
In Appendix A, we provide more discussions on LiRPA bounds, including detailed algorithm and
complexity analysis, comparison of different LiRPA implementations, and also a small numerical
example in Appendix A.4. In Appendix B, we provide proofs of the theorems. We provide additional
experiments, including more LiRPA trained TinyImageNet models and IBP baselines in Appendix C.1,
and we also provide details for each experiment in Appendix C.

A Additional Discussions on LiRPA Bounds

A.1 Oracle Functions and the Linear Relaxation of Nonlinear Operations

In this section, we summarize some examples of oracle functions as derived in previous works [54,
46, 37]. In Table 6, we provide a list of oracle functions of three basic operation types, including
affine transformation, unary nonlinear function, and binary nonlinear function. Most common
operations involved in neural networks can be addressed following these basic operation types. For
example, dense layers and convolutional layers are affine transformations, activation functions are
unary nonlinear functions, multiplication and division are binary nonlinear functions, and matrix
multiplication or dot product of two variable matrices can be considered as multiplications with an
affine transformation.

Parameters α, β, γ, α, β, γ in Table 6 are involved in the linear relaxation of nonlinear operations. For
example, for ReLU, σ(hj(X)) = max(hj(X), 0), is a piecewise linear function and can be linearly
relaxed w.r.t. the concrete bounds of hj(X), denoted as l ≤ hj(X) ≤ u. We aim to find parameters
α, β, α, β such that αhj(X) + β ≤ σ(hj(X)) ≤ αhj(X) + β (∀hj(X) ∈ [l, u]) holds true. When
u ≤ 0 or l ≥ 0, σ(hj(X)) is a linear function on hj(X) ∈ [l, u], and σ(hj(X)) itself is the trivial
linear relaxation. For l > 0, we have σ(hj(X)) = hj(X), and thus we can take α = α = 1, β =

β = 0; for u < 0, we have σ(hj(X)) ≡ 0, and thus we can take α = α = β = β = 0. Otherwise,
for l < 0 < u, we can take the line passing (l, σ(l)) and (u, σ(u)) as the linear upper bound, i.e.,
α = σ(u)−σ(l)

u−l , β = −αl. For the lower bound, it can be any line with 0 ≤ α ≤ 1 and β = 0. To
minimize the relaxation error, Zhang et al. [54] proposed to adaptively choose α = I(u > |l|) in
LiRPA. Alternatively, we can also select α = 0, and thereby the linear relaxation can be provably
tighter than IBP bounds. This lower bound can be used for training ReLU networks with loss fusion.
Figure 4 compares the linear bounds in LiRPA and IBP respesctively.

4 2 0 2 4
x

1

0

1

2

3

4

5

Re
LU

(x
)

ReLU
Linear bounds
IBP bounds

Figure 4: An example of ReLU relaxation when l = −1.5, u = 1.5. Here we take the blue dashed
lines as the linear bounds, where any line passing (0, 0) with a slope between 0 and 1 can be a
valid lower bound. In contrast, IBP takes the fixed red dashed lines as the lower and upper bounds
respectively, which is a looser relaxation.

The detailed derivation of the oracle functions shown in Table 6 has been covered in previous
works [54, 46, 37] and is not a focus of this paper. We refer readers to those existing works for details.

14

Table 6: A list of common types of operations in neural networks, their definition Hi, and their
corresponding oracle functions Fi and Gi. Subscript “+” stands for taking positive elements from the
matrix or vector while setting other elements to zero, and vice versa for subscript “−”. diag(·) stands
for constructing a diagonal matrix from a vector. α, β, γ, α, β, γ are parameters of linear relaxation
that can be derived for each specific nonlinear function.

Operation Type Functions

Affine Transformation

Hi hi(X) = Ŵihj(X) + b̂i

Fi

Λj = AiŴi

Λj = AiŴi

∆ = Aib̂i
∆ = Aib̂i

Gi

Wi = Ŵi,+Wj + Ŵi,−Wj

bi = Ŵi,+bj + Ŵi,−bj + b̂i
Wi = Ŵi,+Wj + Ŵi,−Wj

bi = Ŵi,+bj + Ŵi,−bj + b̂i

Unary Nonlinear Function

Hi hi(X) = σ(hj(X))

Fi

Λj = Ai,+diag(α) + Ai,−diag(α)

Λj = Ai,+diag(α) + Ai,−diag(α)
∆ = Ai,+β + Ai,−β

∆ = Ai,+β + Ai,−β

Gi

Wi = diag+(α)Wj + diag−(α)Wj

bi = diag+(α)bj + diag−(α)bj + β

Wi = diag+(α)Wj + diag−(α)Wj

bi = diag+(α)bj + diag−(α)bj + β

where αhj(X) + β ≤ hi(X) ≤ αhj(X) + β

Binary Nonlinear Function

Hi hi(X) = π(hj(X), hk(X))

Fi

Λj = Ai,+diag(α) + Ai,−diag(α)

Λj = Ai,+diag(α) + Ai,−diag(α)
Λk = Ai,+diag(β) + Ai,−diag(β)

Λk = Ai,+diag(β) + Ai,−diag(β)
∆ = Ai,+γ + Ai,−γ

∆ = Ai,+γ + Ai,−γ

Gi

Wi = diag+(α)Wj + diag−(α)Wj + diag+(β)Wk + diag−(β)Wk

bi = diag+(α)bj + diag−(α)bj + β + diag+(β)bk + diag−(β)bk + γ

Wi = diag+(α)Wj + diag−(α)Wj + diag+(β)Wk + diag−(β)Wk

bi = diag+(α)bj + diag−(α)bj + β + diag+(β)bk + diag−(β)bk + γ

where αhj(X) + βhk(X) + γ ≤ hi(X) ≤ αhj(X) + βhk(X) + γ

A.2 Complexity Comparison between Different Perturbation Analysis Modes

In this section, we compare the computational cost of different perturbation analysis modes. We
assume that Dx and Dy are the total dimension of the perturbed independent nodes and the final
output node respectively. We focus on a usual case in classification models, where the final output
node is a logits layer whose dimension equals to the number of classes and thus usually Dy � Dx

holds true, or the final output is a loss function with Dy = 1 � Dx if loss fusion is enabled. We
also assume that the time complexity of a regular forward pass of the computational graph (e.g., a
regular inference pass) is O(r), and the complexity of a regular back propagation pass in gradient
computation is also asymptotically O(r). Note that the overall time complexity of LiRPA depends
on oracle functions, and in the below analysis we focus on common cases (e.g., common activation
functions in Table 6).

Interval bound propagation (IBP) IBP can be seen as a special and degenerated case of LiRPA
bounds. The time complexity of pure IBP is still O(r) since it computes two output values, a lower
bound and a upper bound, for each neuron, and thus the time complexity is the same as a regular
forward pass which computes one output value for each neuron. However, pure IBP cannot give
tight enough bounds for models without certifiably robust training or during the early stage of robust
training.

15

Backward mode bound propagation Backward mode LiRPA oracles typically require bounds of
intermediate nodes hj , hj for all j ∈ u(i) for a node i (referred to as “pre-activation bounds” in
some works). In the IBP+Backward setting, we assume that the intermediate bounds are known from
IBP before using the backward mode LiRPA. The oracle function Fi typically has the same time
complexity as back propagation of gradients through node i (e.g., for linear layers it is the transposed
operation of Hi(·)). However, unlike in back propagation where the gradients is computed for a
scalar function, in backward mode LiRPA we need to compute O(Dy) values for each neuron, and
these values stand for the coefficients of the linear bounds of the Dy final output neurons. The time
complexity is roughly Dy times back propagation time, O(Dyr).

For a purely backward perturbation analysis that can be extended from CROWN [54], the bounds
of intermediate nodes needed for the oracle functions are also computed with a backward mode
LiRPA. Assuming there are N nodes in total (including output nodes and all intermediate nodes) that
require LiRPA bounds, the total time complexity is asymptotically O(Nr) where N can be a quite
large number (e.g., for feed-forward ReLU networks N includes hidden neurons over all layers and
N � Dy), so this approach cannot scale to large graphs or be used for efficient training.

Forward mode bound propagation In the forward mode perturbation analysis, since we represent
the bounds of each neuron with linear functions w.r.t. the perturbed independent nodes, we need to
compute O(Dx) values for each neuron. Usually, the oracle functions Gi has the same asymptotic
complexity as the computation function Hi(·); however, the inputs of Gi include dimension Dx, and
the total time complexity of is roughlyO(Dxr). Note that in the implementation of the forward mode,
we do not compute linear functions w.r.t. all the independent nodes, but we only need to consider
those perturbed independent nodes while treating the other independent nodes as constants, and
thereby Dx may be much smaller than the dimension of X, e.g., model parameters can be excluded if
they are not perturbed.

Efficient hybrid bounds Among the LiRPA variants, IBP+Backward with a complexity ofO(Dyr)
is usually most efficient for classification models and is used in our certified training experiments.
When loss fusion is enabled,Dy = 1 during training, and thereby the complexity of IBP+Backward is
O(r), which is the same as that of IBP. In this way, our loss fusion technique can significantly improve
the scalability of certified training with LiRPA bounds. To obtain tighter bounds for intermediate
nodes which can also tighten the final output bounds, we may use pure forward or Forward+Backward
mode with a complexity of O((Dx +Dy)r) which is usually larger than that of IBP+Backward when
Dy � Dx. The forward mode LiRPA can still be potentially useful for situations where Dx � Dy ,
e.g., for generative models with a large output dimension. We leave this as future work.

A.3 The GetOutDegree Auxiliary Function in Backward Mode Perturbation Analysis

Algorithm 3 Auxiliary Function for Computing Output Degrees

function GetOutDegree (o)
Create BFS queue and Q.push(o)
di ← 0 (∀i ≤ n)
while Q is not empty do
i = Q.pop()
for j ∈ u(i) do
dj+= 1
if j has not been in Q then
Q.push(j)

As mentioned in Section 3.4, we have an auxiliary “GetOutDegree” function for computing the
degree di of each node i, which is defined as the the number of outputs nodes of node i that the node
o is dependent on. This function is illustrated in Algorithm 3. We use a BFS pass. At the beginning,
node o is added into the queue. Next, each time we pick a node i from the head of the queue. Node o
is dependent on node i, and thus we increase the degree of its input nodes, each dj(j ∈ u(i)), by 1.
Node o is also dependent on node j(j ∈ u(i)) and we add node j to the queue if it has never been in
the queue yet. We repeat this process until the queue becomes empty, and at this time any node i that
node o is dependent on has been visited and has contributed to the dj(j ∈ u(i)) of its input nodes.

16

A.4 A Small Example of LiRPA Bounds

We provide a small example to illustrate the computation of our LiRPA methods. We assume that we
have a simple ReLU network with 2 hidden layers, with weight matrix of each layer as below:

Ŵ1 = [[2, 1], [−3, 4]], Ŵ2 = [[4,−2], [2, 1]], Ŵ3 = [−2, 1],

and we do not consider bias terms of the layers here for simplicity.

Given a clean input X0 = [[0], [1]] and `∞ perturbation with ε = 2, we can compute the bounds of
the last layer and compare the results from IBP, forward mode LiRPA and backward mode LiRPA
respectively.

IBP

h1 = [[2], [3]],

h1 = [[−2], [−1]],

h2 = Ŵ1,+h1 + Ŵ1,−h1 = [[7], [12]] + [[0], [6]] = [[7], [18]],

h2 = Ŵ1,+h1 + Ŵ1,−h1 = [[−5], [−4]] + [[0], [−6]] = [[−5], [−10]],

h3 = Ŵ2,+h2 + Ŵ2,−h2 = [[28], [32]] + [[0], [0]] = [[28], [32]],

h3 = Ŵ2,+h2 + Ŵ2,−h2 = [[0], [0]] + [[−36], [0]] = [[−36], [0]],

h4 = Ŵ3,+h3 + Ŵ3,−h3 = [32] + [0] = [32],

h4 = Ŵ3,+h3 + Ŵ3,−h3 = [0] + [−56] = [−56].

In the following computation of LiRPA bounds, we always use α = 0 in the linear relaxation of
ReLU activation.

Forward Mode LiRPA
W1 = W1 = I, b1 = b1 = 0,

W2 = W2 = Ŵ1 = [[2, 1], [−3, 4]],

h2 = 2[[3], [7]] + [[1], [4]] = [[7], [18]],

h2 = −2[[3], [7]] + [[1], [4]] = [[−5], [−10]].

We compute the relaxation of the first layer ReLU activations:
diag(α1) = [[0.58, 0], [0, 0.64]], diag(α1) = [[0, 0], [0, 0]],

β1 = [[2.92], [6.43]]], β1 = [[0], [0]],

and then we have:
W3 = Ŵ2,+(diag(α1)W2) + Ŵ2,−(diag(α1)W2) = [[4.67, 2.33], [0.40, 3.74]],

W3 = Ŵ2,−(diag(α1)W2) + Ŵ2,+(diag(α1)W2) = [[3.86,−5.14], [0, 0]],

d2 = Ŵ2,+β1 + Ŵ2,−β1
= [[11.67], [12.26]],

d2 = Ŵ2,−β1 + Ŵ2,+β1
= [[−12.86], [0]],

h3 = W3X0 + ‖W3‖1ε+ d2 = [[28], [24]],

h3 = W3X0 − ‖W3‖1ε+ d2 = [[−36], [0]].

We then repeat the computation on the second layer:
diag(α2) = [[0.4375, 0], [0, 1]], diag(α2) = [[0, 0], [0, 1],]

β2 = [[15.75], [0]], β2 = [[0], [0]],

17

W4 = Ŵ3,+(diag(α2)W3) + Ŵ3,−(diag(α2)W3) = [0.40, 3.74],

W4 = Ŵ3,−(diag(α2)W3) + Ŵ3,+(diag(α2)W3) = [−4.08,−2.04],

d3 = Ŵ3,+(β2 + diag(α2)β2) + Ŵ3,−(β
2

+ diag(α2)β
2
) = [12.26],

d3 = Ŵ3,−(β2 + diag(α2)β2) + Ŵ3,+(β
2

+ diag(α2)β
2
) = [−41.71],

h4 = W4X0 + ‖W4‖1ε+ d3 = [24.29],

h4 = W4X0 − ‖W4‖1ε+ d3 = [−56].

Backward Mode LiRPA Here we reuse the intermediate results from the forward mode LiRPA
for the linear relaxation of ReLU activations, where

diag(α1) = [[0.58, 0], [0, 0.64]], diag(α1) = [[0, 0], [0, 0]],

β1 = [[2.92], [6.43]]], β
1

= [[0], [0]],

diag(α2) = [[0.4375, 0], [0, 1]], diag(α2) = [[0, 0], [0, 1]]

β2 = [[15.75], [0]], β
2

= [[0], [0]].

We then compute the linear bounds from the last layer to the first layer and finally concretize the
linear bounds:

A4 = A4 = I,

A3 = A4Ŵ3 = [−2, 1],

A3 = A4Ŵ3 = [−2, 1],

A2 = A3,+diag(α2)Ŵ2 + A3,−diag(α2)Ŵ2 = [2, 1],

A2 = A3,+diag(α2)Ŵ2 + A3,−diag(α2)Ŵ2 = [−1.5, 2.75],

A1 = A2,+diag(α1)Ŵ1 + A2,−diag(α1)Ŵ1 = [0.40, 3.74],

A1 = A2,+diag(α1)Ŵ1 + A2,−diag(α1)Ŵ1 = [−1.75,−0.875],

d1 = A2,+β2 + A2,−β2 + A1,+β1 + A1,−β1 = [12.26],

d1 = A2,+β2
+ A2,−β2 + A1,+β1

+ A1,−β1 = [−35.875],

h4 = A1X0 + ‖A1‖1ε+ d1 = [24.28],

h4 = A1X0 − ‖A1‖1ε+ d1 = [−42].

As we can see from this example, the bounds from the backward mode LiRPA are the tightest
compared to those from forward mode LiRPA and IBP, even if we reuse the intermediate relaxation
results from the forward mode LiRPA.

A.5 Existing LiRPA implementations

We list and compare a few notable LiRPA implementations in Table 7.

Table 7: Comparison between different implementations for perturbation analysis. (“FF” = FeedFor-
ward network).

Method Based On Mode Structure Activation Perturbation Differentiability Automatica Efficiency Tightness
DiffAI [31] PyTorch Backward, IBP FF+ResNet ReLU `∞ Yes No GPU ++
IBP [12, 31] TensorFlow IBP General General `∞ Yes No GPU -
ERAN [30] C++/CUDAb Backward, IBP, othersc General General `p+semantic No No Partially GPU ++

Convex-Adv [49] PyTorch Backward FF+ResNet ReLU `p Yes No Multi-GPU +
Fast-Lin [47] Numpy Backward FF (MLP) ReLU `p No No CPU +
CROWN [54] Numpy Backward FF (MLP) General `p No No CPU ++

CROWN-IBP [54] PyTorch Backward, IBP FF General `p Yes No Multi-GPU ++
Ours PyTorch Backward, Forward, IBP General General Generald Yes Yes Multi-GPU ++

a “Automatic” is defined as an user can easily obtain bounds using existing model source code, without manual conversion or implementation.
b ERAN has a TensorFlow frontend to read TensorFlow models, but its backend is written in C++ and partially CUDA.
c Other types of bounds like k-ReLU [39] are provided, but typically much less efficient than IBP or backward mode perturbation analysis.
d User supplied perturbation specifications.

18

B Proofs of the Theorems

B.1 Proof of Theorem 1

In Theorem 1, we bound node o with:∑
i∈V

Aihi(X) + d ≤ ho(X) ≤
∑
i∈V

Aihi(X) + d ∀X ∈ S. (10)

Initially, this inequality holds true with

Ao = Ao = I, Ai = Ai = 0(i 6= o), d = d = 0, (11)
because then ∑

i∈V

Aihi(X) + d =
∑
i∈V

Aihi(X) + d = ho(X)

meets (10).

Without loss of generality, we assume that the nodes are numbered in topological order, i.e., for each
node i and its input node j ∈ u(i), i > j holds true, and we assume that there are n′ independent
nodes. Then, we have o = n, and all the independent nodes have the smallest numbers compared to
the other nodes. This can be achieved via a topological sort for any computational graph. We can
also ignore nodes that node o does not depend on. With these assumptions, we show a lemma:

Lemma 4. In Algorithm 2, every dependent node i(n′ < i ≤ n) will be visited once and only once.
And when node i is visited, all nodes that depend on node i must have been visited.

Proof. First, node o is added to the queue and will be visited, and since it has no successor node,
it will not be added to the queue again during the BFS. We assume that node i . . . n will be visited
once and only once, and this is initially true with i = o = n. For node i − 1 > n′, we show that
node (i − 1) will also be visited once and only once. When node i . . . n have all been visited, the
successor nodes of node (i − 1) have been visited and di−1 = 0, and node (i − 1) is a dependent
node. Therefore, node (i− 1) will be added to the queue and visited. From the assumption on node
i . . . n, all nodes that depend on the successor nodes of node (i− 1) have also been visited. Nodes
that depend on node (i− 1) consist of the successor nodes of node (i− 1) and nodes that depend on
these successors, and thus they have all been visited. Since node i . . . n will not be visited more than
once, node (i− 1) will not be added to the queue by its successor nodes more than once. Therefore,
node (i− 1) will also be visited once and only once. Using mathematical induction, we can prove
that the lemma holds true for all node i(n′ < i ≤ n′).

According to Lemma 4, every dependent node i is visited once and exactly once. When node i is
visited, Algorithm 2 performs the following changes to attributes d, d, Ai, Ai and Aj ,Aj(∀j ∈
u(i)):

Aj+= Λj , Aj+= Λj , dj−= 1 ∀j ∈ u(i), (12)

d+= ∆, d+= ∆, Ai←0, Ai←0, (13)
where Λj ,Λj ,∆j ,∆j come from oracle function Fi as shown in (5), and∑

j∈u(i)

Λjhj(X) + ∆ ≤ Aihi(X), Aihi(X) ≤
∑
j∈u(i)

Λjhj(X) + ∆.

Thereby, with changes in (12) and (13), the linear lower bound in (10) becomes

ho(X) ≥
∑
k∈V

Akhk(X) + d

=
∑

k∈V,k 6=i,k/∈u(i)

Akhk(X) +
∑
j∈u(i)

Ajhj(X) + Aihi(X) + d

≥
∑

k∈V,k 6=i,k/∈u(i)

Akhk(X) +
∑
j∈u(i)

Ajhj(X) +
∑
j∈u(i)

Λjhj(X) + ∆ + d

=
∑

k∈V,k 6=i,k/∈u(i)

Akhk(X) +
∑
j∈u(i)

(Aj + Λj)hj(X) + (∆ + d), (14)

19

which remains a valid linear lower bound in the form of (10). Similarly, this also holds true for the
linear upper bound. In this way, Ai and Ai are propagated to its input nodes and set to 0. Thereby
the term w.r.t. hi(X) is eliminated in the linear bounds.

At this time, all successor nodes of node i have been visited and will not been visited again. Therefore,
Ai and Ai will keep to be 0 after node i is visited. Therefore, when Algorithm 2 terminates, Ai,Ai

of all dependent node i will be 0, and thereby we will obtain linear bounds of node o w.r.t. all the
independent nodes.

B.2 Proof of Theorem 2

Theorem 2 shows that linear bounds under perturbation defined by synonym-based word substitution
can be concretized with a dynamic programming. Specifically, to concretize a linear lower bound, we
need to compute

ho = min
ŵ1,ŵ2,...,ŵn

bo +

n∑
t=1

W̃te(ŵt) s.t.
n∑
t=1

I(ŵt 6= wt) ≤ δ, (15)

where e(ŵt) is the embedding of the t-th word in the input, W̃t consists of columns in Wo cor-
responding to the e(ŵt) term in the linear bound. In the dynamic programming, we compute
g
i,j

(j ≤ i) that denotes the lower bound of bo +
∑i
t=1 W̃te(ŵt) when j words among the first i

words ŵ1, . . . , ŵi have been replaced. If ŵk has not been replaced, ŵk = wk, otherwise ŵk ∈ S(wk).

For i = 0, obviously g
0,0

= bo. For j = 0, ŵ1, ŵ2, · · · , ŵi must have not been replaced and thus

ŵt = wt(1 ≤ t ≤ i) holds true. Therefore, g
i,0

= bo +
∑i
t=1 W̃te(wt). For i, j > 0, we consider

whether ŵi has been replaced. If ŵi has not been replaced, W̃ie(ŵi) = W̃ie(wi), and j words have
been replaced among the first i−1 words. In this case, bo+

∑i
t=1 W̃te(ŵt) = bo+

∑i−1
t=1 W̃te(ŵt)+

W̃ie(wi) ≥ g
i−1,j + W̃ie(wi). For the other case if ŵi has been replaced, j − 1 words have been

replaced among the first i − 1 words, and bo +
∑i
t=1 W̃te(ŵt) ≥ g

i−1,j−1 + minw′{W̃ie(w
′)},

where w′ ∈ S(wi). We combine these two cases and take the minimum of their results, and thus:

g
i,j

= min(g
i−1,j + W̃ie(wi), g

i−1,j−1+minw′{W̃ie(w
′)}) (i, j > 0) s.t. w′ ∈ S(wi).

The result of (15) is minδj=0 g
n,j

. The upper bounds can also be computed in a similar way simply
by changing from taking the minimum to taking the maximum in the above derivation.

B.3 Proof of Theorem 3

In Theorem 3, we show that given concrete lower and upper bounds of gθ(X, y) as g
θ
(X, y) and

gθ(X, y), with S(X, y)=
∑
i≤K exp(−[gθ(X, y)]i), we have

max
X∈S

L(fθ(X), y) ≤ logS(X, y) ≤ L(−g
θ
(X, y), y), (16)

where S(X, y) is the upper bound of S(X, y) from the backward mode LiRPA.

L(fθ(X), y) is the cross entropy loss with softmax normalization, and

L(fθ(X), y) = − log
[exp(fθ(X))]y∑
i≤K [exp(fθ(X))]i

= log
∑
i≤K

exp([fθ(X)]i − [fθ(X)]y)

= log
∑
i≤K

exp(−[gθ(X, y)]i)

= logS(X, y).

Since log is a monotonic function,
max
X∈S

L(fθ(X), y) = log max
X∈S

S(X, y) ≤ logS(X, y).

20

And L(−g
θ
(X, y), y) is an upper bound of maxX∈S L(fθ(X), y), since

max
X∈S

L(fθ(X), y) ≤ log
∑
i≤K

exp(−min
X∈S

[gθ(X, y)]i)

≤ log
∑
i≤K

exp(−[g
θ
(X, y)]i)

= L(−g
θ
(X, y), y).

4 2 0 2 4
1

0

1

2

3

4

5

exp
Upper bound (linear)
Upper bound (IBP)

Figure 5: Illustration of different upper bounds of exp(x) within x ∈ [−1.5, 1.5]. The linear bound
(blue line) is a tighter bound than the IBP bound (red line). The blue area stands for the gap between
the two upper bounds. Note that for this particular setting of upper bounding S(X, y) we need only
upper bounds for this non-linear function.

Now we are going to show that logS(X, y) ≤ L(−g
θ
(X, y), y). Here we assume that the concrete

bounds of intermediate layers used for linear relaxations and also the concrete lower and upper
bounds of gθ(X, y) (denoted as g

θ
(X, y) and gθ(X, y)) are the same.

Computing
∑
i≤K exp(−[g

θ
(X, y)]i) is essentially propagating g

θ
(X, y) through exp and summa-

tion in the loss function using IBP, while S(X, y) is directly computed from the LiRPA bound of
S(X, y). Using Ã, a matrix of ones with size 1 × K, to replace the summation, we can unify
these two processes as computing the upper bound of Ã exp(−gθ(X, y)) using LiRPA with different
relaxations for exp. For S(X, y), the linear upper bound of exp(x)(l ≤ x ≤ u) is a line passing
(l, el) and (u, eu), while it is constant eu when computing

∑
i≤K exp(−[g

θ
(X, y)]i). We illustrate

the two different relaxations in Figure 5. Since elements in Ã are all positive, the lower bound of
exp(x) will not be involved, and thus with the same concrete bounds of gθ the relaxation on exp in
S(X, y) is strictly tighter when l < u.

After relaxing exp, we can obtain two linear upper bounds Âgθ(X, y) + d̂ from the two methods
respectively, where Â and d̂ are obtained by merging the relaxation of exp and Ã. Note that
since the relaxed function exp(x) ≤ eu in IBP has no linear term, in this case Â = 0 and the
upper bound will simply be d̂. We then back propagate Âgθ(X, y) + d̂ to the input and concretize
the bounds to get S(X, y) and

∑
i≤K exp(−[g

θ
(X, y)]i) respectively. In the calculation of linear

bounds, the linear relaxations of all the other nonlinear operations are the same for S(X, y) and∑
i≤K exp(−[g

θ
(X, y)]i) while the exp relaxation is the only difference. Since the relaxation for

S(X, y) is no looser than that for
∑
i≤K exp(−[g

θ
(X, y)]i), the upper linear bound of S(X, y) is no

looser than that of
∑
i≤K exp(−[g

θ
(X, y)]i), and we can conclude that for the final concrete bounds

S(X, y) ≤
∑
i≤K exp(−[g

θ
(X, y)]i) holds true, and thereby logS(X, y) ≤ L(−g

θ
(X, y), y).

Remark 1. Despite the assumptions involved above, in the implementation, we generally have
different concrete bounds g

θ
(X, y) and gθ(X, y) for computing S(X, y) with loss fusion (e.g., our

IBP+Backward scheme), compared to the case of computing L(−g
θ
(X, y)) without loss fusion (e.g.,

the scheme used in CROWN-IBP [57]). In the former case, g
θ
(X, y) and gθ(X, y) are regarded as

21

intermediate bounds and obtained with IBP, while in the later case, g
θ
(X, y) is obtained with LiRPA

and gθ(X, y) is unused. Therefore, the relaxation on exp when using loss fusion may not be strictly
tighter than the IBP bound in computing L(−g

θ
(X, y)).

C Additional Details on Experiments

C.1 Details on Large-Scale Certified Defense

Training settings In order to perform fair comparable experiments, for all experiments on training
large-scale vision models (Table 2 and 4), we use a same setting for LiRPA and IBP. Across all
datasets, the networks were trained using the Adam [23] optimizer with an initial learning rate of
5× 10−4. Also, gradient clipping with a maximum `2 norm of 8 is applied. We gradually increase
ε within a fixed epoch length (800 epochs for CIFAR-10, 400 epochs for Tiny-ImageNet and 80
epochs for Downscaled-ImageNet). We uniformly divide the epoch length with a factor 0.4, and
exponentially increase ε during the former interval and linearly increase ε during the latter interval,
so that to avoid a sudden growth of ε at the beginning stage. Following [57], for LiRPA training, a
hyperparameter β to balance LiRPA bounds and IBP bounds for the output layer is set and gradually
decreases from 1 to 0 (1 for only using LiRPA bounds and 0 for only using IBP bounds), as per the
same schedule of ε, and the end ε for training is set to 10% higher than the one in test. All models are
trained on 4 Nvidia GTX 1080TI GPUs (44GB GPU memory in total). For different datasets, we
further have settings below:

• CIFAR-10 ε = 8
255 . We train for 2,000 epochs with batch size 256 in total, the first 200

epochs are clean training, then we gradually increase ε per batch with a ε schedule length of
800, finally we conduct 1,100 epochs pure IBP training. We decay the learning rate by 10×
at the 1,400-th and 1,700-th epochs respectively. During training, we add random flips and
crops for data augmentation, and normalize each image channel, using the channel statistics
from the training set.

• Tiny-ImageNet ε = 1
255 . We train for 800 epochs with batch size 120 in total (for WideRes-

Net, we reduce batch size to 110 due to limited GPU memory), the first 100 epochs are
clean training, then we gradually increase ε per batch with a ε schedule length of 400, finally
we conduct 500 epochs of pure IBP training. We decay the learning rate by 10× at the
600-th and 700-th epochs respectively. During training, we use random crops of 56 × 56
and random flips. During testing, we use a central 56 × 56 crop. We also normalize each
image channel, using the channel statistics from the training set.

• Downscaled-ImageNet ε = 1
255 . We train for 240 epochs with batch size 110 in total, the

first 100 epochs are clean training, then we gradually increase ε per batch with a ε schedule
length of 80, finally we conduct 60 epochs of pure IBP training. We decay the learning
rate by 10× at the 200-th and 220-th epochs respectively. During training, we use random
crops of 56 × 56 and random flips. During testing, we use a central 56 × 56 crop. We also
normalize each image channel, using the channel statistics from the training set.

All verified error numbers are evaluated on the test set using IBP with ε = 8
255 for CIFAR-10 and

ε = 1
255 for Tiny-ImageNet and Downscaled-ImageNet.

Model Structures The details of vision model structures we used are described bellow (note that we
omit the final linear layer which has 10 neurons for CIFAR-10 and 200 neurons for Tiny-ImageNet):

• CNN-7+BN 5× Conv-BN-ReLU layers with {64, 64, 128, 128, 128} filters respectively,
and a linear layer with 512 neurons.

• DenseNet {2, 4, 4} Dense blocks with growth rate 32 and a linear layer with 512 neurons.

• WideResNet 3×Wide basic blocks (6× Conv-ReLU-BN layers) with widen factor = 4 for
CIFAR-10, widen factor = 10 for Tiny-ImageNet and Downscaled-ImageNet. An additional
linear layer with 512 neurons is added for CIFAR-10.

• ResNeXt {1, 1, 1} blocks for CIFAR-10 and {2, 2, 2} blocks for Tiny-ImageNet and cardi-
nality = 2, bottleneck width = 32 and a linear layer with 512 neurons.

22

It is worthwhile to mention that both [57] and [58] conducted experiments on expensive 32 TPU
cores which has up to 512 GB TPU memory in total. In comparison, our framework with loss fusion
can be quite efficient working on 44 GB GPU memory.

Moreover, the running time with maximum batch size on 4 Nvidia GTX 1080TI GPUs of all models
on two datasets is reported in Table 8. Note that large-scale models cannot be trained with previous
LiRPA methods without loss fusion, even if the mini-batch size on each GPU is only 1 for DenseNet
and WideResNet.

Table 8: Per-epoch training time and memory usage of the 4 large models on CIFAR-10 and Tiny-
ImageNet with maximum batch size for 4 Nvidia GTX 1080TI GPUs. “LF”=loss fusion. “OOM”=
out of memory. Numbers in parentheses are relative to natural training time.

Data Training method Wall clock time (s) Maximum batch size
Natural IBP LiRPA w/o LF LiRPA w/ LF Natural IBP LiRPA w/o LF LiRPA w/ LF

CIFAR-10

CNN-7+BN 7.59 11.17 (1.54×) 46.52 (6.13×) 28.20 (3.71×) 9500 3000 600 1700
DenseNet 9.23 37.25 (4.04×) 187.45 (20.31×) 74.54 (8.08×) 2500 800 150 400

WideResNet 12.08 37.70 (3.12×) 236.66 (19.59×) 65.72 (5.44×) 3000 1000 160 550
ResNeXt 6.83 19.70 (2.88×) 130.37 (19.09×) 43.65 (6.39×) 4000 1200 260 700

Tiny-ImageNet

CNN-7+BN 22.17 56.54 (2.55×) 4344.05 (195.94×) 98.04 (4.42×) 3600 1100 12 600
DenseNet 50.60 223.63 (4.42×) OOM 474.66 (9.38×) 800 240 OOM 120

WideResNet 98.01 370.68 (3.78×) OOM 604.70 (6.17×) 600 200 OOM 110
ResNeXt 21.52 59.42 (2.76×) 5580.52 (259.32×) 119.34 (5.55×) 3200 900 12 500

C.2 Details on Verifying and Training NLP Models

For the perturbation specification defined on synonym-based word substitution, each word w has
a substitution set S(w), such that the actual input word w′ ∈ {w} ∪ S(w). We adopt the approach
for constructing substitution sets used by Jia et al. [20]. For a word w in a input sentence, they first
follow Alzantot et al. [2] to find the nearest 8 neighbors of w in a counter-fitted word embedding
space where synonyms are generally close while antonyms are generally far apart. They then apply a
language model to only retain substitution words that the log-likelihood of the sentence after word
substitution does not decrease by more than 5.0, which is also similar to the approach by Alzantot
et al. [2]. We reuse their open-source code2 to pre-compute the substitution sets of words in all the
examples. Note that although we use the same approach for constructing the lists of substitution
words as [20], our perturbation space is still different from theirs, because we follow Huang et al.
[18] and allow setting a small budget δ that limits the maximum number of words to be replaced
simultaneously [24, 11]. We do not adopt the synonym list from Huang et al. [18] as it appears to be
not publicly available when this work is done.

We use two models in the experiments for sentiment classification: Transformer and LSTM. For
Transformer, we use a one-layer model, with 4 attention heads, a hidden size of 64, and ReLU
activations for feed-forward layers. Following Shi et al. [37], we also remove the variance related
terms in layer normalization, which can make Transformer easier to be verified while keeping
comparable standard accuracies. For the LSTM, we use a one-layer bidirectional model, with a
hidden size of 64. The vocabulary is built from the training data and includes all the words that appear
for at least twice. Input tokens to the models are truncated to no longer than 32.

In the certified defense, although we are not using `p norm perturbations, we have an artifial ε that
manually shrinks the gap between the clean input and perturbed input during the warmup stage,
which makes the objective easier to be optimized [12, 20]. Specifically, for clean input word wi and
actual input word ŵi, we shrink the gap between the embeddings of wi and ŵi respectively:

e(ŵi)← εe(ŵi) + (1− ε)e(wi).

ε is linearly increased from 0 to 1 during the first 10 warmup epochs. We then train the model for
15 more epochs with ε = 1. During the first 20 epochs, all the nodes on the parse trees of training
examples are used, and later we only use the root nodes, i.e., the full sentence only. The models are
trained using Adam optimizer [23], and the learning rate is set to 10−4 for Transformer and 10−3 for
LSTM. We also use gradient clipping with a maximum norm of 10.0. When using LiRPA bounds for
training, we combine bounds by LiRPA and IBP weighted by a coefficient β(0 ≤ β ≤ 1) and (1− β)
respectively, and β decreases from 1 to 0 during the warmup stage, following CROWN-IBP [57] as
also mentioned in Appendix C.1. In this setting, since we use pure IBP for training in the last epochs,
we actually end up training the models on δ = ∞ since IBP for LSTM and Transformer does not

2https://bit.ly/2KVxIFN

23

https://bit.ly/2KVxIFN

consider δ (see the next paragraph). But we still use LiRPA bounds with the given non-trivial δ for
testing. Alternatively, we also include IBP+Backward (alt.) in the experiments, where we always use
LiRPA bounds and set β = 1. And for this setting, the models tend to have a lower verified accuracy
when tested on a δ larger than that in the training, as shown in Sec. 4.

Huang et al. [18] has a convex hull method to handle word replacement with a budget limit δ in
IBP. For a word sequence w1, w2, · · · , wl, they construct a convex hull for the input node 1. They
consider the perturbation of each word wi, and for each possible ŵi ∈ {wi} ∪ S(wi), they add
vector [e(w1···i−1); e(wi) + δ(e(ŵi) − e(wi)); e(wi+1···l)] to the convex hull. The convex hull is
an over-estimation of h1(X). They require the first layer of the network to be an affine layer and
concretize the convex hull to interval bounds after passing the first layer, where each vertex in the
convex hull is passed through the first layer respectively and they then take the interval lower and
upper bound of all the vertexes in the convex hull. They worked on CNN, but on Transformer where
the first layer is a linear layer independently applied to each position in the sequence, their method
is a (δ − 1)-time more over-estimation than simply assuming all the words can be replaced at the
same time, and this method cannot work either when the first layer is not an affine layer. Therefore,
for verifying and training LSTM and Transformer with IBP, we adopt the baseline in Jia et al. [20]
without considering δ. In contrast, our dynamic programming method for concretizing linear bounds
under the synonym-based word substitution scenario in Sec. 3.2 is able to consider the budget δ
regardless of the network structure.

C.3 Details on Training for a Flat Objective

Hyperparameter Setting For training the three-layer MLP model we used in weight perturbation
experiments, we follow similar training strategy in vision models. The differences are summarized
here: We use the SGD optimizer with an initial learning rate of 0.1 and decay the learning rate with a
factor of 0.5 after ε increases. We use `2 norm with ε = 0.1 to bound the weights of all three layers
and linearly increase ε per batch.

Certified Flatness Using bounds obtained from LiRPA, we can obtain a certified upper bound
on training loss. We define the flatness based on certified training cross entropy loss at a point
θ∗ = [w∗1,w

∗
2, · · · ,w∗K] as:
F = L(−h(x, θ∗, ε); y)− L(h(x, θ∗); y) ≥ max

w∈S
L(θ)− L(θ∗). (17)

A small F guarantees that L does not change wildly around θ∗. Note that since the weight of each
layer can be in quite different scales, we use a normalized ε = 0.01 and set εi = ‖wi‖2ε. This also
allows us to make fair comparisons between models with weights in different scales. The flatness F
of the models we obtained are shown in Table 9. As we can see, the models trained by “flat” objective
show extraordinarily smaller flatness F compare with the naturally trained models on both MNIST
and FashionMNIST with all combination of dataset sizes and batch sizes. The results also fit the
observation of training loss landscape in Figure 3b.

Table 9: The flatness F of naturally trained models and models trained using the “flat” objective (17)
with different dataset sizes (10%, 1%) and batch sizes (0.01N , 0.1N , N). A small F guarantees that
L does not change wildly around θ∗ (model parameters found by SGD). The flat objective provably
reduces the range of objective around θ∗.

MNIST
natural training “flat” objective

0.01N 0.1N N 0.01N 0.1N N

10% 2.79 3.45 4.55 0.97 1.12 1.83

1% 2.96 3.85 4.77 1.10 0.95 1.44

FashionMNIST

10% 7.89 7.95 9.60 2.49 1.81 1.94

1% 7.86 6.43 9.55 2.52 1.79 1.98

C.4 Details on Verification and Training under `0-norm Perturbation

Concretization We can handle any input constraint X ∈ S as long as the linear “concretization”
problem (6) can be efficiently solved. When S is an `∞ ball, the problem is linear, and when S is an

24

Table 10: Results of `0 norm certified defense on MNIST.

Method Metric k = 1 k = 4 k = 10

IBP Clean err. 1.57% 2.24% 4.84%
Verified err. 5.79% 10.06% 25.15%

Ours Clean err. 1.62% 2.21% 4.95%
Verified err. 5.71% 9.59% 24.67%

`2 ball, this is non-linear but is still convex and therefore relatively easy to solve. Now we will show
that we can even handle non-linear, non-convex cases. For example, when S is a sparse perturbation,
e.g, an `0 ball: S={‖X−X0‖0≤k, 0≤X≤1}, the optimization problem (6) is to find the k pixels
that can change the output most when perturbed to the boundary 0 or 1. Since the optimization
problem is linear and does not have correlations between input pixels, we can simply get the solution
by ranking the changes caused by perturbing each individual pixel and choose the top-k of them:

ho,j = AT
j,:X−

∑
i∈Kj

(
A+
j,i ·Xi −A−j,i · (1−Xi)

)
where Kj : = arg top-k

i

(
A+
j,i ·Xi −A−j,i · (1−Xi)

)
ho,j = AT

j,:X +
∑
i∈Kj

(
−A−j,i ·Xi + A+

j,i · (1−Xi

)
where Kj : = arg top-k

i

(
−A−j,i ·Xi + A+

j,i · (1−Xi)
)
,

(18)

where arg top-ki denotes the set of indices of the largest k elements among all indices of i, A+ =
max(0,A),A− = min(0,A) are positive and negative elements of matrix A.

After the concretization step and obtaining the bounds, we can apply verification and certified training
similar to the `∞ and `2 cases.

Training We show preliminary results on LiRPA based `0 norm certified defense in Table 10.
In experiments we follow the settings in Chiang et al. [4] and trained a simple MLP model with
three hidden layers with [256, 256, 128] neurons on MNIST dataset. Our reproduced IBP results
match those reported in Chiang et al. [4], and our LiRPA based certified defense achieves consistent
improvements compared to IBP.

25

