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Overview

In this supplemental material, we first present the detailed network architecture and parameters of
the proposed approach in Sec. |[Al We further provide more analysis of the proposed method and
ablation studies in Sec. [B] Section [C] shows some qualitative results for potential applications of
the proposed approach on medical imaging and imaging in astronomy. We provide more visual
comparisons against other methods in Sec.

A Configurations of the Deep Wiener Deconvolution Network

As shown in Fig. 2] of the main paper, our proposed network consists of a feature extraction network,
a feature-based Wiener deconvolution, and a multi-scale feature refinement network. Tables [6]and
list the detailed configurations of the feature extraction network and the feature refinement network
for one scale, respectively. Following Eq. (9) of the main paper, the number of input channels in the
feature refinement network for scale [ = 1 and [ > 1 differs. Hence, our feature refinement network
shares its parameters across all scales except for the first encoder block.

Table 6: Parameters of the feature extraction network. Conv denotes a convolutional layer and Res
denotes a residual block.

Layers Conv, Res; Res2 Ress
Filter size 5 5 5 5
Number of filters 16 16 16 16
Stride 1 1 1 1

B In-Depth Analysis

In this section, we provide additional detailed ablation studies and discussions on the proposed deep
Wiener deconvolution network.

B.1 Effect of the feature-based Wiener deconvolution with a basic reconstruction network

Our goal of this section is to complement the results in the main paper (in particular Tab. [3]in the
main paper) and to analyze the effect of the feature information on the classical Wiener deconvolution.
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Table 7: Parameters of the feature refinement network. Conv denotes a convolutional layer, Res
denotes a residual block, and Deconv denotes a transposed deconvolutional layer. Res;—Res; o (i=1,
4, 7, 10, 13, 16) represents a series of three identically configured residual blocks.

Layers Convq Resi1—Ress Conva Ress—Resg Convs Res7—Resg
Filter size 5 5 5 5 5 5
Number of filters 32 32 64 64 128 128
Stride 1 1 2 1 2 1
Layers Resio—Resi2 Deconv; Resi3—Resis Deconv, Resis—Res1s Convy
Filter size 5 3 5 3 5 5
Number of filters 128 64 64 32 32 3
Stride 1 2 1 2 1 1

Table 8: Effect of the feature-based Wiener deconvolution. All methods are evaluated on the datasets
of [21]] (1% noise level) and [24]] (1% noise level). The basic reconstruction network that contains
three residual blocks followed by one convolutional layer is denoted as Basic reconstruction. The
baseline method that follows the classical Wiener deconvolution with the Basic reconstruction network
is denoted as Wiener;. The baseline methods that combine the classical Wiener deconvolution with
the image gradients, the concatenation of both the input and the image gradients, 9 learned deep
features, and 16 learned deep features are denoted as Wienerg, Wienerrq, Wienerg fuures, and
Wienerp, respectively.

Feature extraction Wiener Refinement / Reconstruction PSNR in dB/SSIM

Intensity Gradients Deep features deconvolution  Bagic reconstruction Multi-scale refinement 211 241
Wiener [49] v X X v X X 27.48/0.6981 26.76/0.7033
Wiener 4 X X v v X 30.32/0.8931 27.14/0.8226
Wienerg X 4 X v v X 18.03/0.6456 13.46/0.5350
Wieners 4 g v v X v 4 X 33.37/0.9239 29.35/0.8423
Wienero features X X v v v X 34.09/0.9394 30.46/0.8755
Wiener 5 X X v v v X 34.78/0.9478 30.95/0.8836
Ours X X v v X v 36.90/0.9614 31.74/0.8938

We thus disable our proposed feature refinement network for all the baseline methods in this section.
We compare the classical Wiener deconvolution [49] with various baseline methods that combine the
classical Wiener deconvolution with various features: only the image gradients along the vertical and
horizontal directions (Wienerg for short), the concatenation of both the blurry image and the image
gradients (Wiener g for short), and learned deep features (Wieners feasures and Wiener p for short, latter
using 16 features). To reconstruct the final clear image from the deconvolved features, we use a basic
reconstruction network that contains three residual blocks followed by one convolutional layer. Note
that this is the same basic reconstruction network discussed in the main paper. For fair comparison,
we further compare with a baseline method that follows the classical Wiener deconvolution in image
space with the same reconstruction network (Wiener; for short). Table[§]shows that using the gradient
information alone is not sufficient, but is effective to improve the deconvolution performance when
combined with the intensity information from the blurry image. Thus, combining useful feature
information is able to improve the performance of the classical Wiener deconvolution. Furthermore,
the baseline method with the learned deep features performs the best among all the baseline methods,
increasing the PSNR by at least 0.72dB on the dataset by [21]] and 1.11dB on the dataset by [24].
The results in Tab. [§] demonstrate that the deep features are more effective for extracting useful
information for better deblurring and do not require a manual feature combination compared to fixed
feature extractors.

The last row in Tab. [§]reports the results of the proposed approach with the deep Wiener deconvolution
module and our multi-scale feature refinement module, which demonstrates that the multi-scale
refinement network is much better at recovering the clear image from the deconvolved features,
increasing the PSNR by 2.12dB on the dataset by [21] and 0.79dB on the dataset by [24].



Table 9: Effectiveness of the deep features learned by our piece-wise linear feature extraction network,
evaluated on the datasets of [21], [24], and [43] (PSNR in dB/SSIM). We compare the baseline method
that combines the classical Wiener deconvolution with the proposed deep feature extraction network
(Wienerp) with a baseline that uses a linear feature extraction network (Wienerp w/ learned linear
features).

Dataset Noise level Wienerp w/ learned linear features Wienerp
1% 33.69/0.9133 34.78/0.9478
Levinetal. [21] 3% 29.80/0.8343 31.18/0.8942
5% 28.09/0.7888 29.39/0.8553
BSDS [24] 1% 31.69/0.8815 32.69/0.9127
Sun et al. [43] 1% 29.46/0.8472 30.95/0.8836

Table 10: Quantitative comparison to state-of-the-art methods on the dataset of Levin et al. [21].

Noise level DMPHN (53] EPLL56] MLP[@0] CSF{37] LDT[8] IRCNN[35] FENBD[42] RGDN[0]  Ours
159 PSNR(@B) 21.35 22.04 22.98 21.87 21.46 24.64 21.75 17.10 2557

©  ssiM 0.5144 0.5987 0.5562 0.5130 0.4309 0.6647 0.4411 0.2491 0.7429

209  PSNR(B) 20.45 21.13 22.13 20.82 21.96 22.68 2021 14.81 24.01

©  ssiM 0.4301 0.5579 0.5350 0.4618 0.5177 0.5912 0.3508 0.1599 0.6765

309  PSNR(B) 18.66 19.28 2032 13.15 19.15 2097 18.06 1234 21.79

©  ssiM 0.2909 0.4457 0.4916 0.1103 0.3124 0.5554 0.2378 0.0889 0.5637

Table 11: Quantitative comparison to state-of-the-art methods on the dataset of Martin et al. [24].

Noise level DMPHN (53] EPLL [56] MLP [40] CSF[37] LDT {§] FCN [54] IRCNN [55] FDN [i6] FNBD [@2] RGDN [I0] Ours
390  PSNR(B) 24.04 26.28 2562 2633 2624 2692 27.18 27.23 27.44 2706 28.58

°  ssiM 0.6538 06996  0.6505 07096 0.7018  0.7346 0.7219 07505  0.7618 07620 0.8040

59  PSNR(B) 2372 24.66 24.01 2493 2490 2545 25.65 25.93 25.49 2533 2729

°  ssiM 0.6255 06276 05619  0.6428  0.6358  0.6771 0.6640 0.6943  0.6589 0.6688  0.7573

B.2 Effectiveness of learned deep features with a basic reconstruction network

In this section, we focus on the effect of learned deep features and disable our proposed feature
refinement network for all the baseline methods. To reconstruct the final image from the deconvolved
deep features, we use the same basic reconstruction network as in Tab. [§] As stated in the main
paper, the derivations of the feature-based Wiener deconvolution strictly hold in a linear feature space.
Moreover, we are interested to leverage powerful learned feature extractors {F;} beyond hand-crafted
ones. To this end, we develop a feature extraction network to estimate {F;y}. As the feature extraction
network with ReLUs is piece-wise linear, the linearity assumption of the Wiener deconvolution holds
only locally [19} 27]]. To evaluate the feasibility and effectiveness of this piece-wise linear feature
extraction network, we remove the ReL.Us in the proposed feature extraction network and compare
the effect of using features extracted by the proposed network (Wienerp for short) and the linear
feature extraction network (Wienerp w/ learned linear features for short) on the classical Wiener
deconvolution in Tab.[0] The results show that the method with the features extracted by the proposed
piece-wise linear (deep) feature extraction network performs much better than that using only a linear
feature extraction network, increasing the PSNR by at least 1.09dB on the dataset of [21], 1.00dB on
the dataset of [24], and 1.49dB on the dataset of [43]].

B.3 More experimental results on blurry images with higher noise levels

In the main paper, we compare the proposed method with state-of-the-art methods on the dataset
of Levin et al. [21]] with Gaussian noise of 1%—10%, and on the datasets of Martin et al. [24] and
Sun et al. [43]] with Gaussian noise of 1%. In this section, we further evaluate our method on these
test datasets with higher levels of Gaussian noise. Tables[I0and [TT]show that the proposed method
performs better than state-of-the-art methods on blurry images also with higher noise levels.



Figure 6: Illustration of learned deep features. (a) Blurry input. (b) Ground truth. (c)—(e) are the
visualization of one channel of the blurry input, the image gradient along the vertical direction, and
the image gradient along the horizontal direction, respectively. (f)—(h) are the deconvolved results
corresponding to (c)—(e). (i) and (j) visualize some features learned by the feature extraction network
and the corresponding deconvolved results, respectively.

B.4 Visualization of learned deep features

To intuitively illustrate what the proposed feature extraction network learns, we show some learned
features in Fig. [6{i), where the corresponding results deconvolved by Egs. (3) and (]%of the main
paper are shown in Fig. [6(j). The blurry input and ground truth are shown in Fig. [6(a)—(b). For
better understanding, we also show the visualization of one channel of the blurry input and the image
gradients along two directions in Fig.[6{c)—(e). Their corresponding deconvolved results are shown
in Fig. |§kﬂ—(h). Compared to the intensity information and the gradient information in Fig. |§kc)—(h),
the learned deep features in Fig. [6(i)—(j) contain much richer feature information, facilitating the
reconstruction of high-quality images. In addition, by integrating the feature extraction, the deep
Wiener deconvolution, and the feature refinement into an end-to-end network, the feature extraction
network can automatically learn useful feature information from the blurry input for better deblurring.
Thus, the proposed method does not require a manual combination of features.

B.5 Role of feature extraction network

As stated in the main paper, we propose to obtain powerful feature extractors {F;} using deep neural
networks that provide more useful information for a subsequent Wiener deconvolution. However,
on may actually wonder whether the feature extraction network acts as a denoiser, leading to the
observed robustness of the proposed method to various noise levels. To answer this question, we
further compare the learned features for blurry images without and with noise of different noise levels
(1%, 5%, 10%) in Fig.[7} The results show that the higher the noise level of the blurry image is, the
more noise the learned feature contains. Therefore, the feature extraction network does not appear to
act as a denoiser.

B.6 Robustness to differing noise levels

Estimation of parameters {s*} and {s?'}. As mentioned in the main paper, s? and s!" denote
E(|F;x|?) and E(|F;n|?), respectively. However, in real applications, it is hard to accurately calculate



Blurry input Features learned by the proposed feature extraction network

(a) Results on the blurry input without noise

(b) Results on the blurry input with 1% Gaussian noise

(c) Results on the blurry input with 5% Gaussian noise

(d) Results on the blurry input with 10% Gaussian noise

Figure 7: Learned features for blurry images with noise of different levels. From (a) to (d), the noise
level in the blurry input becomes higher and the extracted features contain more noise.

these expectations. Similar to existing methods [42} [51]], we estimate s¥ by the standard deviation of
the blurry feature F;y. s’ is estimated by the variance of the difference between the blurry feature F;y
and the mean-filtered result of F;y. Note that s} is adaptively computed from the blurry feature F;y
and related to the noise level in F;y. Thus, the proposed network is able to handle blurry images with
various noise levels. This is also referred to as being noise-blind [13]]. To demonstrate the robustness
of the proposed deep Wiener deconvolution network to various noise levels, we compare our single
model (which is trained with mixed Gaussian noise levels, ranging from 0-5%) with instances of
our model that are specifically trained with only one Gaussian noise level of either 1%, 3%, or 5%.
Table (12| shows that the proposed noise-blind model obtains similar results to the noise-specific
models across various noise levels, e.g., 36.90dB compared to 37.02dB for 1% Gaussian noise and
30.77dB compared to 30.80dB for 5% Gaussian noise.

As mentioned in Section [4.T]of the main paper, our normal training dataset contains blurry images
with Gaussian noise of various noise levels, ranging from 0 to 5%. One may thus wonder whether the
robustness of the proposed model is due to various noise levels in the training dataset and whether the



Table 12: Robustness of the proposed deep Wiener devoncolution network to various noise levels,
evaluated on the dataset of Levin et al. [21]] (PSNR in dB/SSIM).

Noise level Baseline model trained on images with specific noise level Ours (single model)
1% 37.02/0.9624 36.90/0.9614
3% 32.88/0.9191 32.77/0.9179
5% 30.80/0.8846 30.77/0.8857
10% 28.04/0.8241 27.78/0.8189

proposed model is still effective when the noise level is outside of this range. To answer this question,
we evaluate the proposed model on Levin’s dataset [21]] with 10% Gaussian noise, a noise level that
is not included in our training dataset. Table[I2]shows that the proposed model still performs close to
a noise-specific model trained on images with 10% Gaussian noise. In practice, this noise robustness
thus allows us to avoid training noise-specific models.

We further carry out a sensitivity analysis w.r.t. the estimation of the parameters {z—;} We use

the dataset of [21]] with 5% Gaussian noise and add 0-20% perturbation to our estimated {‘Z—:}
(no retraining). Figure 8| shows that the PSNR values differ no more than 0.06dB, suggesting the
robustness of our method to the estimation of the parameters {i—, }.
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Figure 8: Sensitivity analysis w.r.t. the estimation of {3 }.

The robustness of the proposed method to various noise levels not only stems from the estimation of
the parameters {i—T }, but also from our end-to-end network. Such benefit has also been demonstrated

in high-level comi)uter vision tasks. Diamond et al. [6] propose an end-to-end architecture for joint
denoising, deblurring, and classification, which makes classification more robust to realistic noise
and blur. By embedding the Wiener deconvolution into an end-to-end network, our proposed method
facilitates a feature extractor for learning useful features for deconvolution with fewer artifacts. Our
architecture also benefits from feature refinement of the deconvolved features to reconstruct clearer
images.

B.7 Choice of parameters {Z—: M.

In the proposed feature-based Wiener deconvolution of Egs. (3) and (8) of the main paper, the value

of =% is used to control the quality of the deconvolved feature F;X and estimated from each blurry
feature F;y as described in Sec. An alternative would be to estimate a single value from the



blurry input y for all the parameters {Z—: } M. . However, the properties of the extracted feature F,y

may be quite different from that of the Elurry input y. For example, the noise level of the extracted
feature F;y can be lower than that of the blurry input y. Then using the parameter estimated from y,
fine-scale structures and detail can be over-smoothed in the deconvolved feature F;x. Table|13|shows

that estimating each 27 from the corresponding blurry feature F;y is more effective than a baseline

model with a single pzframeter estimated from the blurry input y, increasing the PSNR about 0.66dB
on the dataset of [21]] with 1% Gaussian noise.

Table 13: Ablation study of the parameters {:—Z}f‘il (PSNR in dB/SSIM).

Dataset Noise level Baseline model with a single value for all {:—Z M. Proposed model
Levin et al. [21] 1% 36.24/0.9553 36.90/0.9614

’ 3% 32.44/0.9126 32.77/0.9179
BSDS [24] 1% 31.51/0.8890 31.74/0.8938

B.8 Number of extracted deep features

The proposed approach learns 16 features to extract useful information from the blurry input for
the Wiener deconvolution module. We further evaluate the effect of the number of deep features
by varying the number of learned features from 9 to 64. Table[14] shows that using more features
improves the image quality, however with diminishing returns. We empirically use 16 features as a
trade-off between image quality and efficiency.

Table 14: Ablation study on the number of deep features on the dataset of Levin et al. [21] (PSNR in
dB/SSIM).

Noise level / Number of features 9 16 32 64

1% 36.81/0.9608 36.90/0.9614 36.95/0.9615 36.96/0.9619
3% 32.73/0.9177 32.77/0.9179 32.83/0.9180 32.85/0.9191
5% 30.72/0.8854 30.77/0.8857 30.80/0.8854 30.89/0.8884

B.9 Batch size

We use a batch size of 8 for training. We further evaluate the effect of the batch size by varying it
from 1 to 16 in Tab.[[3

Table 15: Ablation study on the batch size (PSNR in dB/SSIM).

Dataset / Batch size 1 4 8 16
Levin et al. [21]] 36.73/0.9601 36.90/0.9610 36.90/0.9614 36.81/0.9609
BSDS [24] 31.49/0.8929 31.65/0.8932 31.74/0.8938 31.69/0.8926

B.10 Number of feature refinement scales

In the main paper, we evaluate the effectiveness of the multi-scale strategy in the feature refinement
module and use a total of two scales. We further analyze whether using more scales will improve the
image quality. Table [I6|demonstrates that using more scales does not significantly improve the image
quality. We empirically use 2 scales as a trade-off between image quality and efficiency.

B.11 Loss weights for different scales

To better regularize the proposed network, we apply an ¢; loss function at each scale [, as defined in
Eq. of the main paper. We show the effect of the weights {;} for different scales in Tab. We



Table 16: Ablation study on the number of feature refinement scales (PSNR in dB/SSIM).

Noise level Method / Kernel size 13—-19 33 —39 53 — 59
w/o multi-scale 33.46/0.9232 29.23/0.8398 27.45/0.7995

1% Ours w/ 2 scales 33.57/0.9254 29.47/0.8437 27.73/0.8127
Ours w/ 3 scales 33.61/0.9263 29.48/0.8460 27.96/0.8160
w/o multi-scale 29.93/0.8475 26.71/0.7370 25.20/0.6918

3% Ours w/ 2 scales 30.09/0.8519 27.00/0.7510 25.57/0.7080
Ours w/ 3 scales 30.09/0.8526 27.03/0.7523 25.69/0.7092

note that the proposed method is less effective when 2 < ;. Since the output of the scale 2 is the
desired one, it is more reasonable to set -y, to a larger value. Table[T7]demonstrates that the results
are robust when vy, > ;. We empirically set 2 = v, = 1.

Table 17: Ablation study on the loss weights for different scales (PSNR in dB/SSIM).

(71,72) (0.2,1) (0.5,1) (L, 1) (1,0.5)
Levin et al. [21] 36.97/0.9612 36.86/0.9608 36.90/0.9614 36.78/0.9596
BSDS [24] 31.71/0.8940 31.72/0.8937 31.74/0.8938 31.53/0.8890

B.12 Additional reconstruction module

Our method consists of a deep Wiener deconvolution module to generate deconvolved features and
then relies on a multi-scale feature refinement module to refine the latent features and reconstruct the
final clear image. To understand the potential benefit of using an additional reconstruction module,
we compare with a variant that adopts an additional reconstruction module at the end of the network
that consists of three residual blocks followed by one convolutional layer to obtain the final clear
image. Table[I8]shows that using an additional reconstruction module does not significantly improve
the accuracy. Considering the efficiency, our proposed architecture does not adopt an additional
reconstruction module.

Table 18: Ablation study on an additional reconstruction module (PSNR in dB/SSIM).

Dataset Baseline model with an additional reconstruction module Ours
Levin et al. [21] 36.98/0.9615 36.90/0.9614
BSDS [24] 31.73/0.8936 31.74/0.8938

B.13 Extension to non-uniform image deblurring

Our method is derived based on a uniform blur model. However, our method can be extended to
handle non-uniform blur by applying the local uniform approximation method of [48]]. We evaluate
the effectiveness of our method on non-uniform image deblurring in Fig.[9] where the blurry examples
are from [59] and the blur kernels are estimated by the method of [60]. The result by [60] over-
smoothes the detail in the restored images, as shown in Fig.[0](b). In contrast, our method generates
much clearer images in Fig. 0] (c), where the fine-scale structures of the books and branches are
recovered much better.

B.14 Robustness to outliers

As demonstrated in Sec. the proposed method is robust to different noise levels. We further
explore the applicability of our method to images with outliers [I,[58]. As shown in Fig. [I0] on
blurry images with impulse noise and saturated areas, without fine-tuning on images with outliers,
the proposed method performs comparably with a method that is specifically designed to handle
outliers [58]].

However, for blurry input with significant outliers in Fig. [IT] directly using the proposed model
trained on images with Gaussian noise will generate a deblurred result with severe artifacts. However,
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(a) Blurry input (b) [60] (c) Ours

Figure 9: Examples with non-uniform image deblurring. The images shown in (b) are obtained from

the reported results of [60]. Compared to the results in (), the images recovered by our method in (c)
are much clearer with finer detail.

(©
Figure 10: Robustness to outliers. (a) Above: blurry input with impulse noise. Below: blurry

input with impulse noise and saturated areas. The proposed method without fine-tuning can achieve
comparable results against a method specifically designed for outlier handling [58].

(a) Blurry input (b) FNBD [42]

we can refine the proposed network on the same dataset described in Section [d.1] of the main paper
by adding impulse noise ranging from 0-5%. The such refined model can generate a much clearer
image with finer detail, see Fig.[TT|(d), compared to the result obtained by in Fig. [TT]b).

B.15 Run-time

We benchmark the run-time of a selection of evaluated methods on a machine with an Intel Xeon
E5-2650 v4 CPU and an NVIDIA TITAN Xp GPU. Table [I9summarizes the average run-time of
representative methods. Our deep Wiener deconvolution network requires about 0.05 seconds on the
images (with 255 x 255 x 3 pixels) from Levin et al. [21] and roughly 0.40 seconds on images (with
800 x 1024 x 3 pixels) from Sun et al. [43]]. The methods [10} [16} 53] are iterative and thus take more
time. The approach of [42] contains a postprocessing step of solving an optimization problem, which
also takes a certain amount of time. In contrast, the proposed deep Wiener deconvolution network



(a) Blurry input (b) (58] (c) Ours (d) Ours w/ finetuning

Figure 11: An example with significant impulse noise.
is based on an end-to-end architecture, which does not require iterative solutions or postprocessing
steps. Thus, the proposed approach runs faster with high image quality.

Table 19: Run-time performance (seconds). All the methods are evaluated on the same machine with
the same settings.

Image size IRCNN FDN [[16] FNBD [42] RGDN [10] Ours
255 x 255 x 3 0.32 0.60 0.07 1.44 0.05
800 x 1024 x 3 4.59 1.85 0.67 11.27 0.40

10



C Potential Applications

As discussed in the Broader Impact section of the main paper, image deblurring has a broad potential
impact through a wide range of applications, e.g., medical imaging, telescope imaging in astronomy,
portable device imaging, etc. Our image deblurring method based on the proposed deep Wiener
deconvolution network can provide high-quality clear images to facilitate intelligent data analysis
tasks in these fields. To illustrate its applicability, in this section, we provide some examples for
potential applications of our approach to medical imaging and astronomy imaging. The results are
obtained without finetuning of our model to these particular images or domains.

(a) Blurry image (b) Ours

Figure 12: Example with a real point spread function from [57]. The blur kernel is estimated by
the method of [29]]. The result is obtained with the proposed model without fine-tuning, which
demonstrates the potential application of our approach to medical imaging.

(a) Blurry image (b) Ours 7

Figure 13: Example with a real point spread function from the Internet. The blur kernel is estimated
by the method of [29]. The result is obtained with the proposed model without fine-tuning, which
demonstrates the potential application of our approach to telescope imaging in astronomy.

11



D Qualitative Comparisons
In this section, we present additional visual comparisons with the state-of-the-art methods [8]

(37,40, 42| [53H56]] on images with both simulated (Figs. [[4]to[T9) and real-world blur (Figs. 20|
to[22).

(e) LDT [8]

(i) FNBD [42] (j) RGDN [10] (k) Ours

Figure 14: Example with simulated blur (1% noise level) from the dataset of [21]]. The deblurred
results (b)—(j) by existing methods have obvious visual distortion in the shirt as enclosed in the red
boxes and the detail is over-smoothed in the sweater as enclosed in the yellow boxes. In contrast, our
deep Wiener deconvolution network can generate a much clearer image with finer detail and fewer
artifacts.

12



(a) Blurry image (b) EPLL [36] (c) MLP (d) CSF

(e) LDT [8] (f) FCN [34] (2) IRCNN [35] (h) FDN [16]

(i) FNBD [42] (j) RGDN (k) Ours (1) Ground truth

Figure 15: Example with simulated blur (3% noise level) from the dataset of [21]]. The method [40]
is less effective in generating a clear result as shown in (c¢). Existing methods can remove the blur
and noise, but some detail is also smoothed as shown in the red and yellow boxes of (b) and (d)—(j).
However, our approach restores a much clearer image with finer detail and fewer artifacts.

13
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(e) LDT (f) FCN [34] (2) IRCNN [35] (h) FDN

(i) FNBD [42] (j) RGDN (k) Ours (1) Ground truth

Figure 16: Example with simulated blur (5% noise level) from the dataset of [21]]. The result obtained
by [40] has severe artifacts in (c). For other methods, small-scale structures and detail are over-
smoothed as shown in the red and yellow boxes of (b) and (d)—(j). Compared to existing methods,
our approach can effectively preserve finer detail as shown in (k).

14
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RGDN [10] (k) Ours (1) Ground truth

(i) FNBD [42] ()
Figure 17: Example with simulated blur (10% noise level) from the dataset of [21]. The results
by competing methods have severe artifacts in (b)—(j). In contrast, the proposed deep Wiener

deconvolution network is able to generate a clear result (k) from the blurry image despite significant
image noise.

15



(c) MLP
I~ o<

(g) IRCNN
R a7

(i) FNBD [42] (j) RGDN [10] (k) Ours (1) Ground truth

Figure 18: Example with simulated blur (1% noise level) from the dataset of [24]. Compared to the
results in (b)—(j), the proposed method is able to effectively preserve detail and fine-scale structures
as shown in (k).
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Figure 19: Example with simulated blur (1% noise level) from the dataset of [43]]. The result by [42]]

in (i) has severe artifacts. For other results, small-scale structures and detail are over-smoothed. In
contrast, our method is more effective in restoring the characters.
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(a) Blurry image (b) EPLL [5 (c) CSF [37]
(d) LDT [8]] (e) FCN [34] (f) IRCNN [53]]

(g) FNBD (h) RGDN [10] (i) Ours

Figure 20: Example with real camera shake from [30]. The blur kernel in (a) is estimated by the
method of [30]. The result obtained by [42] has severe artifacts (g). Compared to existing methods,
our deep Wiener deconvolution network is able to preserve finer-scale detail (i).
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(i) RGDN [10]

Figure 21: Example with real camera shake from [50]]. The blur kernel in (a) is estimated by the
method of [29]]. The deblurred results by [40,42]] have severe artifacts as shown in the yellow and red
boxes of (¢)—(h). For other methods, fine-scale structures and detail are over-smoothed. Compared to
existing methods, our method recovers much clearer characters as shown in (j).
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(2) RGDN [10] " (h) Ours

Figure 22: Example with real camera shake from [50]. The blur kernel in (a) is estimated by the
method of [29]. The result in (a) has severe artifacts, while for the other results, fine-scale structures
are over-smoothed. In contrast, our approach generates an image with much clearer characters.
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