found in the following link: https://
github.com/shenzebang/Sinkhorn_Descent. Our implementation is based on Pytorch and
geomloss4.

4https://www.kernel-operations.io/geomloss/
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