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Abstract

Online influence maximization (OIM) is a popular problem in social networks to
learn influence propagation model parameters and maximize the influence spread at
the same time. Most previous studies focus on the independent cascade (IC) model
under the edge-level feedback. In this paper, we address OIM in the linear threshold
(LT) model. Because node activations in the LT model are due to the aggregated
effect of all active neighbors, it is more natural to model OIM with the node-level
feedback. And this brings new challenge in online learning since we only observe
aggregated effect from groups of nodes and the groups are also random. Based on
the linear structure in node activations, we incorporate ideas from linear bandits
and design an algorithm LT-LinUCB that is consistent with the observed feedback.
By proving group observation modulated (GOM) bounded smoothness property, a
novel result of the influence difference in terms of the random observations, we
provide a regret of order O(poly(m)v/T), where m is the number of edges and
T is the number of rounds. This is the first theoretical result in such order for
OIM under the LT model. In the end, we also provide an algorithm 0IM-ETC with
regret bound O(poly(m) T2/3), which is model-independent, simple and has less
requirement on online feedback and offline computation.

1 Introduction

Social networks play an important role in spreading information in people’s life. In viral marketing,
companies wish to broadcast their products by making use of the network structure and characteristics
of influence propagation. Specifically, they want to provide free products to the selected users (seed
nodes), let them advertise through the network and maximize the purchase. There is a budget of the
free products and the goal of the companies is to select the optimal seed set to maximize the influence
spread. This problem is called influence maximization (IM) [19] and has a wide range of applications
including recommendation systems, link prediction and information diffusion.

In the IM problem, the social network is usually modeled as a directed graph with nodes representing
users and directed edges representing influence relationship between users. IM studies how to select
a seed set under a given influence propagation model to maximize the influence spread when the
weights are known. Independent cascade (IC) model and linear threshold (LT) model [19] are two
most widely used models to characterize the influence propagation in a social network, and both
models use weights on edges as model parameters.

In many real applications, however, the weights are usually unknown in advance. For example, in
viral marketing, it is unrealistic to assume that the companies know the influence abilities beforehand.
A possible solution is to learn those parameters from the diffusion data collected in the past [6, 36].
But this method lacks the ability of adaptive learning based on the need of influence maximization.
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This motivates the studies on the online influence maximization (OIM) problem [28, 10, 11, 47,
49, 50, 45, 44], where the learner tries to estimate model parameters and maximize influence in an
iterative manner.

The studies on OIM are based on the multi-armed bandit (MAB) problem, which is a classical online
learning framework and has been well studied in the literature [27]. MAB problem is formulated as a
T-round game between a learner and the environment. In each round, the learner needs to decide
which action to play and the environment will then reveal a reward according to the chosen action.
The objective of the learner is to accumulate as many rewards as possible. An MAB algorithm needs
to deal with the tradeoff between exploration and exploitation: whether the learner should try actions
that has not been explored well yet (exploration) or focus on the action with the best performance so
far (exploitation). Two algorithms, the explore-then-commit (ETC) [15] and the upper confidence
bound (UCB) [4], are widely followed in the stochastic MAB setting, where the reward of each action
follows an unknown but fixed distribution.

Most existing works in OIM focus on IC model under edge-level feedback [10, 11, 47, 49, 50], where
the information propagates independently between pairs of users and the learner can observe the live-
ness of individual edges as long as its source node is influenced. The independence assumption makes
the formulation simple but a bit unrealistic. Often in the real scenarios, the influence propagations are
correlated with each other. The LT model is usually used to model the herd behavior that a person is
more likely to be influenced if many of her friends are influenced [7, 17, 20]. Thus for the LT model,
it is more natural to use the node-level feedback where we only observe the node activations, since it
is hard to pinpoint which neighbor or neighbors actually contribute to an activation in a herd behavior.

In this paper, we first formulate the OIM problem under the LT model with the node-level feedback
and distill effective information based on the feedback. The main challenge is that only the aggregated
group effect on node activations can be observed and the aggregated groups are also random. Based
on the linear structure of the LT model, we incorporate the idea of linear bandits and propose the
LT-LinUCB algorithm, whose update mechanism is consistent with the distilled information. By
proving group observation modulated (GOM) bounded smoothness, a key property on the influence
spread under two different weight vectors, we can bound the regret. Such a property is similar to
the triggering probability modulated (TPM) bounded smoothness condition under the IC model with
edge-level feedback [47], but the derivation in our case under the node-level feedback is more difficult.
The regret is of order O(poly(m)+v/T log T'), where m is the number of edges and T is the number
of rounds. Our LT-LinUCB is the first OIM algorithm under the LT model that achieves the regret in
this order. Finally we give OIM-ETC algorithm, applying to both IC and LT with node-level feedback.
Though simple, it has less requirement on the observed feedback and the offline computation, and it
achieves the regret bound O(poly(m)T%/3), O(poly(m) log(T)/A?).

Related Work The problem of IM was first proposed as a discrete optimization problem by Kempe
et al. [19]. Since then, various aspects of IM have been extensively studied (see [9, 31] for surveys in
this area). Two most popular models in this field are the IC and LT models. The former assumes that
the influence between pairs of users are independent and the latter characterizes the herd behavior.
Some works [46, 18, 19, 42] study the IC model and some [12, 16, 19, 42] study the LT model. They
all assume the weights on the edges are known and focus on the model properties and approximated
solutions. We treat them as the offline setting.

When the weight vectors are unknown, Chen et al. [11, 47] study the problem in the online setting,
selecting seed sets as well as learning the parameters. They study the IC model with edge-level
feedback, propose CUCB algorithm and show that CUCB achieves the distribution-dependent and
distribution-independent regret bounds of O(poly(m)log(T)) and O(poly(m)v/T) respectively.
Later Wen et al. [49] consider the large-scale setting and assume the edge probability is a linear func-
tion of the edge’s feature vector. They provide a LinUCB-based algorithm with O(dmn/T In(T))
worst-case regret, where d is the feature dimension and n is the number of nodes. Wu et al. [50]
assume that each edge probability can be decomposed as the product of the influence probability of
the start node and the susceptibility probability of the end node motivated by network assortativity.
All these works study the IC model with edge-level feedback.

Vaswani et al. [44] uses a heuristic objective function for OIM and brings up a model-independent
algorithm under the pairwise feedback, where a node is influenced by a seed node or not. This applies
to both IC and LT and the feedback scheme is relaxed than the edge-level feedback. Unfortunately,



however, the heuristic objective has no theoretical approximation guarantee. Also, Vaswani et al. [45]
study the IC model with node-level feedback about the estimation gap to that under the edge-level
feedback but has no regret analysis. A report [43] studies the LT model with node-level feedback by
optimization approaches but without theoretical guarantees. There is another work [26] studying the
problem of linear multi-resource allocation, which can be formulated as a bipartite LT model. But
they assume every node in the left partition (resources) is selected and the algorithm needs to assign
allocations for each pair of left node and right node (tasks) representing the corresponding allocation
of resources on tasks. Thus the problem is different from our OIM. The OIM problem under LT has
been open for several years. We are the first to provide a reasonable formulation with an algorithm of

regret O(v/T).

OIM is a variant of combinatorial MAB (CMAB) [10, 22], where in each round the learner selects a
combination of (base) arms. Most works [25, 24] study stochastic setting with the linear objective and
semi-bandit feedback where the learner can observe the selected base arm’s reward and the reward of
the action is a linear function of these base arms’ rewards. CMAB in the stochastic setting with the
linear objective and bandit feedback, where only the linear reward of the selected combination can be
observed, is a special case of linear bandits. In the linear bandit setting, the learner selects a vector
each round and the reward is a linear function of the selected vector action [3]. The most popular
method to solve it is to construct confidence ellipsoids [14, 1, 38]. There are also works [8, 13] for
CMARB in the adversarial setting and bandit feedback. But OIM is different: its objective function is
non-linear and is dependent on unchosen and probabilistically triggered base arms.

OIM is related to the problem of online learning with graph feedback [2] where the learner can
observe the feedback of unchosen arms based on the graph structure. Though some of them study
random graphs [33, 29, 21] where the set of observed arms is random, the settings are different.
Under the graph feedback, the observations of unchosen arms are additional and the reward only
depends on the chosen arms, while under the OIM, the additional observations also contribute to
the reward. Cascading bandits [23, 30] also consider triggering on any selected list of arms and the
triggering is in the order of the lists. Compared with graph feedback and OIM setting, its triggering
graph is determined by the learning agent, not the adversary.

As a generalization of graph feedback, partial monitoring [5] is also related to OIM. Most works in
this direction, if applied directly to the OIM setting, are inefficient due to the exponentially large
action space. Lin et al. [32] study a combinatorial version of partial monitoring and their algorithm
provides a regret of order O(poly(m)T?/31logT) for OIM with LT. Our 0IM-ETC, however, has

regret bounds of O(poly(m)T?/?) (better in the order of T') as well as a problem-dependent bound
O(poly(m)logT).

2 Setting

This section describes the setting of online influence maximization (OIM) under linear threshold (LT)
model. The IM problem characterizes how to choose the seed nodes to maximize the influence spread
on a social network. The network is usually represented by a directed graph G = (V, E) where V
is the set of users and F is the set of relationships between users. Each edge e is associated with a
weight w(e) € [0, 1]. For example, an edge e = (u, v) =: e, , could represent user v follows user u
on Twitter and w(e) represents the ‘influence ability” of user w on user v. Denote w = (w(e))cck to
be the weight vector and n = |V|,m = |E|, D to be node number, edge number and the diameter
respectively, where the diameter of the graph is defined as the maximum (directed) distance between
the pair of nodes in any connected component. Let N(v) = N™(v) be the set of all incoming
neighbors of v, shortened as in-neighbors.

Recall that under IC model, each edge is alive with probability equal to the associated weight
independently and a node is influenced if there is a directed path connecting from a seed node in the
realized graph. Compared to the IC model, the LT model does not require the strong assumption of
independence and describes the joint influence of the active in-neighbors on a user, reflecting the herd
behavior that often occurs in real life [7, 17, 20].

Now we describe in detail the diffusion process under the LT model. Suppose the seed set is S. In the
beginning, each node is assigned with a threshold 6,,, which is independently uniformly drawn from
[0, 1] and characterizes the susceptibility level of node v. Denote § = (6, ),y to be the threshold
vector. Let S; be the set of activated nodes by the end of time 7. At time 7 = 0, only nodes in



the seed set are activated: Syp = S. Attime 7 4+ 1 with 7 > 0, for any node v ¢ S, that has not
been activated yet, it will be activated if the aggregated influence of its active in-neighbors exceeds
its threshold: > w(ey,w) > 0,. Such diffusion process will last at most D time steps. The
weN (v)NS,

size of the influenced nodes is denoted as (S, w, ) = |Sp|. Let #(S,w) = E[r(S,w, )] be the
influence spread of seed set S where the expectation is taken over all random variables 6,’s. The
IM problem is to find the seed set S’ with the size at most K under weight vector w to maximize
the influence spread, maxge 4 (S, w), where A = {S C V : |S| < K} is the action set for the
seed nodes. We also adopt the usual assumption that }, ¢ () w(eu,w) < 1forany v € V. This
assumption makes LT have an equivalent live-edge graph formulation like IC model [19, 9]. The
term of graph G and seed size K will be omitted when the context is clear. Here we emphasize that
the model parameters are the weights w while the threshold vector € is not model parameter (which
follows uniform distribution).

The (offline) IM is NP-hard under the LT model but it can be approximately solved [19, 42]. For
a fixed weight vector w, let SOP* be an optimal seed set and Opt,, be its corresponding influence
spread: SOP* € argmaxge 47(S, w) and Opt,, = 7(SOPY, w). Let Oracle be an (offline) oracle
that outputs a solution given the weight vector as input. Then for «, 5 € [0, 1], the Oracle is an
(«, B)-approximation if P (r(S’,w) > « - Opt,,) > [ where S’ = Oracle(w) is a solution returned
by the Oracle for the weight vector w. Note when aw = 8 = 1 the oracle is exact.

The online version is to maximize the influence spread when the weight vector (or the model
parameter) w = (w(e))ccp is unknown. In each round ¢, the learner selects a seed set .Sy, receives
the observations and then updates itself accordingly. For the type of observations, previous works on
IC mostly assume the edge-level feedback: the learner can observe the outgoing edges of each active
node [11, 49, 50]. But for the LT model, it is not very realistic to assume the learner can observe
which in-neighbor influences the target user since the LT model characterizes the aggregate influence
of a crowd. So we consider a more realistic node-level feedback? in this paper: the learner can only
observe the influence diffusion process on node sets as Sy g, . .., S% 7, ... in round ¢.

The objective of the OIM is to minimize the cumulative 7-scaled regret [10, 49] over total T rounds:

T
Sn
t=1

where the expectation is over the randomness on the threshold vector and the output of the adopted
offline oracle in each round .

T
n-T-Opt, — Y r(S,w)|, )

t=1

R(T)=E =E

Throughout this paper, we will use ‘round’ ¢ to denote a step in online learning and use ‘time’ 7 of
round ¢ to denote an influence diffusion step of seed set .S; in round ¢.

3 LT-LinUCB Algorithm

In this section, we show how to distill effective information based on the feedback and propose
a LinUCB-type algorithm, LT-LinUCB, for OIM under LT. For each node v € V, denote w, =
(w(eu,v))uen(w) to be the weight vector of its incoming edges. Let x(eu,») € {0, 1}|N(U)‘ be the
one-hot representation of the edge e, ,, over all of v’s incoming edges {e,, ., : uw € N(v)}, that is
its ¢’-entry is 1 if and only if ¢/ = e, ,. Then w(ey,) = X(euyv)—rwv. For a subset of edges
E" C {eun :u € N(v)}, we define x(E') := > . x(e) € {0, 1}|N(U)| to be the vector whose
e-entry is 1 if and only if e € E’. Here we abuse the notation that x({e}) = x(e). By this notation,
the weight sum of the edges in E’ is simply written as x(E’) Tw,. A subset V' C N(v) of v’s
in-neighbors can activate v if the weight sum of associated edges exceeds the threshold, that is
X(E") "w, > 0, with E' = {e,, :u € V'}

Fix a diffusion process Sy, S1,...,S-, ..., where the seed set is Sy. For each node v, define
71(v) :=min{r =0,...,D: N(v)NS; # 0} )

One may think of the node-level feedback as knowing only the set of nodes activated by the end of the
diffusion process. We refer to this as (partial) node-level feedback and ours as (full) node-level feedback. This
naming comes from [35].



as the earliest time step when node v has active in-neighbors. Particularly we set 71 (v) = D + 1 if
node v has no active in-neighbor until the diffusion ends. For any 7 > 7, (v), further define

E.(v):={eyp:ue Nw)NS;} 3)
as the set of incoming edges associated with active in-neighbors of v at time step 7.

Recall that the learner can only observe the aggregated influence ability of a node’s active in-neighbors.
Let 72 (v) represent the time step that node v is influenced (2 (v) > 71 (v)), which is equivalent to
mean that v’s active in-neighbors of time 75 (v) — 1 succeed to influence it but those in time 72(v) — 2
fail (E_; = 0). Thus the defintion of 72(v) can be written as

) ={r=0,....,D: x(E;_2(v)) "w, < 0, < x(Er—1(v)) "wy} . 4)

For consistency, we set 72(v) = D + 1 if node v is finally not influenced after the information
diffusion ends. Then based on the definition of 7; (v) and 72 (v), we can obtain that node v is not
influenced at time 7 € (11 (v), 72(v)), which means that the set of active in-neighbors of v at time
step 7 — 1 fails to activate it.

According to the rule of information diffusion under the LT model, an event that E' C
{€ww :u € N(v)} fails to activate v is equivalent to x(E’)"w, < 6,, which happens with
probability 1 — x(E’) "w, since 6, is uniformly drawn from [0,1]. Similarly an event that
E' C {eyw :u € N(v)} succeeds to activate v is equivalent to x(E’) "w, > 6, which happens
with probability x(E’) Tw,. So for node v who has active in-neighbors, v is not influenced at time
step 7 (11(v) < T < 7T2(v)) means that the set of v’s active in-neighbors by 7 — 1 fails to activate
it, thus we can use (x(Er—1(v)),0) to update our belief on the unknown weight vector w,; v is
influenced at time step 72(v) means that the set of v’s active in-neighbors by 75 (v) — 1 succeeds to
activate it, we can thus use (x(E,,)—1(v)), 1) to update our belief on the unknown weight vector
wy,; v is finally not influenced means that all of its active in-neighbors (by time step D) fail to activate
it, we can use (x (Er,(y)—1(v)), 0) to update w, since 7o (v) is defined as D 4 1 in this case. Note all
of these events are correlated (based on a same 6,,), thus we can only choose at most one of them
to update w,, for node v who has active in-neighbors. If v has no active in-neighbors, we have no
observation on w, and could update nothing.

V1 V4 Ve V1 V4 Ve V1 V4 V6 U1 Vg V6

Vi V4 Ve, V1 V4 Ve

Ers @ @—30)! %%o %%@ O

Figure 1: An example of diffusion process starting from .S = {s} under LT. The upper part describes
an influence diffusion process where yellow nodes represent influenced nodes by the current time.
The lower part describes what £, I, _; are where we use blue (red) color to represent the edges
and the associated active in-neighbors in £, (E.,_1, respectively) for the objective black node.



Figure 1 gives an example of diffusion process and the definitions of edge-sets £, and E.,_.
The diffusion process is illustrated by the upper four figures, where the set S of influenced nodes
by time 7 is yellow colored. The lower five columns represent the sets E,, , E,_; for different
nodes. For example, node v; has active in-neighbors starting from 7 = 1, thus 74 (v7) = 1 and
Er () (v7) = {euv, 1 u € N(v7) N S1} = {€v; 075 €vy,0; ). And v7 is influenced at 7 = 3 thus
To(v7) = 3and B, (y,)—1(v7) = {€ww, 1 u € N(v7) N S2} = {€v; v7) €vs,075 €us,07 - Node vg has
no active in-neighbors, thus 71 (vg) = 72(vs) = D + 1, both its E (,q)(v6) and E, (y)—1(ve) are
empty sets.

The above describes how to distill key observations for a diffusion under the LT model and also
explains the update rule in the design of the algorithm. Denote 71, 7o, E'- atround ¢ as 7 1, 7¢.2, Ey -
and the diffusion process at round ¢ as St g, ..., St r,.... Here we abuse a bit the notation S to
represent both the seed set and the spread set in a round when the context is clear.

Our algorithm LT-LinUCB is given in Algorithm 1. It maintains the Gramian matrix M, and the
moment vector b, of regressand by regressors to store the information for w,. At each round ¢, the
learner first computes the confidence ellipsoid for w, based on the current information (line 4) (see
the following lemma).

Lemma 1. Given {(Ay,y:)},o, with Ay € {0, 13N and y, € {0,1} as a Bernoulli random
variable with E[y; | A1, y1,..., A 1,yi-1,Ad = Alw,, let My = I + Zizl AGAD and
Wy = Mt_1 (Zi:l Asys) be the linear regression estimator. Then with probability at least 1 — 9,
forall t > 1, it holds that w, lies in the confidence set

~ 1
C = {w’ c 0,1V : [w" — 1|y, < \/Nlog(l—&—tN)—i—Qlogé—F\/N} .

Algorithm 1 LT-LinUCB
1: Input: Graph G = (V, E); seed set cardinality K'; exploration parameter p; , > 0 for any ¢, v;
offline oracle PairOracle
2: Inmitialize: M, <+ I € RINWIXINWI po o0 € RINWIXL 4 0« 0 € RIVNMIXT for any
nodev € V
3: fort=1,2,3,...do
Compute the confidence ellipsoid C; , = {w; € [0, N Ylw! — gyl . < Pt,v}

for any node v € V

5:  Compute the pair (S¢, w;) by PairOracle with confidence set C; = {Ct»v}vev and seed set
cardinality K

6:  Select the seed set S; and observe the feedback

7. // Update

8 for nodev € V do

9: Initialize A;,, + 0 € RIV®IX1 ¢« 0 € R

10: Uniformly randomly choose 7 € {7 : 741 (v) < 7/ < 7 2(v) — 1}

11: if v is influenced and 7 = 7 5 (v) — 1 then

12: At,'u =X (Et,‘r(v))’ Yto = 1

13: else if 7 = 71 (v),..., 72 (v) — 2 0or 7 = 72(v) — 1 but v is not influenced then
14: At,v =X (Etn'(U))’ Yt = 0

15: end if

16: Mt,v — Mt—lﬁv + At,vAZva bt,v — bt—l,v + yt,vAtﬂn uA]tﬂ) = Mtjylbt,v

17:  end for

18: end for

This lemma is a direct corollary of [1, Theorem 2] for the concentration property of the weight vector

w,. Thus when p; , > \/|N(v)\ log(1 + ¢t|N(v)]) + 2log 5 + \/|N(v)], the true weight vector w,

lies in the confidence set C; ,, (line 4) for any ¢ with probability at least 1 — 4.

Given the confidence set C, for w,, the algorithm expects to select the seed set by solving the
weight-constrained influence maximization (WCIM) problem

argmax g .,):SeA,w’€C T(Sv w/) . ®)



This (offline) optimization problem turns out to be highly nontrivial. Since we want to focus more on
the online learning solution, we defer the full discussion on the offline optimization, including its
general difficulty and our proposed approximate algorithms for certain graph classes such as directed
acyclic graphs to Appendix B.

Suppose its best solution is (SgOpt, ngpt) where ‘P’ stands for ‘pair’. Let PairOracle be an

offline oracle to solve the optimization problem. We say PairOracle is an («, 3)-approximation
oracle if P (r(S’, w') > a- (S5O, wgor’t)) > 3 where (S’,w') is an output by the oracle when

the confidence set is C. Then the algorithm runs with the seed set output by the PairOracle and the
confidence set C; = {Ctﬂ,}”ev (line 5).

After observing the diffusion process (line 6), For each node v who has active in-neighbors, we
randomly choose its active in-neighbors at time step 71 (v), ..., 72(v) — 1 to update (line 10). Specifi-
cally, if v is influenced and 7 = 72 (v) — 1, then it means that the set of active in-neighbors at time step
T succeeds to activate v, thus we use (x(E},-(v)), 1) to update (line 12); if 7 = 7 (v), ..., 72(v) — 2
or 7 = ma(v) — 1 but node v is not influenced, it means that the set of active in-neighbors at 7
fail to activate node v, thus we use (x(E¢ -(v)),0) to update (line 14). These updates are consis-
tent with the distilled observations we get for nodes who have active in-neighbors. For node v
who has no active in-neighbors, we have no obervation on w, and not update on it since the set
{r": 11 (v) <7/ < 13(v) — 1} is an empty set in this case.

For example in Figure 1, node v; has active in-neighbors from 7y (v7) = 1 and is influenced at
To(v7) = 3. The LT-LinUCB will uniformly randomly choose 7 € {1,2} (line 10). It updates
(Aw = X(El(v7))ayv7 = 0) if 7 = 1 (line 14) and (Aw = X(E2(v7))7yv7 = 1) otherwise
(line 12). For nodes v1, v2,vs, they all have 71 = 0 and 7 = 1. Thus for these three nodes, the
algorithm chooses 7 = 0 (line 10) and updates (4, = x(Eo(v)),y, = 1) (line 12). Node vy
has active in-neighbors from 71 (v4) = 1 but is not influenced finally, the algorithm will randomly
choose 7 € {1,2..., D} and update (A,, = x(Er(v4)), y», = 0) (line 14). Node vg has no active
in-neighbors, so we have no observation for its weight vector and will not update on it.

3.1 Regret Analysis

We now provide the group observation modulated (GOM) bounded smoothness property for LT
model, an important relationship of the influence spreads under two weight vectors. It plays a crucial
role in the regret analysis and states that the difference of the influence spread (S, w) under two
weight vectors can be bounded in terms of the weight differences of the distilled observed edge sets
under one weight vector. It is conceptually similar to the triggering probability modulate (TPM)
bounded smoothness condition under the IC model with edge-level feedback [47], but its derivation
and usage are quite different. For the seed set .S, define the set of all nodes related to a node v, Vg ,,
to be the set of nodes that are on any path from S to v in graph G.

Theorem 1. (GOM bounded smoothness) For any two weight vectors w,w’ € [0,1]™ with
Y e N() w(ey,v) < 1, the difference of their influence spread for any seed set S can be bounded as

T2 (u)—1

r(S,w') —r(S,w)| <E Z Z Z Z (w'(e) —w(e))| |, (6)

vEV\S u€Vs,y 7=71(u) |e€E,(u)

where the definitions of 1 (u), 72(u) and E.(u) are all under weight vector w, and the expectation is
taken over the randomness of the thresholds on nodes.

This theorem connects the reward difference with weight differences on the distilled observations,
which are also the information used to update the algorithm (line 7-17). It links the effective
observations, updates of the algorithm and the regret analysis. The proof needs to deal with intricate
dependency among activation events, and is put in Appendix A.1. due to the space constraint.

For seed set S € Aand node u € V'\ S, define Ns, := 3, v\ s 1{u € Vs,n} <n — K tobe the
number of nodes that u is relevant to. Then for the vector Ng = (Ng 4, )uev ., define the upper bound
of its L?-norm over all feasible seed sets

Y(G) =max [> NE, < (n—K)yn=0n"?),
ueV



Algorithm 2 0IM-ETC
: Input: G = (V, E), seed size K, exploration budget k, time horizon T, offline oracle Oracle

—_

2: for s € [k],u € Vdo

3:  Choose {u} as the seed set

4: Xs(eyw) := I{v is activated} for any v € N°"*(u)
5: end for

6: Compute w(e) := L % X (e) forany e € E

7: S = Oracle(w)

8: for the remaining 7' — nk rounds do

9:  Choose S as the seed set

10: end for

which is a constant related to the graph. Then we have the following regret bound.
Theorem 2. Suppose the LT-LinUCB runs with an («, 3)-approximation PairOracle and parameter

Ptoo = Pt = \/n log(1 + tn) + 2log %Jr\/ﬁfor any nodev € V. Then the a3-scaled regret satisfies

R(T) < 2p7y(G)D/mnTlog(1 + T)/log(1 +n) +nd - T(n — k). (7)

When § = 1/(nvT), R(T) < C - v(G) Dnv/mT log(T') for some universal constant C.

Due to space limits, the proof and the detailed discussions, as well as the values of 7(G), are put in
Appendix A.

4 The Explore-then-Commit Algorithm

This section presents the explore-then-commit (ETC) algorithm for OIM. Though simple, it is efficient
and model independent, applying to both LT and IC model with less requirement on feedback and
offline computation.

Recall that under LT model, a node v is activated if the sum of weights from active in-neighbors
exceeds the threshold 6,,, which is uniformly drawn from [0, 1]. Since the feedback is node-level,
if the activated node v has more than one active in-neighbors, then we can only observe the group
influence effect of her active in-neighbors instead of each single in-neighbor. A simple way to
overcome this limitation and manage to observe directly the single weight w(e,, ,,) is to select a single
seed {u} and take only the first step influence as feedback, which formulates our 0IM-ETC algorithm
(Algorithm 2), representing the ETC algorithm of the OIM problem.

Our OIM-ETC takes the exploration budget & as input parameter such that each node u is selected
as the (single) seed for k rounds (line 3). For each round in which u is the seed, each outgoing
neighbor (shortened as out-neighbor) v € N°U(u) will be activated in the first step with probability
P (w(ey,») > 0y) = w(ey,y) since the threshold 6, is independently uniformly drawn from [0, 1].
Thus the first-step node-level feedback is actually edge-level feedback and we can observe the
independent edges from the first-step feedback (line 4). Since each node is selected k times, we have
k observations of Bernoulli random variables with expectation w(e, ) in this exploration phase.
Then we take the empirical estimate 0 (e) for each w(e) (line 6) after the exploration and run with
the seed set output by the offline Oracle (line 7) for the remaining T' — nk exploitation rounds (line
9). We assume the offline Oracle is (o, §)-approximation.

Since it only needs the first step of the diffusion process and calls only once of the usual IM oracle, it
is efficient and has less requirement. By selecting reasonable k, we can derive good regret bounds.
Before that we need two definitions.
Definition 1. (Bad seed set) A seed set S is bad if (S, w) < « - Opt,,. The set of bad seed sets is
Sp :={5 | r(S,w) < a-Opt,}.
Definition 2. (Gaps of bad seed sets) For a bad seed set S € Sp, its gap is defined as Ag :=
a - Opt,, — r(S,w). The maximum and minimum gap are defined as
Amax := a - Opt,, —min {r(S,w) | S € Sg}, ®
Apin := a - Opt,, — max {r(S,w) | S € Sg} . )

w

w
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Theorem 3. When k = max {1, Q’A";"Z In (TTﬁT) } the af-scaled regret bound of our 0IM-ETC

min

algorithm over T rounds satisfies

2,3 2
R(T) < min {TAmaX,nAmax L 270 Amax (1 + max {O,IH (TA’“) })}

A2 mn?

min

2 3A
-0 (mzzrmxln(T)) . (10)

When k = 3.9(m>T/n)?/3, the aS-scaled regret bound of 0OIM-ETC algorithm over T rounds satisfies

R(T) < 3.9(mn)"/3T2%/3 41 =0 ((mn)4/3T2/3) . (11

The proof of the problem-dependent bound follows routine ideas of ETC algorithms but the proof of
the problem-independent bound is new. The proofs and discussions are put in Appendix C.

5 Conclusion

In this paper, we formulate the problem of OIM under LT model with node-level feedback and design
how to distill effective information from observations. We prove a novel GOM bounded smoothness
property for the spread function, which relates the limited observations, algorithm updates and the
regret analysis. We propose LT-LinUCB algorithm, provide rigorous theoretical analysis and show
a competitive regret bound of O(poly(m)v/T In(T')). Our LT-LinUCB is the first algorithm for LT
model with such regret order. Besides, we design 0IM-ETC algorithm with theoretical analysis on its
distribution-dependent and distribution-independent regret bounds. The algorithm is efficient, applies
to both LT and IC models, and has less requirements on feedback and offline computation.

In studying the OIM with LT model, we encounter an optimization problem of weight-constrained
influence maximization (WCIM). Reconsidering an (offline) optimization problem by relaxing some
fixed parameter to elements of a convex set is expected to be common in online learning. So we
believe this problem could have independent interest. Also the OIM problem under IC model with
node-level feedback is an interesting future work. Our regret analysis goes through thanks to the
linearity of the LT model. But the local triggering is nonlinear for IC model, and thus we expect more
challenges in the design and analysis of IC model with node-level feedback. Applying Thompson
sampling to influence maximization is also an interesting future direction, but it could also be
challenging, since it may not work well with offline approximation oracles as pointed out in [48].
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Broader Impact

Spread happens everywhere, no matter when a company wants to advertise their products, a group
wants to seek attention, or even virus like COVID-19 walks between places. The modelling of a
spread is always based on a directed graph and uses some diffusion assumptions. The linear threshold
(LT) model, considered in our paper, is one of the most popular models. The influence maximization
is the problem to pursue the widest spread, while the online version is to adaptively achieve this goal
through an interactive manner with no knowledge of the parameters.

Compared with application research, theoretical analysis will provide analysis and guarantees for the
designed algorithms. The theoretical work usually include extreme cases to make sure the algorithm
does have a good property, while in application research the possible experiments are always limited
and usually do not reflect corner cases. The latter might be an issue if we want to transfer the model
to some unseen scenes, €.g. automatic drive.

Also among our derivations, we reveal a class of optimization problems (i.e. WCIM), which we
expect to happen a lot if the community wants to solve some (offline) problem without the knowledge
of the parameters using an online manner. This class, as a theoretical problem, is highly non-trivial
and can introduce new problems to the optimization area. The hardness of this arising problem also
reflects the difficulty of transforming offline or heuristic solutions to online or automatic ones, like
the AutoML direction and the topics of automatically adjusting hyper-parameters.
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