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Abstract

In high-stakes machine learning applications, it is crucial to not only perform well
on average, but also when restricted to difficult examples. To address this, we
consider the problem of training models in a risk-averse manner. We propose an
adaptive sampling algorithm for stochastically optimizing the Conditional Value-
at-Risk (CVaR) of a loss distribution, which measures its performance on the «
fraction of most difficult examples. We use a distributionally robust formulation
of the CVaR to phrase the problem as a zero-sum game between two players, and
solve it efficiently using regret minimization. Our approach relies on sampling
from structured Determinantal Point Processes (DPPs), which enables scaling it to
large data sets. Finally, we empirically demonstrate its effectiveness on large-scale
convex and non-convex learning tasks.

1 Introduction

Machine learning systems are increasingly deployed in high-stakes applications. This imposes
reliability requirements that are in stark discrepancy with how we currently train and evaluate these
systems. Usually, we optimize expected performance both in training and evaluation via empirical
risk minimization (Vapnikl [1992). Thus, we sacrifice occasional large losses on “difficult” examples
in order to perform well on average. In this work, we instead consider a risk-averse optimization
criterion, namely the Conditional Value-at-Risk (CVaR), also known as the Expected Shortfall. In
short, the a-CVaR of a loss distribution is the average of the losses in the a-tail of the distribution.

Optimizing the CVaR is well-understood in the convex setting, where duality enables a reduction to
standard empirical risk minimization using a modified, truncated loss function from |Rockafellar et al.
(2000). Unfortunately, this approach fails when stochastically optimizing the CVaR — especially on
non-convex problems, such as training deep neural network models. A likely reason for this failure is
that mini-batch estimates of gradients of the CVaR suffer from high variance.

To address this issue, we propose a novel adaptive sampling algorithm — ADA-CVAR (Section[d). Our
algorithm initially optimizes the mean of the losses but gradually adjusts its sampling distribution to in-
creasingly sample tail events (difficult examples), until it eventually minimizes the CVaR (Sectionf4.T)).
Our approach naturally enables the use of standard stochastic optimizers (Section[4.2)). We provide
convergence guarantees of the algorithm (Section .3) and an efficient implementation (Appendix [A).
Finally, we demonstrate the performance of our algorithm in a suite of experiments (Section [3)).
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2 Related Work

Risk Measures Risk aversion is a well-studied human behavior, in which agents assign more
weight to adverse events than to positive ones (Pratt,|1978). Approaches for modeling risk include
using utility functions that emphasize larger losses (Rabinl 2013)); prospect theory that re-scales the
probability of events (Kahneman and Tverskyl [2013)); or direct optimization of coherent risk-measures
(Artzner et al.,[1999)). Rockafellar et al.| (2000) introduce the CVaR as a particular instance of the
latter class. The CVaR has found many applications, such as portfolio optimization (Krokhmal et al.|
2002) or supply chain management (Carneiro et al.,[2010)), as it does not rely on specific utility or
weighing functions, which offers great flexibility.

CVaR in Machine Learning The v-SVM algorithm by [Scholkopf et al.| (2000) can be interpreted
as optimizing the CVaR of the loss, as shown by |Gotoh and Takedal (2016)). Also related, Shalev
Shwartz and Wexler| (2016) propose to minimize the maximal loss among all samples. The maximal
loss is the limiting case of the CVaR when o« — 0. [Fan et al|(2017) generalize this work to the
top-k average loss. Although they do not mention the relationship to the CVaR, their learning
criterion is equal to the CVaR for empirical measures. For optimization, they use an algorithm
proposed by |Ogryczak and Tamir| (2003) to optimize the maximum of the sum of & functions; this
algorithm is the same as the “truncated” algorithm of [Rockafellar et al.| (2000) to optimize the CVaR.
Recent applications of the CVaR in ML include risk-averse bandits (Sani et al.,|2012)), risk-averse
reinforcement learning (Chow et al., 2017), and fairness (Williamson and Menon, |2019). All these
use the original “truncated” formulation of |[Rockafellar et al.| (2000) to optimize the CVaR. One of the
major shortcomings of this formulation is that mini-batch gradient estimates have high variance. In
this work, we address this via a method based on adaptive sampling, inspired by [Shalev-Shwartz and
'Wexler| (2016), that allows us to handle large datasets and complex (deep neural network) models.

Distributionally Robust Optimization The CVaR also has a natural distributionally robust
optimization (DRO) interpretation (Shapiro et al., 2009| Section 6.3), which we exploit in this paper.
For example, Ahmadi-Javid| (2012) introduces the entropic value-at-risk by considering a different
DRO set. Duchi et al.|(2016); Namkoong and Duchi| (2017); |[Esfahani and Kuhn| (2018)); Kirschner
et al.[(2020) address related DRO problems, but with different uncertainty sets. We use the DRO
formulation of the CVaR to phrase its optimization as a game. To solve the game, we propose an
adaptive algorithm for the learning problem. Our algorithm is most related to (Namkoong and Duchi,
2016), who develop an algorithm for DRO sets induced by Cressie-Read f-divergences. Instead,
we use a different DRO set that arises in common data sets (Mehrabi et al.,[2019) and we provide
an efficient algorithm to solve the DRO problem in large-scale datasets.

3 Problem Statement

We consider supervised learning with a risk-averse learner. The learner has a data set comprised of
i.i.d. samples from an unknown distribution, i.e., D = {(x1,%1), ... (zn,yn)} € (X x V)V ~ DV,
and her goal is to learn a function hy : X — R that is parametrized by § € © C R The
performance of hy at a data point is measured by a loss functionl : © x X x Y — [0, 1]. We write
the random variable L;(0) = I(0; x;, y;). The learner’s goal is to minimize the CVaR of the losses
on the (unknown) distribution D w.r.t. the parameters 6.

CVaR properties The CVaR of a random variable
L ~ P is defined as C*[L] = Ep[L|L > ¢*], where
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where Q% = {Q < P, % < é} Here, () < P means that () is absolutely continuous w.r.t. P. The
distribution Q* that solves Problem (I)) places all the mass uniformly in the tail, i.e., the blue shaded
region of Figure[I] Thus, optimizing the CVaR can be viewed as guarding against a particular kind
of distribution shift, which reweighs arbitrary parts of the data up to a certain amount é Rockafellar

et al] (2000) prove strong duality for Problem (T). The dual objective is:

1
CH[L] = rzréiﬂgﬂ + EEP [max {0, L — ¢}]. (2)

Learning with the CVaR Problem (2) can be used to estimate the CVaR of a random variable by
replacing the expectation Ep by the empirical mean E, yielding

0t % S fmax {0, Li(0) — ] 3)

For convex L;, Problem (3) has computable subgradients, and hence lends itself to subgradient-based
optimization. Furthermore, in this case Problem (@) is jointly convex in (¢, ). We refer to this
standard approach as TRUNC-CVAR, as it effectively optimizes a modified loss, truncated at £.

min
(ER,0€O

Problem (3) is indeed a sensible learning objective in the sense that the empirical CVaR concentrates
around the population CVaR uniformly for all functions h € H.

Proposition 1. Let h : X — Y be a finite function class |H|. Let L(h) : H — [0,1] be a random
variable. Then, for any 0 < o < 1, with probability at least 1 — 9,

ety e 1 [los@HIJ5)
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Proof. See Appendix [B.T] O
The result above is easily extended to classes H with finite VC (pseudo-)dimension. Concurrent to
this work, Lee et al.|(2020),|Soma and Yoshida (2020), and Mhammedi et al. (2020) present similar
statistical rates based on different assumptions.

Challenges for Stochastic Optimization In the common case that a variant of SGD is used to
optimize the learning problem (3)), the expectation is approximated with a mini-batch of data. But,
when this batch is sampled uniformly at random from the data, only a fraction « of points will contain
gradient information. The gradient of the remaining points gets truncated to zero by the max{-}
non-linearity. Furthermore, the gradient of the examples that do contain information is scaled by 1/«,
leading to exploding gradients. These facts make stochastic optimization of Problem (3)) extremely
challenging, as we demonstrate in Section [3}

Our key observation is that the root of the problem lies in the mismatch between the sampling
distribution P and the unknown distribution Q*, from which we would ideally like to sample. In
fact, Problem (3) can be interpreted as a form of rejection sampling — samples with losses smaller
than ¢ are rejected. It is well known that Monte Carlo estimation of rare events suffers from high
variance (Rubino and Tuffin,2009)). To address this issue, we propose a novel sampling algorithm that
adaptively learns to sample events from the distribution Q* while optimizing the model parameters 6.

4 ADA-CVAR: Adaptive Sampling for CVaR Optimization

We directly address the DRO problem (I)) on the empirical measure P for learning. The DRO set
isQ*={qeRY[0< ¢ < 1,5, ¢ =1} with k = |aN]. The learning problem becomes:

i Ey[L;(6)] = mi L), 4
min max K, [L;(6)] = min max ¢ L(6) )
where L(#) € RY has i-th index L;(#). The learning problem (@) is a minimax game between a
O-player (the learner), whose goal is to minimize the objective function by selecting # € ©, against
a g-player (the sampler), whose goal is to maximize the objective function by selecting ¢ € 9.

To solve the game (@), we use techniques from regret minimization with partial (bandit) feedback. In
particular, we exploit that one can solve minimax games by viewing both players as online learners



that compete, and by equipping each of them with no-regret algorithms (Freund and Schapire} [1999).
With the partial (bandit) feedback model, we only need to consider a small subset of the data in each
iteration of the optimization algorithm. In contrast, full-information feedback would require a full
pass over the data per iteration, invalidating all benefits of stochastic optimization.

Next, we describe and analyze an online learn- Algorithm 1: ADA-CVAR
ing algorithm for each of the two players and - -
prove guarantees with respect to the DRO prob- 1npust Learm.ng rat els. s ’km' .
lem (@). We outline the final algorithm, which é: Liglrll’ll::_' IIrI1111tt11:hlzZ: ;gglpez:;gg 1 EN @
we call ADA-CVAR, in Algorithm [I} where 3 fort — 1‘ p= dop > Y0 :
we use an adaptive sampling scheme for the g- 4: S N l’ : S’ le data point
player and SGD for the -player. Initially, the g- ) p aml:]tei‘ 1 ?Pmp(j,) ata poin

layer (sampler) plays the uniform distribution t = R we \)-
1ejl)ndythe 9-plla:1)yer (Ifea}r/ner) selects any parameter >: Learner:' Op = b1—1 — mVLi,(0r-1).
in the set ©. In iteration ¢, the sampler samples 6: Sampljf:r.(OIB )ulld estimate
a data point (or a mini-batch) with respect to Ly = qtti:[[l == if]].
the distribution g;. Then, the learner performs  7: Samplerf Update k-DPP
an SGD step on the sample(s) selected by the Wit = Wy g L
sampler playelﬂ Finally, the g-player adapts the  g. end for
distribution to favor examples with higher loss D 7 T
and thus maximize the objective in (@). output 6,7 ~u.ar {6, 90)}i

eNsli,i

4.1 Sampler (¢-Player) Algorithm

In every iteration ¢, the learner player sets a vector of losses through 6;. We denote by L(0;; z;,y;) =
L, ; the loss at time ¢ for example ¢ and by L(6;) = L, the vector of losses. The sampler player
chooses an index 4; (or a mini-batch) and a vector ¢;. Then, only L, ;, is revealed and she suffers a
cost g L. In such setting, the best the player can aim to do is to minimize its regret:

_ LS R U o
SRy = ;relzgg thl q' L thl q; L. (5)

The regret measures how good the sequence of actions of the sampler is, compared to the best single
action (i.e., distribution over the data) in hindsight, after seeing the sequence of iterates L;. The
sampler player problem is a linear adversarial bandit. Exploration and sampling in this setting are
hard (Bubeck et al.l 2012). Our efficient implementation exploits the specific combinatorial structure.

In particular, the DRO set Q is a polytope with (]Z ) vertices, each corresponding to a different

subset I of size k of the ground set 211, As the inner optimization problem over ¢ in @) is a linear
program, the optimal solution ¢* is a vertex. Thus, the sampler problem can be reduced to a best
subset selection problem: find the best set among all size-k subsets Z,, = {I C 2V | |I| = k}.
Here, the value of a set I at time ¢ is simply the average of the losses (1/k) > ,.; Li(6:). The
problem of maximizing the value over time ¢ can be viewed as a combinatorial bandit problem, as
we have a combinatorial set of “arms”, one per I € 7Z;, (Lattimore and Szepesvari, [2018, Chapter
30). Building on |Alatur et al.|(2020), we develop an efficient algorithm for the sampler.

Starting Point: EXP.3 A well known no-regret bandit algorithm is the celebrated EXP.3 algorithm

(Auer et al., 2002). Let Ay = {W e RG)| S, Wy = 1,0, > o} be the simplex of distributions

over the (]Z ) subsets. Finding the best distribution W} € A; is equivalent to finding the best subset

I* € Tj. By transitivity, this is equivalent to finding the best ¢* € Q<. To do this, EXP.3 maintains
a vector Wy, € Ay, samples an element [, ~ W, and observes a loss associated with element I;.
Finally, it updates the distribution using multiplicative weights. Unfortunately, EXP.3 is intractable
in two ways: Sampling a k-subset I; would require evaluating the losses of k = |V | data points,
which is impractical. Furthermore, the naive EXP.3 algorithm is intractable because the dimension of
W7 + is exponential in k. In turn, the regret of this algorithm also depends on the dimension of W7 ;.

Efficiency through Structure The crucial insight is that we can exploit the combinatorial structure
of the problem and additivity of the loss to exponentially improve efficiency. First, we exploit that

'Note that we do not use any importance sampling correction.



weights of individual elements and sets of them are related by W, ; = ZZ <1 We,i- Thus, instead of
observing the loss Ly,, we let the g-player sample only a single element i; uniformly at random from
the set I; ~ W7, observe its loss L;,, and use it to update a weight vector w; ;. The single element
iy sampled by the algorithm provides information about the loss of all (]Z__ll) sets that contain ;.
This allows us to obtain regret guarantees that are sub-linear in N (rather than in N*). Second,
we exponentially improve computational cost by developing an algorithm that maintains a vector

w € RY and uses k-Determinantal Point Processes to map it to distributions over subsets of size k.

Definition 4.1 (k-DPP, [Kulesza et al.|(2012)). A k-Determinantal Point Process over a ground set
N is a distribution over all subsets of size k s.t. the probability of a set is P(I) o det(K), where
K is a positive definite kernel matrix and K is the submatrix of K indexed by 1. ]

In particular, we consider k-DPPs with diagonal kernel matrices K = diagw, with w € Rgo and at
least k strictly positive elements. This family of distributions is sufficient to contain, for example,
the uniform distribution over the (]I\g ) subsets and all the vertices of Q%. We use such k-DPPs to
efficiently map a vector of size IV to a distribution over (]Z ) subsets. We also denote the marginal

probability of element i by P, (). It is easy to verify that the vector of marginals 1 P,,(i) € Q.
Hence, we directly use the k-DPP marginals as the sampler’s decision variables.

We can finally describe the sampler algorithm. We initialize the k-DPP kernel with the uniform
distribution w1 = 1. In iteration ¢, the sampler plays the distribution ¢; = %IP’U, (1) € 9% and
samples an element i; ~ ¢;. The loss at index 7, Ly ;,, is revealed to the sampler and only the index
14 of wy is updated according to the multiplicative update w41, = wt+1,itekLtvit /e,

This approach addresses the disadvantages of the EXP.3 algorithm. Computationally, it only requires

O(N) memory. After sampling every element i, the distribution over the (]Z __11) sets that contain 7;

are updated. This yield rates that depend sub-linearly on the data set size which we prove next.

Lemma 1. Let the sampler player play the ADA-CVAR Algorithm with ns = s NV Then, for any

NT *
sequence of losses she suffers a regret Q) of at most O(v/T N log N).

Proof sketch. For a detailed proof please refer to Appendix [B.2] First, we prove in Proposition [3 that
the iterates of the algorithm are effectively in Q®. Next, we prove in Proposition[dthat the comparator
in the regret of [Alatur et al.|(2020) and in the sampler regret (5)) have the same value (scaled by k). Fi-
nally, the result follows as a corollary from these propositions and |Alatur et al.[(2020, Lemma 1). [

4.2 Learner (6-Player) Algorithm

Analogous to the sampler player, the learner player seeks to minimize its regret

T T
LRy = thl q; L(0;) — Iggél thl q; L(9). (6)

Crucially, the learner can choose 6; after the sampler selects g;. Thus, the learner can play the
Be-The-Leader (BTL) algorithm:

_ ~ . _ T
0 = arg min 2721 q, L(0) = arg min g, L(9), 7

where q; = % Zf—:l q- 1s the average distribution (up to time t) that the sampler player proposes.
Instead of assuming access to an exact optimizer, we assume to have an ERM oracle available.

Assumption 1 (¢;ac10-correct ERM Oracle). The learner has access to an ERM oracle that takes a
distribution q over the dataset as input and outputs 0, such that

TL(6) < ming" .
q' L(0) < ming L(0) + €oracte

To implement the ERM Oracle, the learner player must solve a weighted empirical loss minimization
in Problem in every round. For non-convex problems, this is in general NP-hard (Murty and
Kabadi, |1987)), so obtaining efficient and provably no-regret guarantees in the non-convex setting
seems unrealistic in general.



Despite this hardness, the success of deep learning empirically demonstrates that stochastic optimiza-
tion algorithms such as SGD are able to find very good (even if not necessarily optimal) solutions for

the ERM-like non-convex problems. Furthermore, SGD on the sequence of samples {7, ~ qT}tT=1
approximately solves the BTL problem. To see why, we note that such sequence of samples is an
unbiased estimator of g; from the BTL algorithm (7). Then, for the freshly sampled é; ~ ¢, a learner
that chooses 6; := 0;—1 — m;VL;,(0:—1) is (approximately) solving the BTL algorithm with SGD.

Lemma 2. A learner player that plays the BTL algorithm with access to an ERM oracle as in
Assumption|l| achieves at most €oracle 1 regret.

Proof. See Appendix [B.3] O

For convex problems, we know that it is not necessary to solve the BTL problem (7)), and algorithms
such as onlinrojected gradient descent (Zinkevichl 2003)) achieve no-regret guarantees. As shown

in Appendix |C] the learner suffers LR7 = O(+/T) regret by playing SGD in convex problems.

4.3 Guarantees for CVaR Optimization

Next, we show that if both players play the no-regret algorithms discussed above, they solve the

game (@). Using J(6,q) = q' L(#), the minimax equilibrium of the game is the point (6*, ¢*) such

that VO € ©,q € Q%; J(0*,q) < J(0*,¢*) < J(0, q*). We assume that this point exists (which is
guaranteed, e.g., when the sets Q% and © are compact). The game regret is

GameRegret L I - I 8

ameRegrety = > J(0,4") — (6", q0). ®)

Theorem 1 (Game Regret). Let L;(-) : © — [0,1], ¢ = {1, ..., N} be a fixed set of loss functions. If
the sampler plays ADA-CVAR and the learner plays the oracle-BTL algorithm, then the game has
regret O(v/TN log N + €oracleT)-

Proof sketch. We bound the Game regret with the sum of the learner and sampler regret and use the
results of Lemma[2]and Lemmal[T] For a detailed proof please refer to Appendix [B.4] O

This immediately implies our main theoretical result, namely a performance guarantee for the solution
obtained by ADA-CVAR for the central problem of minimizing the empirical CVaR (@).

Corollary 1 (Online to Batch Conversion). Let L;(-) : © — [0,1], ¢ = {1, ..., N} be a set of loss
Sfunctions sampled from a distribution D. Let 0* be the minimizer of the CVaR of the empirical

distribution C*. Let 0 be the output of ADA-CVAR, selected uniformly at random from the sequence
{Bt}thl. Its expected excess CVaR is bounded as:

EC*[L(0)] < C[L(6*)] + O(v/Nlog N/T) + €oracte

where the expectation is taken w.r.t. the randomization in the algorithm, both for the sampling steps
and the randomization in choosing 6.

Proof sketch. For a detailed proof please refer to Appendix [B.5] The excess CVaR is bounded by the
duality gap, which in turn is upper-bounded by the average game regret. O

Corollary 2 (Population Guarantee). Let L(-) : © — [0, 1] be a Random Variable induced by the
data distribution D. Let 6* be the minimizer of the CVaR at level o of such Random Variable. Let 0

be the output of ADA-CVAR, selected uniformly at random from the sequence {Ht}tT:l. Then, with
probability at least 0 the expected excess CVaR of 0 is bounded as:

EC[L(0)] < C*[L(6*)] + O(y/Nlog N/T) + €oracle + €stat

where €gpay = O(é, / %) comes from the statistical error and the expectation is taken w.r.t. the

randomization in the algorithm, both for the sampling steps and the randomization in choosing 0.

Proof sketch. For a detailed proof please refer to Appendix We bound the statistical error using
Proposition[T]and the optimization error is bounded using Corollary O
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Figure 2: Scores are normalized between O and 1 to compare different data sets. Left: Linear
regression tasks. ADA-CVAR has lower CVaR than benchmarks. Middle: Binary classification
(logistic regression) tasks. ADA-CVAR obtains the same accuracy as MEAN and SOFT-CVAR with
lower CVaR. TRUNC-CVAR outputs an approximately uniform distribution yielding low CVaR but
poor predictive accuracy. Right: Binary classification (logistic regression) tasks with train/test 90%
distribution shift. ADA-CVAR has the highest test accuracy and low average surrogate loss.

It is instructive to consider the special cases k = 1 and k = N. For k = N, ¢; remains uniform and
ADA-CVAR reduces to SGD. For k = 1, the sampler simply plays standard EXP.3 over data points
and ADA-CVAR reduces to the algorithm of [Shalev-Shwartz and Wexler| (2016)) for the max loss.

5 Experiments

In our experimental evaluation, we compare ADA-CVAR on both convex (linear regression and
classification) and non-convex (deep learning) tasks. In addition to studying how it performs in
terms of the CVaR and empirical risk on the training and test set, we also investigate to what
extent it can help guard against distribution shifts. In Appendix |D| we detail the experimental
setup. We provide an open-source implementation of our method, which is available at http:
//github.com/sebascuri/adacvar,

Baseline Algorithms We compare our adaptive sampling algorithm (ADA-CVAR) to three
baselines: first, an i.i.d. sampling scheme that optimizes Problem (3) using the truncated loss
(TRUNC-CVAR); second, an i.i.d. sampling scheme that uses a smoothing technique to relax the
>~;[x:]+ non-linearity (SOFT-CVAR). Tarnopolskaya and Zhul (2010) compare different smoothing
techniques for the > [2;]+ non-linearity. Of these, we use the relaxation 7' log(3", €%/ ") proposed
by Nemirovski and Shapiro| (2006). In each iteration, we heuristically approximate the population
sum with a mini-batch. Third, we also compare a standard i.i.d. sampling ERM scheme that
stochastically minimizes the average of the losses (MEAN).

5.1 Convex CVaR Optimization

We first compare the different algorithms in a controlled convex setting, where the classical TRUNC-
CVAR algorithm is expected to perform well. We consider three UCI regression data sets, three
synthetic regression data sets, and eight different UCI classification data sets 2017).
The left and middle plots in Figure 2] present a summary of the results (see Table[I]in Appendix [E]
for a detailed version). We evaluate the CVaR (o = 0.01) and average loss for linear regression and
the accuracy, and CVaR and average surrogate loss for classification (logistic regression) on the test
set. In linear regression, ADA-CVAR performs comparably or better to benchmarks in terms of the
CVaR of the loss and is second best in terms of the average loss. In classification, TRUNC-CVAR
performs better in terms of the CVaR for the surrogate loss but performs poorly in terms of accuracy.
This is due to the fact that it learns a predictive distribution that is close to uniform. ADA-CVAR
has a comparable accuracy to ERM (MEAN algorithm) but a much better CVaR. Hence, it finds a
good predictive model while successfully controlling the prediction risk.
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Figure 3: Non Convex Optimization tasks. Left: Normalized scores in image classification tasks.
ADA-CVAR attains state-of-the-art accuracy and lowest CVaR. Middle and Right: Test accuracy
under train/test distribution shift on CIFAR-10 for VGG16-BN (middle) and ResNet-18 (right).
Lower f indicates larger shift. ADA-CVAR has always better test accuracy than benchmarks.

5.2 Convex CVaR Distributional Robustness

We use the same classification data sets and classifiers as in Section[5.1} To produce the distribution
shift, we randomly sub-sample the majority class in the training set, so that the new training set
has a 10%/90% class imbalance and the majority/minority classes are inverted. The test set is kept
unchanged. Such shifts in class frequencies are common (Mehrabi et al.,[2019, Section 3.2).

We consider ov = 0.1, which is compatible with the data imbalance. The right plot in Figure 2] shows
a summary of the results (See Table[2]in Appendix [E|for detailed results). ADA-CVAR has higher
test accuracy than the benchmarks and is comparable to TRUNC-CVAR on average log-likelihood.

We note that the CVaR provides robustness with respect to worst-case distribution shifts. Such a worst
case distribution might be too pessimistic to be encountered in practice, however. Instead, ADA-
CVAR appears to benefit from the varying distributions during training and protects better against
non-adversarial distribution shifts. Other techniques for dealing with imbalanced data might also be
useful to address this distribution shift empirically, but are only useful if there is an a-priori knowledge
of the class ratio in the test set. Instead, the CVaR optimization guards against any distribution shift.
Furthermore, with such a-priori knowledge, such techniques can also be used together with ADA-
CVAR. We provide extended experiments analyzing distribution shift in Appendix

5.3 Non-Convex (Deep Learning) CVaR Optimization

We test our algorithm on common non-convex optimization benchmarks in deep learning (MNIST,
Fashion-MNIST, CIFAR-10). As it is common in these setting, we perform data-augmentation on
the training set. Thus, the effective training set size is infinite. To address this, we consider a mixture
of distributions in a similar spirit as Borsos et al.|(2019). Each data point serves as a representative
of a distribution over all its possible augmentations. We optimize the CVaR of this mixture of
distributions as a surrogate of the CVaR of the infinite data set. The left plot in Figure 3] summarizes
the results (See Table[3]in Appendix [E). ADA-CVAR reaches the same accuracy as ERM in all cases
and has lower CVaR. Only in CIFAR-10 it does not outperform TRUNC-CVAR in terms of the CVaR
of the surrogate loss. This is because the TRUNC-CVAR yields a predictive model that is close to
uniform. Instead, ADA-CVAR still yields useful predictions while controlling the CVaR.

Gradient Magnitude and Training Time The gradients of TRUNC-CVAR are either 0 or 1/«
times larger than the gradients of the same point using MEAN. A similar but smoothed phenomenon
arises with SOFT-CVAR. This makes training these losses considerably harder due to exploding gra-
dients and noisier gradient estimates. With the same learning rates, these algorithms usually produce
numerical overflows and, to stabilize learning, we used considerably smaller learning rates. In turn,
this increased the number of iterations required for convergence. ADA-CVAR does not suffer from
this as the gradients have the same magnitude as in MEAN. For example, to reach 85 % train accuracy



ADA-CVAR requires 7 epochs, MEAN 9, SOFT-CVAR 21, and TRUNC-CVAR never surpassed 70 %
train accuracy. There was no significant difference between time per epoch of each of the algorithms.

5.4 Distributional Robustness in Deep Learning through Optimizing the CVaR

Lastly, we demonstrate that optimizing the CVaR yields improved robustness to distribution shifts in
deep learning. We simulate distribution shift through mismatching training and test class frequencies.
Since we consider multi-class problems, we simulate power-law class frequencies, which are com-
monly encountered in various applications (Clauset et al.,[2009). More specifically, we sub-sample
each class of the training set of CIFAR-10 so that the class size follows a power-law distribution
p(|c|) o< 88, where |c] is the size of the c-th class and keep the test set unchanged. In middle and
right plots of Figure[3] we show the test accuracy for different values of 3 for VGG16-BN and ResNet-
18 networks. The algorithms do not know a-priori the amount of distribution shift to protect against
and consider a fixed o = 0.1. For all distribution shifts, ADA-CVAR is superior to the benchmarks.

When a high-capacity network learns a perfectly accurate model, then the average and CVaR of
the loss distribution have both zero value. This might explain the similarity between MEAN and
ADA-CVAR for ResNet-18. Instead, there is a stark discrepancy between ADA-CVAR and MEAN in
VGG16. This shows the advantage of training in a risk averse manner, particularly when the model
makes incorrect predictions due to a strong inductive bias.

6 Conclusions

The CVaR is a natural criterion for training ML models in a risk-aware fashion. As we saw, the
traditional way of optimizing it via truncated losses fails for modern machine learning tasks due to
high variance of the gradient estimates. Our novel adaptive sampling algorithm ADA-CVAR exploits
the distributionally robust optimization formulation of the CVaR, and tackles it via regret minimization.
It naturally enables the use of standard stochastic optimization approaches (e.g., SGD), applied to
the marginal distribution of a certain k-DPP. Finally, we demonstrate in a range of experiments that
ADA-CVAR is superior to the TRUNC-CVAR algorithm for regression and classification tasks, both
in convex and non-convex learning settings. Furthermore, ADA-CVAR provides higher robustness
to (non-adversarial) distribution shifts than TRUNC-CVAR, SOFT-CVAR, or MEAN algorithms.

Broader Impact

Increasing reliability is one of the central challenges when deploying machine learning in high-stakes
applications. We believe our paper makes important contributions to this endeavor by going beyond
simply optimizing the average performance, and considering risk in deep learning. The CVaR is also
known to be an avenue towards enforcing fairness constraints in data sets (Williamson and Menon,
2019). Hence, our algorithm also contributes to optimizing fair deep models, by counteracting
inherent biases in the data (e.g., undersampling of certain parts of the population).

Acknowledgments and Disclosure of Funding

This project has received funding from the European Research Council (ERC) under the European
Unions Horizon 2020 research, innovation programme grant agreement No 815943, a DARPA YFA
award, and NSF CAREER award 1553284.



References

N. Agarwal, A. Gonen, and E. Hazan. Learning in non-convex games with an optimization oracle.
arXiv:1810.07362, 2018.

A. Ahmadi-Javid. Entropic value-at-risk: A new coherent risk measure. Journal of Optimization
Theory and Applications, 155(3):1105-1123, 2012.

P. Alatur, K. Y. Levy, and A. Krause. Multi-player bandits: The adversarial case. Journal of Machine
Learning Research, 21(77):1-23, 2020.

N. Anari, S. O. Gharan, and A. Rezaei. Monte carlo markov chain algorithms for sampling strongly
rayleigh distributions and determinantal point processes. In Conference on Learning Theory, pages
103-115, 2016.

P. Artzner et al. Coherent measures of risk. Mathematical finance, pages 203-228, 1999.

J.-Y. Audibert, S. Bubeck, and G. Lugosi. Regret in online combinatorial optimization. Mathematics
of Operations Research, 39(1):31-45, 2013.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit
problem. SIAM journal on computing, 32(1):48-77, 2002.

S. Barthelmé, P.-O. Amblard, N. Tremblay, et al. Asymptotic equivalence of fixed-size and varying-
size determinantal point processes. Bernoulli, pages 3555-3589, 2019.

A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for convex
optimization. Operations Research Letters, 31(3):167-175, 2003.

Z. Borsos, S. Curi, K. Y. Levy, and A. Krause. Online variance reduction with mixtures. In
International Conference on Machine Learning, pages 705-714, 2019.

D. B. Brown. Large deviations bounds for estimating conditional value-at-risk. Operations Research
Letters, 35(6):722-730, 2007.

C. Brownlees, E. Joly, G. Lugosi, et al. Empirical risk minimization for heavy-tailed losses. The
Annals of Statistics, 43(6):2507-2536, 2015.

S. Bubeck, N. Cesa-Bianchi, and S. M. Kakade. Towards minimax policies for online linear
optimization with bandit feedback. In Conference on Learning Theory, pages 41-1, 2012.

M. C. Carneiro et al. Risk management in the oil supply chain: a cvar approach. Industrial &
Engineering Chemistry Research, pages 3286-3294, 2010.

N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. Journal of Computer and System Sciences,
78(5):1404-1422, 2012.

Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone. Risk-constrained reinforcement learning with
percentile risk criteria. The Journal of Machine Learning Research, 18(1):6070-6120, 2017.

A. Clauset, C. R. Shalizi, and M. E. Newman. Power-law distributions in empirical data. SIAM
review, 51(4):661-703, 2009.

M. Derezinski, D. Calandriello, and M. Valko. Exact sampling of determinantal point processes with
sublinear time preprocessing. arXiv:1905.13476, 2019.

L. Devroye, L. Gyorfi, and G. Lugosi. A probabilistic theory of pattern recognition, volume 31.
Springer Science & Business Media, 2013.

D. Dua and C. Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.
edu/ml.

J. Duchi, P. Glynn, and H. Namkoong. Statistics of robust optimization: A generalized empirical
likelihood approach. arXiv:1610.03425, 2016.

J. P. Eaton and C. A. Haas. Titanic, triumph and tragedy. WW Norton & Company, 1995.

10


http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

P. M. Esfahani and D. Kuhn. Data-driven distributionally robust optimization using the wasserstein
metric: Performance guarantees and tractable reformulations. Mathematical Programming, 171
(1-2):115-166, 2018.

Y. Fan, S. Lyu, Y. Ying, and B. Hu. Learning with average top-k loss. In Advances in Neural
Information Processing Systems, pages 497-505, 2017.

Y. Freund and R. E. Schapire. Adaptive game playing using multiplicative weights. Games and
Economic Behavior, 29(1-2):79-103, 1999.

J.-y. Gotoh and A. Takeda. Cvar minimizations in support vector machines. Financial Signal
Processing and Machine Learning, pages 233-265, 2016.

E. Hazan. Introduction to online convex optimization. Foundations and Trends in Optimization,
pages 157-325, 2016.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770-778, 2016.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov. Improving neural
networks by preventing co-adaptation of feature detectors. arXiv:1207.0580, 2012.

S. Toffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv:1502.03167, 2015.

D. Kahneman and A. Tversky. Prospect theory: An analysis of decision under risk. In Handbook of
the fundamentals of financial decision making: Part I, pages 99-127. World Scientific, 2013.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv:1412.6980, 2014.

J. Kirschner, I. Bogunovic, S. Jegelka, and A. Krause. Distributionally robust bayesian optimization.
In The 23rd International Conference on Artificial Intelligence and Statistics, 2020.

W. M. Koolen, M. K. Warmuth, and J. Kivinen. Hedging structured concepts. In COLT, pages
93-105, 2010.

A. Krizhevsky, V. Nair, and G. Hinton. The cifar-10 dataset. online: http://www. cs. toronto.
edu/kriz/cifar. html, 2014.

P. Krokhmal, J. Palmquist, and S. Uryasev. Portfolio optimization with conditional value-at-risk
objective and constraints. Journal of risk, 4:43—68, 2002.

A. Kulesza, B. Taskar, et al. Determinantal point processes for machine learning. Foundations and
Trends® in Machine Learning, 5(2-3):123-286, 2012.

T. Lattimore and C. Szepesvdri. Bandit algorithms. preprint, 2018.

Y. LeCun, Y. Bengio, et al. Convolutional networks for images, speech, and time series. The handbook
of brain theory and neural networks, 3361(10):1995, 1995.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, et al. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

J. Lee, S. Park, and J. Shin. Learning bounds for risk-sensitive learning. arXiv preprint
arXiv:2006.08138, 2020.

N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, and A. Galstyan. A survey on bias and fairness in
machine learning. arXiv preprint arXiv:1908.09635, 2019.

Z. Mhammedi, B. Guedj, and R. C. Williamson. Pac-bayesian bound for the conditional value at risk.
arXiv preprint arXiv:2006.14763, 2020.

K. G. Murty. Linear programming. Springer, 1983.
K. G. Murty and S. N. Kabadi. Some np-complete problems in quadratic and nonlinear programming.

Mathematical programming, 39(2):117-129, 1987.

11



H. Namkoong and J. C. Duchi. Stochastic gradient methods for distributionally robust optimization
with f-divergences. In Advances in Neural Information Processing Systems, pages 2208-2216,
2016.

H. Namkoong and J. C. Duchi. Variance-based regularization with convex objectives. In Advances in
Neural Information Processing Systems, pages 2971-2980, 2017.

A. Nemirovski and A. Shapiro. Convex approximations of chance constrained programs. SIAM
Journal on Optimization, 17(4):969-996, 2006.

W. Ogryczak and A. Tamir. Minimizing the sum of the k largest functions in linear time. Information
Processing Letters, 85(3):117-122, 2003.

A. Paszke et al. Automatic differentiation in pytorch. In NIPS Autodiff Workshop, 2017.

J. W. Pratt. Risk aversion in the small and in the large. In Uncertainty in Economics, pages 59-79.
Elsevier, 1978.

M. Rabin. Risk aversion and expected-utility theory. In Handbook of the Fundamentals of Financial
Decision Making, pages 241-252. World Scientific, 2013.

R. T. Rockafellar, S. Uryaseyv, et al. Optimization of conditional value-at-risk. Journal of risk, 2:
21-42, 2000.

G. Rubino and B. Tuffin. Rare event simulation using Monte Carlo methods. John Wiley & Sons,
2009.

A. Sani, A. Lazaric, and R. Munos. Risk-aversion in multi-armed bandits. In Advances in Neural
Information Processing Systems, pages 3275-3283, 2012.

B. Scholkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms.
Neural computation, 12(5):1207-1245, 2000.

S. Shalev-Shwartz and Y. Wexler. Minimizing the maximal loss: How and why. In ICML, pages
793-801, 2016.

A. Shapiro, D. Dentcheva, and A. Ruszczyniski. Lectures on stochastic programming: modeling and
theory. SIAM, 2009.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
arXiv:1409.1556, 2014.

T. Soma and Y. Yoshida. Statistical learning with conditional value at risk. arXiv preprint
arXiv:2002.05826, 2020.

T. Tarnopolskaya and Z. Zhu. Cvar-minimising hedging by a smoothing method. ANZIAM, 52:
237-256, 2010.

T. Uchiya, A. Nakamura, and M. Kudo. Algorithms for adversarial bandit problems with multiple
plays. In International Conference on Algorithmic Learning Theory, pages 375-389. Springer,
2010.

V. Vapnik. Principles of risk minimization for learning theory. In Advances in neural information
processing systems, pages 831-838, 1992.

R. Williamson and A. Menon. Fairness risk measures. In International Conference on Machine
Learning, pages 67866797, 2019.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a novel image dataset for benchmarking machine
learning algorithms. arXiv:1708.07747,2017.

D. W. Zimmerman. Teacher’s corner: A note on interpretation of the paired-samples t test. Journal
of Educational and Behavioral Statistics, 22(3):349-360, 1997.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
Proceedings of the 20th International Conference on Machine Learning (ICML-03), pages 928—
936, 2003.

12



