A Full Proofs

A.1 Proof for Lemma 1

Lemma. Let (F, W(-)) be a given discrete integration instance such that W (z;) = L+ and W (z;) +

W (-x;) = 1 for everyi. Let m; = [max(log, p;,1ogy(qi — pi))], and let E = F A Q, where

Q= A(zi = ©p;.m;) N (5% = ©g,—p;.m;))- Denote Cyyy = HI qi- Then W (F) = ‘CR—VI“;'.

Proof. Note that if W(z;) = p;/q; then W(—z;) = (¢ — pi)/qi- Let W’(-) be a new weight
function, defined over the literals of X as follows. W’ (x;) = p; and W/ (—a;) = ¢; — p;. Note that
W'(-) is different from the typical weight functions considered in this paper as W'(x;) and W' (—x;)
are non negative integers. By extending the definition of W'(-) in a natural way (as was done for
W (+)) to assignments, sets of assignments and formulas, it is easy to see that W (F) = W/(F) /Cyw .

Next, for every assignment o of variables in X, we have that W'(0) = [[;c,1 pi [[;c00 (9 — pi)-

Let & be an assignment of variables appearing in F'. We say that & is compatible with o if for all
variables x; in the original set of variables X, we have 6 (z;) = o(x;). Observe that & is compatible
with exactly one assignment of variables in X . For every assignment o for F, let S, denote the set
of all satisfying assignments of F that are compatible with 0. Then {S,|oc € Rp} is a partition of
Rz. From the chain-formula properties, we know that there are p; witnesses of ¢, m, and ¢; — p;
witnesses of ©g, —p, m,. Since the representative formulas of every weighted variable use a fresh set of
variables, and since there is no assignment that can make both a variable and it’s negation to become
true, we have from the structure of F that if o is a witness of F', then | S, | = [Licor Pi [L;cq0 (@i —pi)-
Therefore |S,| = W' (o). Note that if o is not a witness of F, then there are no compatible satisfying

assignments of F’; hence S, = () in this case. Overall, this gives
[Rel= > ISo1+ > 1Ssl= > IS, +0=W'(F).
oc€ERFp oZRp ocERF

It follows that W (F') = WC/(;) = lg;'.

O

We note that the number m; is picked, only so the truth table of ¢, ,,, can store p; assignments, and
that the truth table ofyp,, _,, m, can store g; — p; assignments.

A.2 Proof for Theorem 1

Theorem. The return value of A(F,¢,0) is an (g,9) estimate of W (F). Furthermore, A makes
o (1og<n+zi ms) log(1/6)

2

) calls to an NP oracle, where m; = [max(logs p;,logs(q; — pi))]-

Proof. Denote the return value that the approximated model counter 5 returns by v. Then we
|Rp

have that Pr[T2 < v < (1+¢)|Rz|] > 1 — 4. By dividing the returned value v by the factor
Cw we then have that Pr[% < ﬁ < (1+ E)%] > 1 — §. Recall that from Lemma 1
we have that W (F) = ‘g—v‘;l Then since A(F, e, d) returns v' = v/Cy, we all in all have that

Pr[% <v' < (14¢e)W(F)] > 1— 0. That is, the return value A(F,,0) is an (g,) estimate of
W (F) as required.
The number of NP oracle calls made by Algorithm A follows from Theorem 4 of [11], and the

fact that F' has n + >, m; variables (n from the original formula and) |, m; added in the chain
formulas). O

A.3 Handling projected formulation

For the sake of clarity, we presented our techniques without considering projection. However, since
the underlying model counter that we use, ApproxMC [10, 11, 43], handles projected model counting,
the technical framework described in this paper can be easily extended to the projected formulation.

13

To see that, note that the formulation of a projected weighted Boolean formula F is (F, P, W) where
P is a projected set, and the weight function W is defined only over the variables of P. Our algorithm
A reduces (F, P,WW) using the chain formula reduction of Lemma 1, to a projected unweighted
Boolean formula (F ,PUY), where Y denotes the set of fresh variables used for the chain formulas.
(F, P UY) is then fed to ApproxMC that supports projected model counting. The result value v that

ApproxMC returns is an (e, §) estimate to (', P U'Y'). It follows that A returns v/Cyy as an (e, §)
estimate to (F, P, V).

A.4 Proof for Theorem 2

As shorthand, in this section we use bin(a) to denote the binary representation of a and |bin(a)| to
denote the number of bits that are needed to describe a (i.e., [logy(a)]).

Theorem. Algorithm I with initial arguments (p,q), (a1,b1) = (0,1) and (a2,be) = (1,1) finds a
nearest m-bit fraction to p/q.

Proof. First note that since the required p and g — p are of size m bits at most, the denominator of
a potential nearest m-bits fraction is no bigger than £ = 2™ — 2. Therefore, the required p/q is
contained in the Farey Sequence Fj, that is the sequence of all irreducible fractions (in increasing
order) with denominator of at most size k.

A way to construct the entire Farey sequence JF; from F;_ is as follows: Initially set F; = F;_1.
Then iteratively go over the members of F; in an increasing order, and for every a1/b; < ag/bs
neighbors in F;_1, construct (a3 +az)/(b1 +bz). It turns out that (a1 +az)/ (b1 +b2) is an irreducible
fraction and that al/b1 < (a1 +a2)/(b1 —l—bg) < ag/bg. Now, if by +by = 7, add (a1 —I—Clg)/(bl +b2) to
Fi, otherwise skip. Finally arrange F; in an increasing order. The initial sequence is 71 = (0/1,1/1).
Then for example 7> = (0/1,1/2,1/1), F3 = (0/1,1/3,1/2,2/3,1/1) and so on.

The algorithm ApproxFraction follows the Farey sequence construction by setting at every call
a = a1 + ag, b = by + bo, and evaluating a/b. Assume that both |bin(a)| and |bin(b — a)| are at
most than m. Then a/b is a candidate for the nearest m-bit fraction to p/q, where Lines 7-10 check
whether |a/b — p/q| < |a1/b1 —p/q| or |a/b—p/q| < |az/ba — p/q|, and makes the recursive call
replacing either a; /by with either a/b if a/b is m-bit nearer from the bottom or either replacing
as /by with a/b if a/b is m-bit nearer from the top.

Algorithm ApproxFraction bounds to stop as the denominator always increases (i.e. by + b > by and
b1 + by > by). It is left to see that when the algorithm stops, the value of min{(ay,b1), (az,bs)} is
the m-nearest fraction to p/q. First, if either a1 /b1, az/bs or a/b is equal to p/q, then the algorithm
returns p/q in Line 4 which is obviously the m-bits nearest fraction. Next, assume that either |bin(a)
or |bin(b — a)| are bigger than m as the stopping condition in Line 5 indicates. consider the interval
(a1/b1,a2/bs). Since the nearest m-bits fractions are members of Fy, these must be found via
the Farey sequence construction above. Since for every ¢, only consecutive fractions of F; are
used to generate members of F;_1, it follows that the the nearest n-bits fraction must be generated,
as in the Farey sequence construction, by using only fractions from the interval (a1 /b1, a2/bs).
We show by induction that for every i, there are no m-bit fractions in F; N (ay /b1, as/bs). First
set F; to be the Farey sequence for which both a;/b1,as/bs € F;\F;_1 Then a1 /b1,a2/bs are
consecutive in F;, therefore F; N (a1 /b1, a2/b2) is empty. Assume by induction that for every i > 1,
Fi N (a1/b1,a2/bs) does not contain m-bits fraction. Now, observe that F; 1 N (a1 /b1, az/bs) is
generated from consecutive fractions in F; N [ay /b1, az/bs]. This can be done only if the two fractions
are ay /b1, a2 /by ,and then we had that the fraction a/b = (a1 +a2)/ (b1 +b2) is not an m-bit fraction,
or otherwise at least one of the fractions belongs to F; N (a1/b1,as/bs), hence is not an m-bits
fraction. The following lemma shows that in this case as well, the result is not an m-bit fraction,
hence all in all F; 1 N (a1/b1,a2/bs) is empty as well. As such, the nearest m-bits fractions from
bottom and top are (a1 /b1) and (a2/b2) respectively and algorithm returns min{ (a1 /b1), (a2/b2)},
which is the nearest m-bits fraction as required. O

Lemma 2. Let a/b, x/y be a fraction where 0 < a < b, 0 < x < y and either |bin(a)| or
|bin(b — a)| are bigger than n. Consider the fraction (a + x)/(b+y). Then either |bin(a + z)| > m
or |bin((b+y) — (a+x))| > m.

14

Proof. Obviously for every two numbers 4,7, i < j <= bin(i) < bin(j) < |bin(i)| <
|(bin(j)|. Assume |bin(a)| > m. Then since z is positive then (a +) > a. Thus |bin(a + x)| > m.
Next, assume |bin(b— a)| > m. Then since y —z > O then (b+y) — (a+2z) = (b—a)+(y—z) >
(b—a),so |bin((b+y) — (a+x))| > m. O

Finally from the analysis above of the stopping conditions of ApproxF'raction, we have that the
maximal running time of ApproxFraction is 2™ — 2. The following example shows that this can
also be a worst case. Consider any input 1/q where g > 2™ and m is the number of the required bits.
In such case at every step we have that a; /by = 0/1, and so a/b = a3 /b2 + 1. This gives an overall
running time of 22™ — 2,

15

