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Abstract

Coreset is usually a small weighted subset of n input points in Rd, that provably
approximates their loss function for a given set of queries (models, classifiers,
etc.). Coresets become increasingly common in machine learning since existing
heuristics or inefficient algorithms may be improved by running them possibly
many times on the small coreset that can be maintained for streaming distributed
data. Coresets can be obtained by sensitivity (importance) sampling, where its
size is proportional to the total sum of sensitivities. Unfortunately, computing the
sensitivity of each point is problem dependent and may be harder to compute than
the original optimization problem at hand. We suggest a generic framework for
computing sensitivities (and thus coresets) for wide family of loss functions which
we call near-convex functions. This is by suggesting the f -SVD factorization that
generalizes the SVD factorization of matrices to functions. Example applications
include coresets that are either new or significantly improves previous results,
such as SVM, Logistic regression, M-estimators, and `z-regression. Experimental
results and open source are also provided.

1 Introduction

In common machine learning problems, we are given a set of input points P ⊆ Rd (training data),
and a loss function f : P × Rd → [0,∞), where the goal is to solve the optimization problem of
finding a query (model, classifiers, centers) x∗ that minimizes the sum of fitting errors

∑
p∈P f(p, x)

over every query x in a given (usually infinite) set. For example, in k-median (or k-mean) clustering,
each query is a set of k centers and the loss function is the distance (or squared distance) of a point
to its nearest center. In linear regression or SVM, every input point includes a label, and the loss
function is the fitting error between the classification of p via a given query to the actual label of p.
Empirical risk minimization (ERM) may be used to generalize the result from train to test data.

Modern machine learning. In practice, many of these optimization or learning problems are usually
hard even to approximate. Instead, practical heuristics with no provable guarantees may be used to
solve them. Even for well understood problems, which have close optimal solution, such as linear
regression or classes of convex optimization, in the era of big data we may wish to maintain the
solution in other computation models such as: streaming input data (“on-the-fly") that provably
uses small memory, parallel computations on distributed data (on the cloud, network or GPUs) as
well as deletion of points, constrained optimization (e.g. sparse classifiers). Cross validation [34]
or hyper-parameter tuning techniques such as AutoML [30, 32] need to evaluate many queries for
different subsets of the data, and different constraints.

Coresets. One approach is to redesign existing machine learning algorithms for faster, approximate
solutions and these new computation models. A different approach that is to use data summarization
techniques. Coresets in particular were first used to solve problems in computational geometry [1] and
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got increasing attention [3, 4, 5, 6, 8, 20, 26, 27, 38] over the recent years; see surveys in [23, 47, 50].
Informally, coreset is a small weighted subset of the input points (unlike e.g. sketches, or dimension-
reduction techniques) that approximates the loss of the input set P for every feasible query x, up to
a provable bound of 1± ε for a given error parameter ε ∈ (0, 1). The size of the coreset is usually
polynomial in 1/ε but independent or near-logarithmic in the size of the input. Since such a coreset
approximates every query (and not just the optimal one), it supports constraint optimization, and the
above computation models using merge-and-reduce trees; see details in [23]. Moreover, coresets
may be computed in time that is near-linear in the input, even for NP-hard optimization problems.
Existing heuristic or inefficient algorithms may then be applied many times on the small coreset to
obtain improved or faster models in such cases.

Example coresets in machine learning include SVM [33, 57, 58, 59, 60], `z-regression [18, 21, 54],
clustering [2, 16, 24, 31, 37, 42, 53], logistic regression [35, 47], LMS solvers and SVD [28, 44, 45,
52], where all of these works have been dedicated to suggest a coreset for a specific problem.

A generic framework for constructing coresets was suggested in [25, 40]. It states that, with
high probability, non-uniform sampling from the input set yields a coreset. Each point should be
sampled i.i.d. with a probability that is proportional to its importance or sensitivity, and assigned a
multiplicative weight which is inverse proportional to this probability, so that the expected original
sum of losses over all the points will be preserved. Here, the sensitivity of an input point p ∈ P
is defined to be the maximum of its relative fitting loss s(p) = f(p, x)/

∑
q∈P f(q, x) over every

possible query x. The size of the coreset is near-linear in the total (sum) t of these sensitivities; see
Theorem 3 for details. It turns out in the recent years that many classical and hard machine learning
problems [7, 43, 55] have total sensitivity that is near-logarithmic or independent of the input size
|P | which implies small coresets via sensitivity sampling.

Paper per problem. The main disadvantage of this framework is that the sensitivity s(p), as de-
fined above, is problem dependent: namely on the loss function f and the feasible set of queries.
Moreover, maximizing s(p) = f(p, x)/

∑
q∈P f(q, x) is equivalent to minimizing the inverse∑

q∈P f(q, x)/f(p, x). Unfortunately, minimizing the enumerator is usually the original optimiza-
tion problem which motivated the coreset in the first place. The denominator may make the problem
harder, in addition to the fact that now we need to solve this optimization problem for each and every
input point in P . While approximations of the sensitivities usually suffice, sophisticated and different
approximation techniques are frequently tailored in papers of recent machine learning conferences
for each and every problem.

1.1 Problem Statement

To this end, the goal of this paper is to suggest a framework for sensitivity bounding of a family
of functions, and not for a specific optimization problem. This approach is inspired by convex
optimization: while we do not have a single algorithm to solve any convex optimization, we do
have generic solutions for family of convex functions. E.g., linear programming, Semi-definite
programming, and so on.

We choose the following family of near-convex loss functions, with example supervised and unsuper-
vised applications that include support vector machines, logistic regression, `z-regression for any
z ∈ (0,∞), and functions that are robust to outliers. In the Supplementary Material we suggest a
more generalized version that handles a bigger family of functions; see Definition 13, and hope that
this paper will inspire the research of more and larger families.

Definition 1 (Near-convex functions). Let P ⊆ Rd be a set of n points, and let f : P ×Rd → [0,∞)
be a loss function. We call f a near-convex function if there are a convex loss function g : P ×Rd →
[0,∞) (see Definition 12 at Supplementary Material), a function h : P ×Rd → [0,∞), and a scalar
z > 0 satisfying:

(i) There exist c1, c2 > 0 such that for every p ∈ P , and x ∈ Rd,

c1 (g(p, x)z + h(p, x)z) ≤ f(p, x) ≤ c2 (g(p, x)z + h(p, x)z) .

(ii) For every p ∈ P , x ∈ Rd and b > 0, we have g(p, bx) = b · g(p, x).
(iii) For every p ∈ P and x ∈ Rd, we have h(p,x)z∑

q∈P h(q,x)
z ≤ 2

n .
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(iv) The set Xg =
{
x ∈ Rd

∣∣∣∑p∈P g(p, x)max{1,z} ≤ 1
}

is centrally symmetric, i.e., for every

x ∈ Xg we have −x ∈ Xg, and there exist R, r ∈ (0,∞) such that B(0d, r) ⊂ Xg ⊂
B(0d, R), where B(0d, y) denotes a ball of radius y > 0, centered at 0d.

We denote by F , the union of all functions f with the above properties.

The intuition behind Definition 1. Properties (i)-(iii) are used to reduce the problem to dealing
with a “simpler” pair of functions where the first is a convex function “g” that is linear in its argument
x and the second function “h” being independent of the input points. Property (iv) ensures that the
ellipsoid which encloses the level set of g (the convex function) exists and is centered at the origin
to avoid dealing with the center. By combining the properties associated with the level set of g (the
convex function) and Properties (i)-(iv), we manage to bound the loss function from above and below
by the mahalanobis distance with respect to the enclosing ellipsoid. This is due to the fact that the
level set encloses a contracted version of the ellipsoid which encloses the level set of g.

We are interested in a generic algorithm that would get a set of input points, and a loss function as
above, and compute a sensitivity for each point, based on the parameters of the given loss function.
In addition, we wish to use worst-case analysis and prove that for every input the total sensitivity
(and thus size of coreset) would be small, depending on the “hardness" of the loss function that is
encapsulated in the above parameters z,R, etc.

2 Related Work

Logistic Regression. A coreset construction algorithms for the problem of logistic regression were
suggested by [35], [56], and [47]. All of these works handled variations of the problem, e.g., they
all lack the incorporation of the bias term (intercept) in their loss function. Specifically speaking,
both [35] and [47] didn’t account for the regularization term and its parameter. Furthermore, the
coreset’s size established by [47], was dependant on the structure of the input data. As for [56], the
coreset only succeed for a small subset of queries (a ball in Rd of radius r, where the coreset’s size is
near linear in r). Contrary to previous works, our coreset approximates the logistic regression loss
function including the bias parameter (intercept) and the regularization term for every possible query.
This is the loss function that is usually used in practice, e.g., see Sklearn library in [49]. Finally, our
coreset’s size is independent of the structure of the data.

SVM. [11, 57, 58] addressed the problem of coreset construction for SVM, yet they used squared
hinge loss to enforce the SVM cost function to be strongly convex. At [60], the coreset is constructed
with respect to the hinge loss which most used form of SVM in practice (see Sklearn library at [49]).
However for the coreset to be constructed, a (sub-)optimal solution was required for the problem
itself. In addition, the coreset size depended heavily on on the ratio between the variance of each
class of points. In this paper, we also address a coreset with respect to the hinge loss, yet we don’t
require any (sub-)optimal solution to construct the coreset, and our coreset’s size depends on the ratio
between the number of points of each class (see Corollary 9).

`z-Regression. A notable line of work [10, 18, 21, 54, 65] addressed the construction of coresets
and sketches in this area, however, all such papers addressed the case of z ≥ 1. Most of these works
used tools similar to the well-conditioned basis which was first suggested at [21] to compute such
coresets. Intuitively it can be thought of as a generalization of the SVD factorization of an input set
with respect to the loss function of `z-regression for any z ≥ 1. In our framework we generalize
this factorization in order to compute coresets for the near-convex functions. To our knowledge, we
suggest the first coreset for the problem of `z-regression for any z ∈ (0, 1).

Outlier resistant functions (similar to M -estimators). Among such functions, is the `z-regression
for any z ∈ (0, 1] that is mentioned above, Huber loss function [13], Tukey loss functions [12], and
many more [14]. However, to our knowledge, we present the first coreset for the problem formulation
which is given at Corollary 10.

3 Our contribution

In this paper, we suggest an ε-coreset construction algorithm with respect to any near-convex function.
Specifically speaking, we provide:
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(i) A generalization of the well conditioned bases of [21] to a broader family of functions, i.e., not
just for `z-Regression problems where z ≥ 1. This informally describes a factorization of the input
data with respect to a given near-convex loss function. We call such factorization the f -SVD of P
(see Definition 4).

(ii) A framework for bounding the sensitivity of each point in an input set with respect to any near-
convex function. The heart of the framework relies on computing the f -SVD factorization described
in (i); see Lemma 5 and Algorithm 1.

(iii) By (ii), we provide the first ε-coreset for the problem of `z-regression where z ∈ (0, 1), and
the first ε-coreset for certain outlier resistant functions. We also unify existing works of coreset
construction for the problems of logistic regression and SVM; see Section 6.

(iv) Experimental results on real-world and synthetic datasets for common machine learning solvers
(supported by our framework) of Scikit-learn library [49], assessing the practicability and efficacy of
our algorithm.

(v) An open source code implementation of our algorithm, for reproducing our results and future
research [61].

3.1 Novelty

f -SVD factorization. In this work, we suggest a novel factorization technique of an input dataset
with respect to a specific loss function f , we call it the f -SVD factorization. Roughly speaking, the
heart of the f -SVD factorization lies in finding a diagonal matrix D ∈ [0,∞)d×d and an orthogonal
matrix V ∈ Rd×d such that the total loss

∑
p∈P f(p, x) for any query x ∈ Rd can be bounded from

above by
√
d
∥∥DV Tx∥∥

2
and from below by

∥∥DV Tx∥∥
2
. In some sense, this can be thought of as a(

1− 1/
√
d
)

-coreset (or a sketch) since it approximates the total loss for any query in Rd up to a

multiplicative factor of
(

1− 1/
√
d
)

. In order to obtain such factorization, we forge a link between
the Löwner ellipsoid [36] and the properties of near-convex functions; see Fig. 1 for a detailed
illustrative explanation, Definition 4 and Lemma 16 for the formal details.

Note that SVD factorization is a special case of f -SVD due to that fact that SVD handles functions of

the form
√∑

p∈P |pTx|
2 and attempts to achieve the same purpose. The f -SVD factorization is a

generalization of the well-conditioned bases of [21].

From f -SVD to sensitivity bounds. With the lower bound on the total loss that is guaranteed by the
f -SVD, we show how to bound the sensitivity of each point in the dataset. On the other hand, the
upper bound on the total loss provided by the f -SVD factorization, helps us in bounding the total
sensitivity. Having this being said, we use the f -SVD factorization to suggest a sensitivity bounding
framework for a set of points with respect to any near-convex function f ∈ F ; see Lemma 5.

4 Preliminaries

Notations. For integers n, d ≥ 2, we denote by 0d the origin of Rd, and by [n] the set {1, · · · , n}.
The set Rn×d denotes the union over every n× d real matrix, and Id ∈ Rd×d denotes the identity
matrix. We say that a matrix A ∈ Rd×d is orthogonal if and only if ATA = AAT = Id. Finally,
throughout the paper, vectors are addressed as column vectors, and 1 : Rd → 1 is a weight function.

In what follows, we provide formally the notion of ε-coreset in our context.
Definition 2 (ε-coreset). Let P ⊆ Rd be a set of n points, f : P × Rd → [0,∞) be a near-convex
function, and let ε ∈ (0, 1). An ε-coreset for P with respect to f , is a pair (S, v) where S ⊆ P ,

v : S → (0,∞) is a weight function, such that for every x ∈ Rd,
∣∣∣1− ∑

q∈S v(q)f(q,x)∑
p∈P f(p,x)

∣∣∣ ≤ ε.
The following theorem formally describes how to construct an ε-coreset via the sensitivity framework.
Theorem 3 (Restatement of Theorem 5.5 in [7]). Let P ⊆ Rd be a set of n points, and let f : P ×
Rd → [0,∞) be a loss function. For every p ∈ P define the sensitivity of p as supx∈Rd

f(p,x)∑
q∈P f(q,x)

,

where the sup is over every x ∈ Rd such that the denominator is non-zero. Let s : P → [0, 1] be
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Figure 1: How to compute f -SVD: (i) Given a set P ⊆ R2, and a function f : P × R2 → [0,∞), (ii) find a
function which can bound f(p, ·)× R2 → [0,∞) from above and below for every p ∈ P , (iii) decompose this
function into two functions g and h where for every p, q ∈ P and x ∈ R2, g(p, ·) is a convex function (e.g.,
g(p, x) = |pTx|4), and h(p, x) ≈ h(q, x) (e.g., h(p, x) = ‖x‖1 + 10), here z = 1. (iv) Since g is convex, we
find the Löwner ellipsoid E which contains Xg = {x ∈ R2|

∑
p∈P g(p, x) ≤ 1}, and the contracted ellipsoid

1/
√
dE is inscribed in Xg . Following this, we compute a diagonal matrix D ∈ [0,∞)2×2 and an orthogonal

matrix V ∈ R2×2 such that E = {x ∈ R2|
∥∥DV Tx

∥∥
2
≤ 1}. (v) By properties of the Löwener ellipsoid, we

show that the total loss of g (cyan line) for any query x ∈ R2 is in the range [
∥∥DV Tx

∥∥
2
,
√
d
∥∥DV Tx

∥∥
2
]

(green and red lines). When combined with the bounds on f , we obtain an upper bound on the sensitivity of
each point in P and on the total sensitivity.

a function such that s(p) is an upper bound on the sensitivity of p. Let t =
∑
p∈P s(p) and d′ be

the VC dimension of the quadruple (P,1,Rd, f); see Definition 15. Let c ≥ 1 be a sufficiently large
constant, ε, δ ∈ (0, 1), and let S be a random sample of |S| ≥ ct

ε2

(
d′ log t+ log 1

δ

)
i.i.d points from

P , such that every p ∈ P is sampled with probability s(p)/t. Let v(p) = t
s(p)|S| for every p ∈ S.

Then, with probability at least 1− δ, (S, v) is an ε-coreset for P with respect to f .

5 Coreset for near-convex loss functions

For brevity purposes, proofs of the technical results have been omitted from this manuscript; we
refer the reader to the supplementary material for the proofs. In addition, for simplicity of notation,
we assume that the weight of each point in the input set is 1, while in the supplementary material,
we handle the general case where each point may have any nonnegative weight. We also discuss
generalized versions of Definition 1 and Definition 4.

5.1 Bounding the sensitivity

The following provides the generalization of the well-conditioned basis of [21], which will be used to
bound the sensitivities.
Definition 4 (f -SVD of P ). Let P ⊆ Rd be a set of n points, f ∈ F be a near-convex loss function
(see Definition 1), and let g, h, c1, z be defined as in the context of Definition 1 with respect to f .
Let D ∈ [0,∞)d×d be a diagonal matrix, and let V ∈ Rd×d be an orthogonal matrix, such that for

every x ∈ Rd, c1
((∥∥DV Tx∥∥

2

)z
+
∑
p∈P h(p, x)z

)
≤
∑
p∈P f(p, x), and let α ∈ Θ

(√
d
)

such

that for every x ∈ Rd,
∑
p∈P g(p, x)max{1,z} ≤

(
α
∥∥DV Tx∥∥

2

)max{1,z}
. Define U : P → Rd such

that U(p) = (V D)
−1
p for every p ∈ P . The tuple (U,D, V ) is the f -SVD of P .

Note that (i) such factorization exists for any set of points P and any near-convex loss function
f : P × Rd → [0,∞) satisfying Definition 1, and (ii) the matrix V D is invertible due to the fact
that D is of full rank which is a result of Property (iv) of Definition 4. Both (i)-(ii) hold by using
Löwner ellipsoid; see Fig. 1 for intuitive explanation, and Lemma 16 at the Supplementary Material
for formal proof.

In what follows, we proceed to bound the sensitivity of each point and the total sensitivity, with
respect to a loss function f ∈ F . This is by using the f -SVD of P .
Lemma 5. Let P ⊆ Rd be a set of n points, and let f ∈ F be a near-convex loss function as in
Definition 1. Let g, h, c1, c2, z be defined as in the context of Definition 1 with respect to f , (U,D, V )
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be the f -SVD of P , and let α ∈ Θ
(√

d
)

which satisfies the conditions in Definition 4. Suppose

that there exists a set {vj}O(d)
j=1 ⊆ Rd of O(d) unit vectors and c > 0, such that for every unit vector

y ∈ Rd and p ∈ P , g
(
p, (DV T )−1y

)z ≤ c
∑O(d)
j=1 g

(
p, (DV T )−1vj

)z
. Then, for every p ∈ P ,

the sensitivity of p is bounded by s(p) ≤ 2c2
c1n

+ cc2
c1

∑O(d)
j=1

(
g
(
p,
(
DV T

)−1
vj

))z
, and the total

sensitivity is bounded by
∑
p∈P s(p) ∈

2c2
c1

+ cc2
c1

max
{
n1−z, 1

}
αzO(d).

The existence of the set {vj}O(d)
j=1 is discussed in details at the supplementary material at Section D.

5.2 The coreset construction

Algorithm 1 receives as input, a set P of n points in Rd, a loss function f ∈ F (see Definition 1), and
a sample size m > 0. As Theorem 6 states, if the sample size m is sufficiently large, then Algorithm 1
outputs a pair (S, v) that is with high probability, an ε-coreset for P with respect to f .

First, we set d′ to be VC dimension of the quadruple
(
P,1,Rd, f

)
; See Definition 15. The crux

of our algorithm lies in generating the importance sampling distribution via efficiently computing
upper bound on the sensitivity of each point (Lines 5–7). To do so, we compute the f -SVD of P at
Lines 3–4, and we use it to bound the sensitivity of each p ∈ P as stated in Lemma 5; see Line 6.
Now we have all the needed ingredients to use Theorem 3 in order to obtain an ε-coreset, i.e., we
sample i.i.d m points from P based on their sensitivity bounds (see Line 9), and assign a new weight
for every sampled point at Line 10.

Algorithm 1: CORESET(P, f,m)

Input: A set P ⊆ Rd of n points, a near-convex loss function
f : P × Rd → [0,∞), and a sample size m ≥ 1.

Output: A pair (S, v) that satisfies Theorem 6.

1 Set d′ := the VC dimension of quadruple
(
P,1,Rd, f

)
// See Definition 15

2 Set g and {z, c1, c2} to be a function and a set of real positive numbers respectively, satisfying
Property (i) and (ii) of Definition 1 with respect to f

3 Set c > 0 and {v1, · · · , vd} to be positive scalar and a set of d unit vectors in Rd respectively
satisfying Lemma 5

4 Set (U,D, V ) to be the f -SVD of (P,w) // See Definition 1
5 for every p ∈ P do
6 Set s(p) := cc2

c1

∑d
j=1 g

(
p,
(
DV T

)−1
vj

)z
+ 2c2

c1n

// the bound of the sensitivity of p as in Lemma 5
7 Set t :=

∑
p∈P s(p)

8 Set c̃ ≥ 1 to be a sufficiently large constant // Can be determined from Theorem 6
9 Pick an i.i.d sample S of m points from P , where each p ∈ P is sampled with probability s(p)

t .
10 set v : Rd → [0,∞] to be a weight function such that for every q ∈ S, v(q) = t

s(q)·m .
11 return (S, v)

Theorem 6. Let P ⊆ Rd be set of n points, and f ∈ F be a near-convex function. Let R, r > 0
be a pair of positive scalars as in Definition 1 with respect to f , and let c, c1, c2, α be defined
as in the context of Lemma 5 with respect to f . Let ε, δ ∈ (0, 1) be an error parameter and a
probability of failure respectively, and let d′ be the VC dimension of the triplet

(
P, f,Rd

)
. Let

t = 2c2
c1

+ cc2
c1

max
{
n1−z, 1

}
αzd, m ∈ O

(
t
ε2

(
d′ log (t) + log

(
1
δ

)))
, and let (S, v) be the output

of a call to CORESET(P, f,m). Then, (i) with probability at least 1− δ, (S, v) is an ε-coreset of size
m for P with respect to f ; see Definition 2. (ii) The overall time for constructing (S, v) is bounded
by O

(
T (n, d)d4 log

(
R
r

))
, where T (n, d) is a bound on the time it takes to compute a gradient of∑

p∈P f(p, x) with respect to any query x ∈ Rd.

Poly-logarithmic coreset size. We provide an analysis that shows how to obtain a coreset of size
poly-logarithmic in the input size n; see Algorithm 2 and Lemma 17 at the Supplementary Material.
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6 Applications

In what follows, we provide various applications for our framework, .e.g, SVM, Logistic Regression,
`z for z ∈ (0, 1), outlier resistant functions (similar to Tukey in behavior). For additional problems
supported by our framework, we refer the reader to Section G at the Supplementary Material.

Table 1: Results: The table below presents the coreset size and the time needed for constructing it with respect
to a specific set of problems, where the input is a set of n points in Rd denoted by P . In the table, nnz (P )

denotes the total number of nonzero entries in the set P , C̃ denotes the ratio between the number of positive and
negative labeled points (in practice, it’s a constant number), λ =

√
n is the given regularization parameter for

the problems, γ ≥ 1 is defined as in Corollary 10, ε is the error parameter, and δ is the probability of failure.

Problem type Coreset’s size Construction time1

Logistic regression O
(
d
√
n

ε2

(
d log (d

√
n) + log

(
1
δ

)))
O
(
nd2
)

`z-Regression for z ∈ (0, 1) O
(
n1−zd

z
2
+1

ε2

(
d log

(
n1−zd

z
2+1
))

+ log
(
1
δ

))
O
(
nnz (P ) log n+ dO(1)

)
SVM O

(
d
√
n+ C̃2+1

C̃

ε2

(
d log

(
d
√
n+ C̃2+1

C̃

)
+ log

(
1
δ

)))
O
(
nd2
)

Restricted `z-regression O

(
γd

2+| 12− 1
z |

ε2

(
d log

(
γd2+|

1
2−

1
z |
)

+ log
(
1
δ

)))
O
(
nnz (P ) log n+ dO(1)

)
Corollary 7 (Logistic Regression). Let P ⊆ Rd be a set of n points such that for every p ∈ P ,
‖p‖2 ≤ 1, y : P → {−1, 1} be a labeling function, λ ≥ 1 be a regularization parameter such that

for every p ∈ P , x ∈ Rd and b ∈ R,fLOG

(
p,

[
x
b

])
= 1

λ ln
(

1 + ep
T x+y(p)·b

)
+ 1

2n ‖x‖
2
2 .

Let ε, δ ∈ (0, 1) be an error parameter and a probability of failure respectively, m ∈
O
(
dn
λε2

(
d log

(
dn
λ

)
+ log

(
1
δ

)))
, and let (S, v) be the output of a call to CORESET (P, fLOG,m).

Then, with probability at least 1− δ, (S, v) is an ε-coreset (of size m) for P with respect to fLOG.

Corollary 8 (`z-Regression where z ∈ (0, 1)). Let P ⊆ Rd be a set of n points, z ∈ (0, 1) and let
fNC`z : P × Rd be a loss function such that for every x ∈ Rd, and p ∈ P , fNC`z (p, x) =

∣∣pTx∣∣z .
Let ε, δ ∈ (0, 1), m ∈ O

(
n1−zd

z
2
+1

ε2

(
d log

(
n1−zd

z
2+1
)

+ log
(
1
δ

)))
, and let (S, v) be the output of

a call to CORESET (P, fNC`z ,m). Then, with probability at least 1− δ, (S, v) is an ε-coreset (of size
m) for P with respect to fNC`z .

We now show how our framework can be used to compute an ε-coreset for some query spaces where
the involved loss functions are not from the family F . The coreset construction algorithms are hidden
in the constructive proofs of the following corollaries.
Corollary 9 (Support Vector Machines). Let P ⊆ Rd be a set of n points such that for every p ∈ P ,
‖p‖ ≤ 1. Let y : P → {1,−1} be a labelling function, λ ≥ 1 be a regularization parameter such

that for every p ∈ P , x ∈ Rd, and b ∈ R, fSVM

(
p,

[
x
b

])
= λmax

{
0, 1−

(
pTx+ y(p) · b

)}
+

1
2n ‖x‖

2
2 . Let P+ = {p|p ∈ P, y(p) = 1}, P− = P \ P+, C̃ = |P+|

|P−| .

Then, there exists an algorithm that gets the set P as an input, and returns a pair (S, v), such that (i)
with probability at least 1− δ, (S, v) is an ε-coreset for P with respect to fSVM , and (ii) the size of

the coreset is |S| ∈ O
(

1
ε2

(
dn
λ + C̃2+1

C̃

)(
d log

(
dn
λ + C̃2+1

C̃

)
+ log 1

δ

))
.

Corollary 10 (Outlier resistant functions). LetP ⊆ Rd be a set of n points, and let fRES`z : P×Rd →
[0,∞) be loss function such that for every x ∈ Rd, and p ∈ P , fRES`z (p, x) = min

{∣∣pTx∣∣ , ‖x‖z} .
Then, there exists an algorithm that gets the set P as an in input, and returns a pair (S, v), such that
(i) with probability at least 1− δ, (S, v) is an ε-coreset for P with respect to fRES`z , and (ii) the size

of the coreset is O
(
γd

2+| 12− 1
z |

ε2

(
d log

(
γd2+|

1
2−

1
z |
)

+ log
(
1
δ

)))
, where γ is defined in the proof.

1Problems which are reduced to `z-regression problems for any z ≥ 1, are easier to be dealt with in term of
coreset construction time due to the existence of randomized algoritm of computing the Löwner ellipsoid by
[15]; see Section H for detailed description.
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7 Experimental Results

In what follows we evaluate our coreset against uniform sampling on real-world datasets, with
respect to the SVM problem, Logistic regression problem and `z-regression problem for z ∈ (0, 1).
Additional details of our setup can be found at Section H of the Supplementary Material.

Software/Hardware. Our algorithms were implemented in Python 3.6 [63] using “Numpy” [48],
“Scipy” [64] and “Scikit-learn” [49]. Tests were performed on 2.59GHz i7-6500U (2 cores total)
machine with 16GB RAM.

Datasets. The following datasets were used for our experiments mostly from UCI machine learning
repository [22]: (i) HTRU [22] — 17, 898 radio emissions of the Pulsar star each consisting of 9
features. (ii) Skin [22] — 245, 057 random samples of R,G,B from face images consisting of 4
dimensions. (iii) Cod-rna [62] — consists of 59, 535 samples, 8 features, which has two classes
(i.e. labels), describing RNAs. (iv) Web dataset [9] – 49, 749 web pages records where each record
is consists of 300 features. (v) 3D spatial networks [22] – 3D road network with highly accurate
elevation information (+-20cm) from Denmark used in eco-routing and fuel/Co2-estimation routing
algorithms consisting of 434, 874 records where each record has 4 features.

Evaluation against uniform sampling. At Fig. 2a–2f, we have chosen 20 sample sizes, starting
from 50 till 500, at Figures 2g–2h, we have chosen 20 sample sizes starting from 4000 till 16, 000. At
each sample size, we generate two coresets, where the first is using uniform sampling and the latter is
using Algorithm 1. For each coreset (S, v), we find x∗ ∈ arg minx∈Rd

∑
p∈S v(p)f(p, x), and the

approximation error ε is set to be (
∑
p∈P f (p, x∗))/(minx∈Rd

∑
p∈P f(p, x))− 1. The results were

averaged across 40 trials, while the shaded regions correspond to the standard deviation.

Evaluation against prior work. We can not have a fair comparison between our coreset to prior
coresets for Logistic regression[47, 56] due to the fact that our formulation of the problem is different.
As for support vector machines, we compared our efficacy against [60], the same way that we have
compared against uniform sampling. Although not in all cases our approach outperforms [60] in
terms of relative error (i.e., ε), our approach is much faster than that of [60]; see Figure 3.
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(e) Dataset (iii): Support vector machines
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(f) Dataset (iii): Logistic regression

Figure 2: Experimental results
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(i) Dataset (v): `0.5-regression
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Figure 2: Experimental results
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(c) Dataset (iii)
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Figure 3: Comparison against prior work in the context of SVMs
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Figure 4: Relative error as a function of the total running time. Here, LR stands for Logistic
regression.

8 Conclusions and open problems

In this paper, we have provided what we call the f -SVD of P with respect a given near-convex loss
function f ∈ F , as well as sensitivity bounding framework using the f -SVD. What interests us is
to draw back forcing f to have a centrally symmetric level set as well as embedding the center of
the Löwner ellipsoid into the sensitivity bound. This is crucial step for generalizing the framework
towards a much broader family of functions, e.g., loglog-Lipschitz functions [29]. We are aware that
for `z-regression problems where z ≥ 1, Lewis weights have been used by [17] and are considered to
be the state of the art coreset for these problems. We aim to generalize the applicability of Lewis
weights and other sketching techniques towards different functions, and as far as we know, we
consider the above issues to be open problems.
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Broader Impact

Our work provides a strong theoretical result, where we have suggested a generic framework for
bounding the sensitivity with respect to broad family of functions. Practically, this family imposes
widely used applications such as SVM, Logistic regression, `z-Regression and more.

Although, Broader Impact discussion is not directly applicable, our work can be used to accelerate
many known machine learning solvers under various settings such as distributed, streaming, etc.
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Moore, J. Vand erPlas, D. Laxalde, J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero, C. R.
Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa, P. van Mulbregt, and S. . . Contributors.
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 2020.

[65] D. Woodruff and Q. Zhang. Subspace embeddings and\ell_p-regression using exponential
random variables. In Conference on Learning Theory, pages 546–567, 2013.

13

https://github.com/muradtuk/UnifiedFramework

	Introduction
	Problem Statement

	Related Work
	Our contribution
	Novelty

	Preliminaries
	Coreset for near-convex loss functions
	Bounding the sensitivity
	The coreset construction

	Applications
	Experimental Results
	Conclusions and open problems

