
A Full Proofs

A.1 Proof for Lemma 1

Lemma. Let (F,W (·)) be a given discrete integration instance such that W (xi) = pi
qi

and W (xi) +

W (¬xi) = 1 for every i. Let mi = dmax(log2 pi, log2(qi − pi))e, and let F̂ = F ∧ Ω, where
Ω =

∧
((xi → ϕpi,mi) ∧ (¬xi → ϕqi−pi,mi)). Denote CW =

∏
xi
qi. Then W (F) =

|RF̂ |
CW

.

Proof. Note that if W (xi) = pi/qi then W (¬xi) = (qi − pi)/qi. Let W ′(·) be a new weight
function, defined over the literals of X as follows. W ′(xi) = pi and W ′(¬xi) = qi − pi. Note that
W ′(·) is different from the typical weight functions considered in this paper as W ′(xi) and W ′(¬xi)
are non negative integers. By extending the definition of W ′(·) in a natural way (as was done for
W (·)) to assignments, sets of assignments and formulas, it is easy to see that W (F) = W ′(F) /CW .

Next, for every assignment σ of variables in X , we have that W ′(σ) =
∏
i∈σ1 pi

∏
i∈σ0(qi − pi).

Let σ̂ be an assignment of variables appearing in F̂ . We say that σ̂ is compatible with σ if for all
variables xi in the original set of variables X , we have σ̂(xi) = σ(xi). Observe that σ̂ is compatible
with exactly one assignment of variables in X . For every assignment σ for F , let Sσ denote the set
of all satisfying assignments of F̂ that are compatible with σ. Then {Sσ|σ ∈ RF } is a partition of
RF̂ . From the chain-formula properties, we know that there are pi witnesses of ϕpi,mi and qi − pi
witnesses of ϕqi−pi,mi . Since the representative formulas of every weighted variable use a fresh set of
variables, and since there is no assignment that can make both a variable and it’s negation to become
true, we have from the structure of F̂ that if σ is a witness of F , then |Sσ| =

∏
i∈σ1 pi

∏
i∈σ0(qi−pi).

Therefore |Sσ| = W ′(σ). Note that if σ is not a witness of F , then there are no compatible satisfying
assignments of F̂ ; hence Sσ = ∅ in this case. Overall, this gives

|RF̂ | =
∑
σ∈RF

|Sσ|+
∑
σ 6∈RF

|Sσ| =
∑
σ∈RF

|Sσ|+ 0 = W ′(F) .

It follows that W (F) = W ′(F)
CW

=
|RF̂ |
CW

.

We note that the number mi is picked, only so the truth table of ϕpi,mi
can store pi assignments, and

that the truth table ofϕqi−pi,mi
can store qi − pi assignments.

A.2 Proof for Theorem 1

Theorem. The return value of A(F, ε, δ) is an (ε, δ) estimate of W (F). Furthermore, A makes

O
(

log(n+
∑

imi) log(1/δ)

ε2

)
calls to an NP oracle, where mi = dmax(log2 pi, log2(qi − pi))e.

Proof. Denote the return value that the approximated model counter B returns by v. Then we
have that Pr[|RF̂ |

1+ε ≤ v ≤ (1 + ε)|RF̂ |] ≥ 1 − δ. By dividing the returned value v by the factor

CW we then have that Pr[|RF̂ |
CW (1+ε) ≤

v
CW
≤ (1 + ε)

RF̂

CW
] ≥ 1 − δ. Recall that from Lemma 1

we have that W (F) =
|RF̂ |
CW

. Then since A(F, ε, δ) returns v′ = v/CW , we all in all have that

Pr[W(F)
1+ε ≤ v

′ ≤ (1 + ε)W (F)] ≥ 1− δ. That is, the return value A(F, ε, δ) is an (ε, δ) estimate of
W (F) as required.

The number of NP oracle calls made by Algorithm A follows from Theorem 4 of [11], and the
fact that F̂ has n +

∑
imi variables (n from the original formula and

∑
imi added in the chain

formulas).

A.3 Handling projected formulation

For the sake of clarity, we presented our techniques without considering projection. However, since
the underlying model counter that we use, ApproxMC [10, 11, 43], handles projected model counting,
the technical framework described in this paper can be easily extended to the projected formulation.

13

To see that, note that the formulation of a projected weighted Boolean formula F is (F, P,W) where
P is a projected set, and the weight function W is defined only over the variables of P . Our algorithm
A reduces (F, P,W) using the chain formula reduction of Lemma 1, to a projected unweighted
Boolean formula (F̂ , P ∪ Y), where Y denotes the set of fresh variables used for the chain formulas.
(F̂ , P ∪ Y) is then fed to ApproxMC that supports projected model counting. The result value v that
ApproxMC returns is an (ε, δ) estimate to (F̂ , P ∪ Y). It follows that A returns v/CW as an (ε, δ)
estimate to (F, P,W).

A.4 Proof for Theorem 2

As shorthand, in this section we use bin(a) to denote the binary representation of a and |bin(a)| to
denote the number of bits that are needed to describe a (i.e., dlog2(a)e).
Theorem. Algorithm 1 with initial arguments (p, q), (a1, b1) = (0, 1) and (a2, b2) = (1, 1) finds a
nearest m-bit fraction to p/q.

Proof. First note that since the required p and q − p are of size m bits at most, the denominator of
a potential nearest m-bits fraction is no bigger than k = 2m − 2. Therefore, the required p/q is
contained in the Farey Sequence Fk, that is the sequence of all irreducible fractions (in increasing
order) with denominator of at most size k.

A way to construct the entire Farey sequence Fi from Fi−1 is as follows: Initially set Fi = Fi−1.
Then iteratively go over the members of Fi in an increasing order, and for every a1/b1 < a2/b2
neighbors inFi−1, construct (a1+a2)/(b1+b2). It turns out that (a1+a2)/(b1+b2) is an irreducible
fraction and that a1/b1 < (a1+a2)/(b1+b2) < a2/b2. Now, if b1+b2 = i, add (a1+a2)/(b1+b2) to
Fi, otherwise skip. Finally arrangeFi in an increasing order. The initial sequence isF1 = (0/1, 1/1).
Then for example F2 = (0/1, 1/2, 1/1), F3 = (0/1, 1/3, 1/2, 2/3, 1/1) and so on.

The algorithm ApproxFraction follows the Farey sequence construction by setting at every call
a = a1 + a2, b = b1 + b2, and evaluating a/b. Assume that both |bin(a)| and |bin(b − a)| are at
most than m. Then a/b is a candidate for the nearest m-bit fraction to p/q, where Lines 7-10 check
whether |a/b− p/q| < |a1/b1 − p/q| or |a/b− p/q| < |a2/b2 − p/q|, and makes the recursive call
replacing either a1/b1 with either a/b if a/b is m-bit nearer from the bottom or either replacing
a2/b2 with a/b if a/b is m-bit nearer from the top.

Algorithm ApproxFraction bounds to stop as the denominator always increases (i.e. b1 + b2 > b1 and
b1 + b2 > b2). It is left to see that when the algorithm stops, the value of min{(a1, b1), (a2, b2)} is
the m-nearest fraction to p/q. First, if either a1/b1, a2/b2 or a/b is equal to p/q, then the algorithm
returns p/q in Line 4 which is obviously the m-bits nearest fraction. Next, assume that either |bin(a)|
or |bin(b− a)| are bigger than m as the stopping condition in Line 5 indicates. consider the interval
(a1/b1, a2/b2). Since the nearest m-bits fractions are members of Fk, these must be found via
the Farey sequence construction above. Since for every i, only consecutive fractions of Fi are
used to generate members of Fi−1, it follows that the the nearest n-bits fraction must be generated,
as in the Farey sequence construction, by using only fractions from the interval (a1/b1, a2/b2).
We show by induction that for every i, there are no m-bit fractions in Fi ∩ (a1/b1, a2/b2). First
set Fj to be the Farey sequence for which both a1/b1,a2/b2 ∈ Fj\Fj−1 Then a1/b1,a2/b2 are
consecutive in Fj , therefore Fj ∩ (a1/b1, a2/b2) is empty. Assume by induction that for every i ≥ i,
Fi ∩ (a1/b1, a2/b2) does not contain m-bits fraction. Now, observe that Fi+1 ∩ (a1/b1, a2/b2) is
generated from consecutive fractions inFi∩[a1/b1, a2/b2]. This can be done only if the two fractions
are a1/b1, a2/b2 ,and then we had that the fraction a/b = (a1+a2)/(b1+b2) is not anm-bit fraction,
or otherwise at least one of the fractions belongs to Fi ∩ (a1/b1, a2/b2), hence is not an m-bits
fraction. The following lemma shows that in this case as well, the result is not an m-bit fraction,
hence all in all Fi+1 ∩ (a1/b1, a2/b2) is empty as well. As such, the nearest m-bits fractions from
bottom and top are (a1/b1) and (a2/b2) respectively and algorithm returns min{(a1/b1), (a2/b2)},
which is the nearest m-bits fraction as required.

Lemma 2. Let a/b, x/y be a fraction where 0 < a < b, 0 < x < y and either |bin(a)| or
|bin(b− a)| are bigger than n. Consider the fraction (a+x)/(b+ y). Then either |bin(a+x)| > m
or |bin((b+ y)− (a+ x))| > m.

14

Proof. Obviously for every two numbers i, j, i < j ⇐⇒ bin(i) < bin(j) ⇐⇒ |bin(i)| <
|(bin(j)|. Assume |bin(a)| > m. Then since x is positive then (a+ x) > a. Thus |bin(a+ x)| > m.
Next, assume |bin(b−a)| > m. Then since y−x > 0 then (b+ y)− (a+x) = (b−a) + (y−x) >
(b− a), so |bin((b+ y)− (a+ x))| > m.

Finally from the analysis above of the stopping conditions of ApproxFraction, we have that the
maximal running time of ApproxFraction is 22m − 2. The following example shows that this can
also be a worst case. Consider any input 1/q where q > 2m and m is the number of the required bits.
In such case at every step we have that a1/b1 = 0/1, and so a/b = a2/b2 + 1. This gives an overall
running time of 22m − 2.

15

