
We would like to thank all reviewers for their valuable feedback and comments. Please find our responses below.1

Reviewer 1 - Use of mini-batches: in our experiments, we indeed use mini-batches of size B, by sampling B points2

independently according to q.3

- Comparison to AdaBoost: we use the general strategy to solve minimax games used in the AdaBoost paper, as we4

explain in line 119. Note that AdaBoost trains and combines multiple models (weak learners), whereas we train a single5

model via stochastic optimization, with points sampled adaptively. AdaBoost optimizes the empirical risk, whereas we6

minimize the CVaR.7

- Comparison to Combinatorial Bandits: we indeed use a particular combinatorial bandit algorithm for m-sets as8

discussed and cited in lines 153-155. We also provide a detailed comparison to other combinatorial bandit approaches9

in appendix F.1.10

- Relation to GANs: Both approaches solve minimax games (as do many other ML approaches), but there is no deeper11

connection.12

- Algorithm elegance: we find the algorithm quite simple and efficient as it is basically SGD with an adaptive sampling13

distribution which is efficiently updated.14

- Number of runs: As explained in Appendix D, we do runs over 5 different random seeds.15

- Large error bars: These are only in the trunc-cvar and soft-cvar algorithms, which arise from their high variance (which16

is one of their disadvantages).17

- Interpretation of results in Fig. 2: The CVaR of Trunk-CVaR is the lowest, but the predictive accuracy is very low.18

This is because it predicts an almost uniform distribution. AdaCVaR instead has slightly worse CVaR, but obtains19

a very good predictive accuracy. AdaCVaR also has a lower CVaR than ERM (standard SGD). For detailed results20

please refer to Table 1 in Appendix E.21

Reviewer 2 - Definition of Ĉ. Thank you for observing that. It is expressed in (3), but not spelled out.22

- Reference for the ’partial bandit feedback model’: In Freund and Shapire 1999 they introduce such model. But maybe23

Lattimore and Szepesvári 2018 is a more modern introduction. We will include it when we introduce the model.24

- L̂t is in RN and is all zeros expect in the index i = it. We will clarify the notation [[i = it]].25

- ∼u.a.r. means sampled uniformly at random.26

- WI,t vs Wt,I : Yes you are correct, we will fix these nomenclature issues.27

Reviewer 3 - Difference with Namkoong & Duchi (2016): The problem we address is different. Our goal is to28

efficiently solve the CVaR optimization problem due to its wide use as a criterion in many applications. To do so, we29

use a DRO formulation. The goal in N&D (2016) is to ensure the robustness of ERM w.r.t. a family of distributions. To30

do so they use a DR-formulation of ERM. Notice that the DR family of distributions considered by N&D (2016) do not31

contain the CVaR. Importantly, this family of distributions induces a convex structure whereas the CVaR induces a32

combinatorial structure, hence the algorithm we use is also different. We will clarify this difference when discussing the33

related work.34

- Non-Convexity: We do not solve the problem of non-convexity. We propose an approach that reduces the CVaR35

problem to a (sequence of) Empirical Risk Minimization (ERM) problems on weighted data. Thus, as long as the36

resulting non-convex ERM problems can be solved, we are able to solve the (non-convex) CVaR. Empirically, SGD37

finds good solutions for non-convex ERM problems that arise in deep learning, hence such reduction is useful.38

- High-variance: As discussed in line 120 and lines 291-299, the trunc-cvar has gradients with higher magnitude, thus39

stochastic gradients have higher variance. To address this, we propose adaptive sampling to reduce the variance of such40

gradients (avoiding the multiplication by 1/alpha). Such importance-sampling strategies are common to reduce variance.41

In our case, the importance sampling is adaptive because the model is changing through the optimization process.42

- Other combinatorial bandits: We have a discussion in Appendix F.1. We will elaborate on the relationship with43

Combes et al., Combinatorial Bandits Revisited (2015) in the revised version. In particular, the work by Combes et44

al. considers general combinatorial sets and the regret incurred for the particular case of m-sets is higher than our45

algorithm by an extra m1/2 term, which is important for m = αN . Furthermore, the algorithm requires to compute46

a pseudo-inverse of a N ×N matrix at each iteration which is prohibitive for large scale applications and it invalidates47

the benefits of stochastic optimization.48


