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Abstract

Effectively leveraging large, previously collected datasets in reinforcement learn-
ing (RL) is a key challenge for large-scale real-world applications. Offline RL
algorithms promise to learn effective policies from previously-collected, static
datasets without further interaction. However, in practice, offline RL presents a
major challenge, and standard off-policy RL methods can fail due to overestimation
of values induced by the distributional shift between the dataset and the learned
policy, especially when training on complex and multi-modal data distributions. In
this paper, we propose conservative Q-learning (CQL), which aims to address these
limitations by learning a conservative Q-function such that the expected value of a
policy under this Q-function lower-bounds its true value. We theoretically show
that CQL produces a lower bound on the value of the current policy and that it
can be incorporated into a policy learning procedure with theoretical improvement
guarantees. In practice, CQL augments the standard Bellman error objective with a
simple Q-value regularizer which is straightforward to implement on top of existing
deep Q-learning and actor-critic implementations. On both discrete and continuous
control domains, we show that CQL substantially outperforms existing offline RL
methods, often learning policies that attain 2-5 times higher final return, especially
when learning from complex and multi-modal data distributions.

1 Introduction
Recent advances in reinforcement learning (RL), especially when combined with expressive deep net-
work function approximators, have produced promising results in domains ranging from robotics [29]
to strategy games [4] and recommendation systems [35]. However, applying RL to real-world
problems consistently poses practical challenges: in contrast to the kinds of data-driven methods
that have been successful in supervised learning [22, 10], RL is classically regarded as an active
learning process, where each training run requires active interaction with the environment. Interaction
with the real world can be costly and dangerous, and the quantities of data that can be gathered
online are substantially lower than the offline datasets that are used in supervised learning [9], which
only need to be collected once. Offline RL, also known as batch RL, offers an appealing alterna-
tive [11, 15, 30, 3, 27, 54, 34]. Offline RL algorithms learn from large, previously collected datasets,
without interaction. This in principle can make it possible to leverage large datasets, but in practice
fully offline RL methods pose major technical difficulties, stemming from the distributional shift
between the policy that collected the data and the learned policy. This has made current results fall
short of the full promise of such methods.

Directly utilizing existing value-based off-policy RL algorithms in an offline setting generally results
in poor performance, due to issues with bootstrapping from out-of-distribution actions [30, 15] and
overfitting [13, 30, 3]. This typically manifests as erroneously optimistic value function estimates. If
we can instead learn a conservative estimate of the value function, which provides a lower bound on
the true values, this overestimation problem could be addressed. In fact, because policy evaluation
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and improvement typically only use the value of the policy, we can learn a less conservative lower
bound Q-function, such that only the expected value of Q-function under the policy is lower-bounded,
as opposed to a point-wise lower bound. We propose a novel method for learning such conservative Q-
functions via a simple modification to standard value-based RL algorithms. The key idea behind our
method is to minimize values under an appropriately chosen distribution over state-action tuples, and
then further tighten this bound by also incorporating a maximization term over the data distribution.

Our primary contribution is an algorithmic framework, which we call conservative Q-learning (CQL),
for learning conservative, lower-bound estimates of the value function, by regularizing the Q-values
during training. Our theoretical analysis of CQL shows that only the expected value of this Q-function
under the policy lower-bounds the true policy value, preventing extra under-estimation that can arise
with point-wise lower-bounded Q-functions, that have typically been explored in the opposite context
in exploration literature [46, 26]. We also empirically demonstrate the robustness of our approach
to Q-function estimation error. Our practical algorithm uses these conservative estimates for policy
evaluation and offline RL. CQL can be implemented with less than 20 lines of code on top of a
number of standard, online RL algorithms [19, 8], simply by adding the CQL regularization terms to
the Q-function update. In our experiments, we demonstrate the efficacy of CQL for offline RL, in
domains with complex dataset compositions, where prior methods are typically known to perform
poorly [12] and domains with high-dimensional visual inputs [5, 3]. CQL outperforms prior methods
by as much as 2-5x on many benchmark tasks, and is the only method that can outperform simple
behavioral cloning on a number of realistic datasets collected from human interaction.

2 Preliminaries
The goal in reinforcement learning is to learn a policy that maximizes the expected cumulative
discounted reward in a Markov decision process (MDP), which is defined by a tuple (S,A, T, r, γ).
S,A represent state and action spaces, T (s′|s,a) and r(s,a) represent the dynamics and reward
function, and γ ∈ (0, 1) represents the discount factor. πβ(a|s) represents the behavior policy, D
is the dataset, and dπβ (s) is the discounted marginal state-distribution of πβ(a|s). The dataset D
is sampled from dπβ (s)πβ(a|s). On all states s ∈ D, let π̂β(a|s) :=

∑
s,a∈D 1[s=s,a=a]∑

s∈D 1[s=s] denote the
empirical behavior policy, at that state. We assume that the rewards r satisfy: |r(s,a)| ≤ Rmax.

Off-policy RL algorithms based on dynamic programming maintain a parametric Q-function Qθ(s, a)
and, optionally, a parametric policy, πφ(a|s). Q-learning methods train the Q-function by iteratively
applying the Bellman optimality operator B∗Q(s,a) = r(s,a) + γEs′∼P (s′|s,a)[maxa′ Q(s′,a′)],
and use exact or an approximate maximization scheme, such as CEM [29] to recover the greedy
policy. In an actor-critic algorithm, a separate policy is trained to maximize the Q-value. Actor-
critic methods alternate between computing Qπ via (partial) policy evaluation, by iterating the
Bellman operator, BπQ = r + γPπQ, where Pπ is the transition matrix coupled with the policy:
PπQ(s,a) = Es′∼T (s′|s,a),a′∼π(a′|s′) [Q(s′,a′)] , and improving the policy π(a|s) by updating it
towards actions that maximize the expected Q-value. Since D typically does not contain all possible
transitions (s,a, s′), the policy evaluation step actually uses an empirical Bellman operator that only
backs up a single sample. We denote this operator B̂π. Given a dataset D = {(s,a, rs′)} of tuples
from trajectories collected under a behavior policy πβ :

Q̂k+1 ← argmin
Q

Es,a,s′∼D

[(
(r(s,a) + γEa′∼π̂k(a′|s′)[Q̂

k(s′,a′)])−Q(s,a)
)2]

(policy evaluation)

π̂k+1 ← argmax
π

Es∼D,a∼πk(a|s)

[
Q̂k+1(s,a)

]
(policy improvement)

Offline RL algorithms based on this basic recipe suffer from action distribution shift [30, 59, 27, 34]
during training, because the target values for Bellman backups in policy evaluation use actions
sampled from the learned policy, πk, but the Q-function is trained only on actions sampled from the
behavior policy that produced the dataset D, πβ . Since π is trained to maximize Q-values, it may be
biased towards out-of-distribution (OOD) actions with erroneously high Q-values. In standard RL,
such errors can be corrected by attempting an action in the environment and observing its actual value.
However, the inability to interact with the environment makes it challenging to deal with Q-values
for OOD actions in offline RL. Typical offline RL methods [30, 27, 59, 54] mitigate this problem by
constraining the learned policy [34] away from OOD actions. Note that Q-function training in offline
RL does not suffer from state distribution shift, as the Bellman backup never queries the Q-function
on out-of-distribution states. However, the policy may suffer from state distribution shift at test time.
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3 The Conservative Q-Learning (CQL) Framework
In this section, we develop a conservative Q-learning algorithm, such that the expected value of a
policy under the learned Q-function lower-bounds its true value. Lower-bounded Q-values prevent the
over-estimation that is common in offline RL settings due to OOD actions and function approximation
error [34, 30]. We use the term CQL to refer broadly to both Q-learning and actor-critic methods. We
start with the policy evaluation step in CQL, which can be used by itself as an off-policy evaluation
procedure, or integrated into a complete offline RL algorithm, as we will discuss in Section 3.2.

3.1 Conservative Off-Policy Evaluation
We aim to estimate the value V π(s) of a target policy π given access to a dataset, D, generated by
following a behavior policy πβ(a|s). Because we are interested in preventing overestimation of the
policy value, we learn a conservative, lower-bound Q-function by additionally minimizing Q-values
alongside a standard Bellman error objective. Our choice of penalty is to minimize the expected Q-
value under a particular distribution of state-action pairs, µ(s,a). Since standard Q-function training
does not query the Q-function value at unobserved states, but queries the Q-function at unseen actions,
we restrict µ to match the state-marginal in the dataset, such that µ(s,a) = dπβ (s)µ(a|s). This gives
rise to the iterative update for training the Q-function, as a function of a tradeoff factor α ≥ 0:

Q̂k+1 ← argmin
Q

α Es∼D,a∼µ(a|s) [Q(s,a)] +
1

2
Es,a∼D

[(
Q(s,a)− B̂πQ̂k(s,a)

)2]
, (1)

In Theorem 3.1, we show that the resulting Q-function, Q̂π := limk→∞ Q̂k, lower-bounds Qπ at
all s ∈ D,a ∈ A. However, we can substantially tighten this bound if we are only interested in
estimating V π(s). If we only require that the expected value of the Q̂π under π(a|s) lower-bound
V π, we can improve the bound by introducing an additional Q-value maximization term under the
data distribution, πβ(a|s), resulting in the iterative update (changes from Equation 1 in red):

Q̂k+1 ← arg min
Q

α ·
(
Es∼D,a∼µ(a|s) [Q(s,a)]− Es∼D,a∼π̂β(a|s) [Q(s,a)]

)
+

1

2
Es,a,s′∼D

[(
Q(s,a)− B̂πQ̂k(s,a)

)2
]
. (2)

In Theorem 3.2, we show that, while the resulting Q-value Q̂π may not be a point-wise lower-
bound, we have Eπ(a|s)[Q̂

π(s,a)] ≤ V π(s) when µ(a|s) = π(a|s). Intuitively, since Equation 2
maximizes Q-values under the behavior policy π̂β , Q-values for actions that are likely under π̂β
might be overestimated, and hence Q̂π may not lower-bound Qπ pointwise. While in principle the
maximization term can utilize other distributions besides π̂β(a|s), we prove in Appendix D.2 that
the resulting value is not guaranteed to be a lower bound for other distribution besides π̂β(a|s),
though other distributions besides π̂β(a|s) can still yield a lower bound if the Bellman error is also
re-weighted to come from the distribution chosen to maximize the expected Q-value.

Theoretical analysis. We first note that Equations 1 and 2 use the empirical Bellman operator, B̂π,
instead of the actual Bellman operator, Bπ. Following [47, 26, 45], we use concentration properties
of B̂π to control this error. Formally, for all s,a ∈ D, with probability ≥ 1− δ, |B̂π − Bπ|(s,a) ≤
Cr,T,δ√
|D(s,a)|

, where Cr,T,δ is a constant dependent on the concentration properties (variance) of r(s,a)

and T (s′|s,a), and δ ∈ (0, 1) (see Appendix D.3 for details). For simplicity, we assume that
π̂β(a|s) > 0,∀a ∈ A ,∀s ∈ D. Let 1√

|D|
denote a vector of size |S||A| containing square root

inverse counts for each state-action pair, except when D(s,a) = 0, in which case the corresponding
entry is a very large but finite value δ ≥ 2Rmax

1−γ . Now, we show that the conservative Q-function
learned by iterating Equation 1 lower-bounds the true Q-function. Proofs can be found in Appendix C.

Theorem 3.1. For any µ(a|s) with suppµ ⊂ supp π̂β , with probability ≥ 1− δ, Q̂π (the Q-function
obtained by iterating Equation 1) satisifies:

∀s ∈ D,a, Q̂π(s, a) ≤ Qπ(s,a)− α
[
(I − γPπ)

−1 µ

π̂β

]
(s,a) +

[
(I − γPπ)−1 Cr,T,δRmax

(1− γ)
√
|D|

]
(s,a).

Thus, if α is sufficiently large, then Q̂π(s,a) ≤ Qπ(s,a),∀s ∈ D,a. When B̂π = Bπ, any α > 0

guarantees Q̂π(s,a) ≤ Qπ(s,a),∀s ∈ D,a ∈ A.
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Next, we show that Equation 2 lower-bounds the expected value under the policy π, when µ = π. We
also show that Equation 2 does not lower-bound the Q-value estimates pointwise. For this result, we
abuse notation and assume that 1√

|D|
refers to a vector of inverse square root of only state counts,

with a similar correction as before used to handle the entries of this vector at states with zero counts.
Theorem 3.2 (Equation 2 results in a tighter lower bound). The value of the policy under the Q-
function from Equation 2, V̂ π(s) = Eπ(a|s)[Q̂

π(s,a)], lower-bounds the true value of the policy
obtained via exact policy evaluation, V π(s) = Eπ(a|s)[Q

π(s,a)], when µ = π, according to:

∀s ∈ D, V̂ π(s) ≤ V π(s)− α
[
(I − γPπ)

−1 Eπ
[
π

π̂β
− 1

]]
(s) +

[
(I − γPπ)−1 Cr,T,δRmax

(1− γ)
√
|D|

]
(s).

Thus, if α > Cr,TRmax

1−γ ·maxs∈D
1

|
√
|D(s)|

·
[∑

a π(a|s)( π(a|s)
π̂β(a|s)) − 1)

]−1

, ∀s ∈ D, V̂ π(s) ≤ V π(s),

with probability ≥ 1− δ. When B̂π = Bπ , then any α > 0 guarantees V̂ π(s) ≤ V π(s),∀s ∈ D.

The analysis presented above assumes that no function approximation is used in the Q-function,
meaning that each iterate can be represented exactly. We can further generalize the result in Theo-
rem 3.2 to the case of both linear function approximators and non-linear neural network function
approximators, where the latter builds on the neural tangent kernel (NTK) framework [25]. Due to
space constraints, we present these results in Theorem D.1 and Theorem D.2 in Appendix D.1.

In summary, we showed that the basic CQL evaluation in Equation 1 learns a Q-function that
lower-bounds the true Q-function Qπ, and the evaluation in Equation 2 provides a tighter lower
bound on the expected Q-value of the policy π. For suitable α, both bounds hold under sampling
error and function approximation. We also note that as more data becomes available and |D(s,a)|
increases, the theoretical value of α that is needed to guarantee a lower bound decreases, which
indicates that in the limit of infinite data, a lower bound can be obtained by using extremely small
values of α. Next, we will extend on this result into a complete RL algorithm.

3.2 Conservative Q-Learning for Offline RL
We now present a general approach for offline policy learning, which we refer to as conservative
Q-learning (CQL). As discussed in Section 3.1, we can obtain Q-values that lower-bound the value of
a policy π by solving Equation 2 with µ = π. How should we utilize this for policy optimization?
We could alternate between performing full off-policy evaluation for each policy iterate, π̂k, and one
step of policy improvement. However, this can be computationally expensive. Alternatively, since the
policy π̂k is typically derived from the Q-function, we could instead choose µ(a|s) to approximate
the policy that would maximize the current Q-function iterate, thus giving rise to an online algorithm.

We can formally capture such online algorithms by defining a family of optimization problems over
µ(a|s), presented below, with modifications from Equation 2 marked in red. An instance of this
family is denoted by CQL(R) and is characterized by a particular choice of regularizerR(µ):

min
Q

max
µ

α
(
Es∼D,a∼µ(a|s) [Q(s,a)]− Es∼D,a∼π̂β(a|s) [Q(s,a)]

)
+

1

2
Es,a,s′∼D

[(
Q(s,a)− B̂πkQ̂k(s,a)

)2
]

+R(µ) (CQL(R)) . (3)

Variants of CQL. To demonstrate the generality of the CQL family of objectives, we discuss two
specific instances within this family that are of special interest, and we evaluate them empirically
in Section 6. If we choose R(µ) to be the KL-divergence against a prior distribution, ρ(a|s), i.e.,
R(µ) = −DKL(µ, ρ), then we get µ(a|s) ∝ ρ(a|s) ·exp(Q(s,a)) (for a derivation, see Appendix A).
Frist, if ρ = Unif(a), then the first term in Equation 3 corresponds to a soft-maximum of the Q-values
at any state s and gives rise to the following variant of Equation 3, called CQL(H):

min
Q

αEs∼D

[
log
∑
a

exp(Q(s,a))−Ea∼π̂β(a|s) [Q(s,a)]

]
+
1

2
Es,a,s′∼D

[(
Q− B̂πkQ̂k

)2]
. (4)

Second, if ρ(a|s) is chosen to be the previous policy π̂k−1, the first term in Equation 4 is replaced by
an exponential weighted average of Q-values of actions from the chosen π̂k−1(a|s). Empirically, we
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find that this variant can be more stable with high-dimensional action spaces (e.g., Table 2) where it is
challenging to estimate log

∑
a exp via sampling due to high variance. In Appendix A, we discuss an

additional variant of CQL, drawing connections to distributionally robust optimization [43]. We will
discuss a practical instantiation of a CQL deep RL algorithm in Section 4. CQL can be instantiated as
either a Q-learning algorithm (with B∗ instead of Bπ in Equations 3, 4) or as an actor-critic algorithm.

Theoretical analysis of CQL. Next, we will theoretically analyze CQL to show that the policy
updates derived in this way are indeed “conservative”, in the sense that each successive policy iterate
is optimized against a lower bound on its value. For clarity, we state the results in the absence
of finite-sample error, in this section, but sampling error can be incorporated in the same way as
Theorems 3.1 and 3.2, and we discuss this in Appendix C. Theorem 3.3 shows that CQL(H) learns
Q-value estimates that lower-bound the actual Q-function under the action-distribution defined by the
policy, πk, under mild regularity conditions (slow updates on the policy).

Theorem 3.3 (CQL learns lower-bounded Q-values). Let πQ̂k(a|s) ∝ exp(Q̂k(s,a)) and assume

that DTV(π̂k+1, πQ̂k) ≤ ε (i.e., π̂k+1 changes slowly w.r.t to Q̂k). Then, the policy value under Q̂k,

lower-bounds the actual policy value, V̂ k+1(s) ≤ V k+1(s) ∀s ∈ D if

Eπ
Q̂k

(a|s)

[
πQ̂k(a|s)
π̂β(a|s) − 1

]
≥ max

a s.t. π̂β(a|s)>0

(
πQ̂k(a|s)
π̂β(a|s)

)
· ε.

The LHS of this inequality is equal to the amount of conservatism induced in the value, V̂ k+1 in
iteration k + 1 of the CQL update, if the learned policy were equal to soft-optimal policy for Q̂k, i.e.,
when π̂k+1 = πQ̂k . However, as the actual policy, π̂k+1, may be different, the RHS is the maximal
amount of potential overestimation due to this difference. To get a lower bound, we require the
amount of underestimation to be higher, which is obtained if ε is small, i.e. the policy changes slowly.

Our final result shows that CQL Q-function update is “gap-expanding”, by which we mean that the
difference in Q-values at in-distribution actions and over-optimistically erroneous out-of-distribution
actions is higher than the corresponding difference under the actual Q-function. This implies that
the policy πk(a|s) ∝ exp(Q̂k(s,a)), is constrained to be closer to the dataset distribution, π̂β(a|s),
thus the CQL update implicitly prevents the detrimental effects of OOD action and distribution shift,
which has been a major concern in offline RL settings [30, 34, 15].
Theorem 3.4 (CQL is gap-expanding). At any iteration k, CQL expands the difference in expected
Q-values under the behavior policy πβ(a|s) and µk, such that for large enough values of αk, we have
that ∀s ∈ D, Eπβ(a|s)[Q̂

k(s,a)]− Eµk(a|s)[Q̂
k(s,a)] > Eπβ(a|s)[Q

k(s,a)]− Eµk(a|s)[Q
k(s,a)].

When function approximation or sampling error makes OOD actions have higher learned Q-values,
CQL backups are expected to be more robust, in that the policy is updated using Q-values that prefer
in-distribution actions. As we will empirically show in Appendix B, prior offline RL methods that do
not explicitly constrain or regularize the Q-function may not enjoy such robustness properties.

To summarize, we showed that the CQL RL algorithm learns lower-bound Q-values with large
enough α, meaning that the final policy attains at least the estimated value. We also showed that
the Q-function is gap-expanding, meaning that it should only ever over-estimate the gap between
in-distribution and out-of-distribution actions, preventing OOD actions.

3.3 Safe Policy Improvement Guarantees

In Section 3.1 we proposed novel objectives for Q-function training such that the expected value
of a policy under the resulting Q-function lower bounds the actual performance of the policy. In
Section 3.2, we used the learned conservative Q-function for policy improvement. In this section,
we show that this procedure actually optimizes a well-defined objective and provide a safe policy
improvement result for CQL, along the lines of Theorems 1 and 2 in Laroche et al. [33].

To begin with, we define empirical return of any policy π, J(π, M̂), which is equal to the discounted
return of a policy π in the empirical MDP, M̂ , that is induced by the transitions observed in the
dataset D, i.e. M̂ = {s, a, r, s′ ∈ D}. J(π,M) refers to the expected discounted return attained by a
policy π in the actual underlying MDP, M . In Theorem 3.5, we first show that CQL (Equation 2)
optimizes a well-defined penalized RL empirical objective. All proofs are found in Appendix D.4.
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Theorem 3.5. Let Q̂π be the fixed point of Equation 2, then π∗(a|s) := arg maxπ Es∼ρ(s)[V̂
π(s)]

is equivalently represented as: π∗(a|s)← arg maxπ J(π, M̂)− α 1
1−γEs∼dπ

M̂
(s) [DCQL(π, π̂β)(s)],

where DCQL(π, πβ)(s) :=
∑

a π(a|s) ·
(
π(a|s)
πβ(a|s) − 1

)
.

Intuitively, Theorem 3.5 says that CQL optimizes the return of a policy in the empirical MDP, M̂ ,
while also ensuring that the learned policy π is not too different from the behavior policy, π̂β via
a penalty that depends on DCQL. Note that this penalty is implicitly introduced by virtue by the
gap-expanding (Theorem 3.4) behavior of CQL. Next, building upon Theorem 3.5 and the analysis of
CPO [1], we show that CQL provides a ζ-safe policy improvement over π̂β .
Theorem 3.6. Let π∗(a|s) be the policy obtained in Theorem 3.5. Then, the policy π∗(a|s) is a
ζ-safe policy improvement over π̂β in the actual MDP M , i.e., J(π∗,M) ≥ J(π̂β ,M)− ζ with high
probability 1− δ, where ζ is given by,

ζ = O
(

γ

(1− γ)2

)
Es∼dπ∗

M̂
(s)

[ √
|A|√
|D(s)|

√
DCQL(π∗, π̂β)(s) + 1

]
−

(
J(π∗, M̂)− J(π̂β , M̂)

)
︸ ︷︷ ︸

≥ α
1−γ Es∼dπ∗

M̂
(s)

[DCQL(π∗,π̂β)(s)]

The expression of ζ in Theorem 3.6 consists of two terms: the first term captures the decrease in
policy performance in M , that occurs due to the mismatch between M̂ and M , also referred to as
sampling error. The second term captures the increase in policy performance due to CQL in empirical
MDP, M̂ . The policy π∗ obtained by optimizing π against the CQL Q-function improves upon the
behavior policy, π̂β for suitably chosen values of α. When sampling error is small, i.e., |D(s)| is
large, then smaller values of α are enough to provide an improvement over the behavior policy.

To summarize, CQL optimizes a well-defined, penalized empirical RL objective, and performs
high-confidence safe policy improvement over the behavior policy. The extent of improvement is
negatively influenced by higher sampling error, which decays as more samples are observed.

4 Practical Algorithm and Implementation Details
Algorithm 1 Conservative Q-Learning (both variants)
1: Initialize Q-function, Qθ , and optionally a policy, πφ.
2: for step t in {1, . . . , N} do
3: Train the Q-function using GQ gradient steps on objective

from Equation 4
θt := θt−1 − ηQ∇θCQL(R)(θ)
(Use B∗ for Q-learning, Bπφt for actor-critic)

4: (only with actor-critic) Improve policy πφ via Gπ gradient
steps on φ with SAC-style entropy regularization:
φt := φt−1 + ηπEs∼D,a∼πφ(·|s)[Qθ(s,a)−log πφ(a|s)]

5: end for

We now describe two practical offline
deep reinforcement learning methods
based on CQL: an actor-critic vari-
ant and a Q-learning variant. Pseu-
docode is shown in Algorithm 1, with
differences from conventional actor-
critic algorithms (e.g., SAC [19])
and deep Q-learning algorithms (e.g.,
DQN [39]) in red. Our algorithm uses
the CQL(H) (or CQL(R) in general)
objective from the CQL framework
for training the Q-function Qθ, which is parameterized by a neural network with parameters θ. For
the actor-critic algorithm, a policy πφ is trained as well. Our algorithm modifies the objective for the
Q-function (swaps out Bellman error with CQL(H)) or CQL(ρ) in a standard actor-critic or Q-learning
setting, as shown in Line 3. As discussed in Section 3.2, due to the explicit penalty on the Q-function,
CQL methods do not use a policy constraint, unlike prior offline RL methods [30, 59, 54, 34]. Hence,
we do not require fitting an additional behavior policy estimator, simplifying our method.

Implementation details. Our algorithm requires an addition of only 20 lines of code on top of
standard implementations of soft actor-critic (SAC) [19] for continuous control experiments and
on top of QR-DQN [8] for the discrete control. The tradeoff factor, α is is fixed at constant values
described in Appendix F for gym tasks and discrete control and is automatically tuned via Lagrangian
dual gradient descent for other domains. We use default hyperparameters from SAC, except that
the learning rate for the policy was chosen from {3e-5, 1e-4, 3e-4}, and is less than or equal to the
Q-function, as dictated by Theorem 3.3. Elaborate details are provided in Appendix F.

5 Related Work
We now briefly discuss prior work in offline RL and off-policy evaluation, comparing and contrasting
these works with our approach. More technical discussion of related work is provided in Appendix E.
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Off-policy evaluation (OPE). Several different paradigms have been used to perform off-policy
evaluation. Earlier works [51, 49, 52] used per-action importance sampling on Monte-Carlo returns
to obtain an OPE return estimator. Recent approaches [36, 17, 40, 60] use marginalized importance
sampling by directly estimating the state-distribution importance ratios via some form of dynamic
programming [34] and typically exhibit less variance than per-action importance sampling at the
cost of bias. Because these methods use dynamic programming, they can suffer from OOD actions
[34, 17, 20, 40]. In contrast, the regularizer in CQL explicitly addresses the impact of OOD actions
due to its gap-expanding behavior, and obtains conservative value estimates.

Offline RL. As discussed in Section 2, offline Q-learning methods suffer from issues pertaining to
OOD actions. Prior works have attempted to solve this problem by constraining the learned policy
to be “close” to the behavior policy, for example as measured by KL-divergence [27, 59, 48, 54],
Wasserstein distance [59], or MMD [30], and then only using actions sampled from this constrained
policy in the Bellman backup or applying a value penalty. SPIBB [33, 41] methods bootstrap using
the behavior policy in a Q-learning algorithm for unseen actions. Most of these methods require
a separately estimated model to the behavior policy, πβ(a|s) [15, 30, 59, 27, 54, 55], and are thus
limited by their ability to accurately estimate the unknown behavior policy [42], which might be
especially complex in settings where the data is collected from multiple sources [34]. In contrast, CQL
does not require estimating the behavior policy. Prior work has explored some forms of Q-function
penalties [23, 58], but only in the standard online RL setting with demonstrations. Luo et al. [38]
learn a conservatively-extrapolated value function by enforcing a linear extrapolation property over
the state-space, and a learned dynamics model to obtain policies for goal-reaching tasks. Kakade and
Langford [28] proposed the CPI algorithm, that improves a policy conservatively in online RL.

Alternate prior approaches to offline RL estimate some sort of uncertainty to determine the trust-
worthiness of a Q-value prediction [30, 3, 34], typically using uncertainty estimation techniques
from exploration in online RL [47, 26, 46, 7]. These methods have not been generally performant
in offline RL [15, 30, 34] due to the high-fidelity requirements of uncertainty estimates in offline
RL [34]. Robust MDPs [24, 50, 56, 44] have been a popular theoretical abstraction for offline RL,
but tend to be highly conservative in policy improvement. We expect CQL to be less conservative
since CQL does not underestimate Q-values for all state-action tuples. Works on high confidence
policy improvement [57] provides safety guarantees for improvement but tend to be conservative. The
gap-expanding property of CQL backups, shown in Theorem 3.4, is related to how gap-increasing
Bellman backup operators [6, 37] are more robust to estimation error in online RL.

Theoretical results. Our theoretical results (Theorems 3.5, 3.6) are related to prior work on safe
policy improvement [33, 50], and a direct comparison to Theorems 1 and 2 in Laroche et al. [33]
suggests similar quadratic dependence on the horizon and an inverse square-root dependence on the
counts. Our bounds improve over the∞-norm bounds in Petrik et al. [50].

6 Experimental Evaluation
We compare CQL to prior offline RL methods on a range of domains and dataset compositions,
including continuous and discrete action spaces, state observations of varying dimensionality, and
high-dimensional image inputs. We first evaluate actor-critic CQL, using CQL(H) from Algorithm 1,
on continuous control datasets from the D4RL benchmark [12]. We compare to: prior offline RL
methods that use a policy constraint – BEAR [30] and BRAC [59]; SAC [19], an off-policy actor-critic
method that we adapt to offline setting; and behavioral cloning (BC).

Gym domains. Results for the gym domains are shown in Table 1. The results for BEAR, BRAC,
SAC, and BC are based on numbers reported by Fu et al. [12]. On the datasets generated from a
single policy, marked as “-random”, “-expert” and “-medium”, CQL roughly matches or exceeds
the best prior methods, but by a small margin. However, on datasets that combine multiple policies
(“-mixed”, “-medium-expert” and “-random-expert”), that are more likely to be common in practical
datasets, CQL outperforms prior methods by large margins, sometimes as much as 2-3x.

Adroit tasks. The more complex Adroit [53] tasks (shown on the right) in
D4RL require controlling a 24-DoF robotic hand, using limited data from human
demonstrations. These tasks are substantially more difficult than the gym tasks
in terms of both the dataset composition and high dimensionality. Prior offline
RL methods generally struggle to learn meaningful behaviors on these tasks, and
the strongest baseline is BC. As shown in Table 2, CQL variants are the only
methods that improve over BC, attaining scores that are 2-9x those of the next best offline RL method.

7



Task Name SAC BC BEAR BRAC-p BRAC-v CQL(H)
halfcheetah-random 30.5 2.1 25.5 23.5 28.1 35.4
hopper-random 11.3 9.8 9.5 11.1 12.0 10.8
walker2d-random 4.1 1.6 6.7 0.8 0.5 7.0
halfcheetah-medium -4.3 36.1 38.6 44.0 45.5 44.4
walker2d-medium 0.9 6.6 33.2 72.7 81.3 74.5
hopper-medium 0.8 29.0 47.6 31.2 32.3 86.6
halfcheetah-expert -1.9 107.0 108.2 3.8 -1.1 104.8
hopper-expert 0.7 109.0 110.3 6.6 3.7 109.9
walker2d-expert -0.3 125.7 106.1 -0.2 -0.0 121.6
halfcheetah-medium-expert 1.8 35.8 51.7 43.8 45.3 62.4
walker2d-medium-expert 1.9 11.3 10.8 -0.3 0.9 98.7
hopper-medium-expert 1.6 111.9 4.0 1.1 0.8 111.0
halfcheetah-random-expert 53.0 1.3 24.6 30.2 2.2 92.5
walker2d-random-expert 0.8 0.7 1.9 0.2 2.7 91.1
hopper-random-expert 5.6 10.1 10.1 5.8 11.1 110.5
halfcheetah-medium-replay -2.4 38.4 36.2 45.6 45.9 46.2
hopper-medium-replay 3.5 11.8 25.3 0.7 0.8 48.6
walker2d-medium-replay 1.9 11.3 10.8 -0.3 0.9 32.6

Table 1: Performance of CQL(H) and prior methods on gym domains from D4RL, on the normalized return
metric, averaged over 4 seeds. Note that CQL performs similarly or better than the best prior method with
simple datasets, and greatly outperforms prior methods with complex distributions (“–mixed”, “–random-expert”,
“–medium-expert”).
CQL(ρ) with ρ = π̂k−1 (the previous policy) outperforms CQL(H) on a number of these tasks, due
to the higher action dimensionality resulting in higher variance for the CQL(H) importance weights.
Both variants outperform prior methods.

Domain Task Name BC SAC BEAR BRAC-p BRAC-v CQL(H) CQL(ρ)

AntMaze

antmaze-umaze 65.0 0.0 73.0 50.0 70.0 74.0 73.5
antmaze-umaze-diverse 55.0 0.0 61.0 40.0 70.0 84.0 61.0
antmaze-medium-play 0.0 0.0 0.0 0.0 0.0 61.2 4.6
antmaze-medium-diverse 0.0 0.0 8.0 0.0 0.0 53.7 5.1
antmaze-large-play 0.0 0.0 0.0 0.0 0.0 15.8 3.2
antmaze-large-diverse 0.0 0.0 0.0 0.0 0.0 14.9 2.3

Adroit

pen-human 34.4 6.3 -1.0 8.1 0.6 37.5 55.8
hammer-human 1.5 0.5 0.3 0.3 0.2 4.4 2.1
door-human 0.5 3.9 -0.3 -0.3 -0.3 9.9 9.1
relocate-human 0.0 0.0 -0.3 -0.3 -0.3 0.20 0.35
pen-cloned 56.9 23.5 26.5 1.6 -2.5 39.2 40.3
hammer-cloned 0.8 0.2 0.3 0.3 0.3 2.1 5.7
door-cloned -0.1 0.0 -0.1 -0.1 -0.1 0.4 3.5
relocate-cloned -0.1 -0.2 -0.3 -0.3 -0.3 -0.1 -0.1

Kitchen0
kitchen-complete 33.8 15.0 0.0 0.0 0.0 43.8 31.3
kitchen-partial 33.8 0.0 13.1 0.0 0.0 49.8 50.1
kitchen-undirected 47.5 2.5 47.2 0.0 0.0 51.0 52.4

Table 2: Normalized scores of all methods on AntMaze, Adroit, and kitchen domains from D4RL, averaged
across 4 seeds. On the harder mazes, CQL is the only method that attains non-zero returns, and is the only
method to outperform simple behavioral cloning on Adroit tasks with human demonstrations. We observed that
the CQL(ρ) variant, which avoids importance weights, trains more stably, with no sudden fluctuations in policy
performance over the course of training, on the higher-dimensional Adroit tasks.

AntMaze. These D4RL tasks require composing parts of suboptimal trajectories to form more
optimal policies for reaching goals on a MuJoco Ant robot. Prior methods make some progress on
the simpler U-maze, but only CQL is able to make meaningful progress on the much harder medium
and large mazes, outperforming prior methods by a very wide margin.

Kitchen tasks. Next, we evaluate CQL on the Franka kitchen domain [18]
from D4RL [14]. The goal is to control a 9-DoF robot to manipulate
multiple objects (microwave, kettle, etc.) sequentially, in a single episode
to reach a desired configuration, with only sparse 0-1 completion reward for
every object that attains the target configuration. These tasks are especially
challenging, since they require composing parts of trajectories, precise
long-horizon manipulation, and handling human-provided teleoperation
data. As shown in Table 2, CQL outperforms prior methods in this setting, and is the only method
that outperforms behavioral cloning, attaining over 40% success rate on all tasks.

Offline RL on Atari games. Lastly, we evaluate a discrete-action Q-learning variant of CQL
(Algorithm 1) on offline, image-based Atari games [5]. We compare CQL to REM [3] and QR-
DQN [8] on the five Atari tasks (Pong, Breakout, Qbert, Seaquest and Asterix) that are evaluated in
detail by Agarwal et al. [3], using the dataset released by the authors.

0These results are with an older version of the Kitchen D4RL datasets [12], new results in the latest arXiv.
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Figure 1: Performance of CQL, QR-DQN and REM as a function of training steps (x-axis) in setting (1) when
provided with only the first 20% of the samples of an online DQN run. Note that CQL is able to learn stably on
3 out of 4 games, and its performance does not degrade as steeply as QR-DQN on Seaquest.

Following the evaluation protocol of Agarwal et al. [3], we evaluated on two types of datasets, both
of which were generated from the DQN-replay dataset, released by [3]: (1) a dataset consisting
of the first 20% of the samples observed by an online DQN agent and (2) datasets consisting of
only 1% and 10% of all samples observed by an online DQN agent (Figures 6 and 7 in [3]). In
setting (1), shown in Figure 1, CQL generally achieves similar or better performance throughout as
QR-DQN and REM. When only using only 1% or 10% of the data, in setting (2) (Table 3), CQL

Task Name QR-DQN REM CQL(H)
Pong (1%) -13.8 -6.9 19.3
Breakout 7.9 11.0 61.1
Q*bert 383.6 343.4 14012.0
Seaquest 672.9 499.8 779.4
Asterix 166.3 386.5 592.4
Pong (10%) 15.1 8.9 18.5
Breakout 151.2 86.7 269.3
Q*bert 7091.3 8624.3 13855.6
Seaquest 2984.8 3936.6 3674.1
Asterix 189.2 75.1 156.3

Table 3: CQL, REM and QR-DQN in setting
(1) with 1% data (top), and 10% data (bottom).
CQL drastically outperforms prior methods with
1% data, and usually attains better performance
with 10% data.

substantially outperforms REM and QR-DQN, espe-
cially in the harder 1% condition, achieving 36x and 6x
times the return of the best prior method on Q*bert and
Breakout, respectively.

Analysis of CQL. Finally, we perform empirical evalu-
ation to verify that CQL indeed lower-bounds the value
function, thus verifying Theorems 3.2, Appendix D.1
empirically. To this end, we estimate the average value
of the learned policy predicted by CQL, Es∼D[V̂ k(s)],
and report the difference against the actual discounted
return of the policy πk in Table 4. We also estimate
these values for baselines, including the minimum
predicted Q-value under an ensemble [19, 16] of Q-
functions with varying ensemble sizes, which is a stan-
dard technique to prevent overestimed Q-values [16, 19, 21] and BEAR [30], a policy constraint
method. The results show that CQL learns a lower bound for all three tasks, whereas the baselines
are prone to overestimation. We also evaluate a variant of CQL that uses Equation 1, and observe that
the resulting values are lower (that is, underestimate the true values) as compared to CQL(H). This
provides empirical evidence that CQL(H) attains a tighter lower bound than the point-wise bound in
Equation 1, as per Theorem 3.2. We also present an empirical analysis to show that Theorem 3.4, that
CQL is gap-expanding, holds in practice in Appendix B, and present an ablation study on various
design choices used in CQL in Appendix G.

Task Name CQL(H) CQL (Eqn. 1) Ensemble(2) Ens.(4) Ens.(10) Ens.(20) BEAR
hopper-medium-expert -43.20 -151.36 3.71e6 2.93e6 0.32e6 24.05e3 65.93
hopper-mixed -10.93 -22.87 15.00e6 59.93e3 8.92e3 2.47e3 1399.46
hopper-medium -7.48 -156.70 26.03e12 437.57e6 1.12e12 885e3 4.32

Table 4: Difference between predicted policy values and the true policy value for CQL, a variant of CQL that
uses Equation 1, the minimum of an ensemble of varying sizes, and BEAR [30] on three D4RL datasets. CQL is
the only method that lower-bounds the actual return (i.e., has negative differences), and CQL(H) is much less
conservative than CQL (Eqn. 1).

7 Discussion
We proposed conservative Q-learning (CQL), an algorithmic framework for offline RL that learns a
lower bound on the policy value. Empirically, we demonstrate that CQL outperforms prior offline RL
methods on a wide range of offline RL benchmark tasks, including complex control tasks and tasks
with raw image observations. In many cases, the performance of CQL is substantially better than the
best-performing prior methods, exceeding their final returns by 2-5x. The simplicity and efficacy of
CQL make it a promising choice for a wide range of real-world offline RL problems. However, a
number of challenges remain. While we prove that CQL learns lower bounds on the Q-function in
the tabular, linear, and a subset of non-linear function approximation cases, a rigorous theoretical
analysis of CQL with deep neural nets, is left for future work. Additionally, offline RL methods are
liable to suffer from overfitting in the same way as standard supervised methods, so another important
challenge for future work is to devise simple and effective early stopping methods, analogous to
validation error in supervised learning.
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Broader Impact

Offline RL offers the promise to scale autonomous learning-based methods for decision-making to
large-scale, real-world sequential decision making problems. Such methods can effectively leverage
prior datasets without any further interaction, thus avoiding the exploration bottleneck and alleviating
many of the safety and cost constraints associated with online reinforcement learning. In this work,
we proposed conservative Q-learning (CQL), an algorithmic framework for offline reinforcement
learning that learns a Q-function such that the expected policy value under this learned Q-function
lower-bounds the actual policy value. This mitigates value function over-estimation issues due to
distributional shift, which in practice are one of the major challenges in offline reinforcement learning.
We analyzed algorithms derived from the CQL framework and demonstrated their performance
empirically.

Our primary aim behind this work is to develop simple and effective offline RL algorithms, and we
believe that CQL makes an important step in that direction. CQL can be applied directly to several
problems of practical interest where large-scale datasets are abundant: autonomous driving, robotics,
and software systems (such as recommender systems). We believe that a strong offline RL algorithm,
coupled with highly expressive and powerful deep neural networks, will provide us the ability
successfully apply end-to-end learning based approaches to such problems, providing considerable
societal benefits. Of course, autonomous decision-making agents have a wide range of applications,
and technology that enables more effective autonomous decision-making has both positive and
negative societal effects. While effective autonomous decision-making can have considerable positive
economic effects, it can also enable applications with complex implications in regard to privacy (e.g.,
in regard to autonomous agents on the web, recommendation agents, advertising, etc.), as well as
complex economic effects due to changing economic conditions (e.g., changing job requirements, loss
of jobs in some sectors and growth in others, etc.). Such implications apply broadly to technologies
that enable automation and decision making, and are largely not unique to this specific work.
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