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Figure 3: Causal graphs depicting 3 data generating processes.

A Examples in two dimensions

Let n = 2 and consider a model f(z1, z2) trained to approximate a data distribution p(Y = y|X; =
21, X9 = x2). The value function of Eq. in this case becomes

U({}) = E;D(a:’l,:ré) [fy(x/h ZIQ)] U({l}) = Ep(a:’2|a:1) [fy(xlv xIQ)] (20)
v({L,2}) = fy(a1, 22) v({2}) = Epat joa) [ fu (@], 22)]
Local Shapley values then follow from Eq. (I)):

6u(1) = 3 [p({1}) — o((1)] + 5 [o({1,2)) — o({21)]
6(2) = 3[v({1,2)) — o({1D)] + 3 [u({2}) — o({})]

The first bracketed term in each equation corresponds to the permutation 7 = (12), the second to
7 = (21). Axiom 4] (Symmetry) requires these to be weighted evenly.

N |

ASVs provide an additional layer of flexibility, allowing the practitioner to choose w(7) according to
the application:

¢4 (1) = wag [v({1}) = v({})] + war) [v({1,2}) - v({2})] (21)
¢1”)(2) = waz [v({1,2}) —v({1})] + wer) [v({2}) — v({})]
where w(12) + w1y = 1 to satisfy Axiom

Now suppose some basic causal information underlying the data is known. If the data is generated
according to Fig. @]then one might choose w(12) = 1 and w21y = 0:

ot (1) =v({1}) —o({})  ¢”(2) = v({1,2}) —v({1}) (22)

¢5f“) (1) thus reports the impact x; has on model f over its average output, while ¢>Sf”) (2) reports the
marginal effect of x5 on f after receiving ;. If instead the data is generated by Fig. one might
choose w(12) = w(a1) = 1/2. Following Egq. , one would set w(12) = 1 and w(e1) = 0 in the
case of Fig. as well.

B Details of experiments

B.1 Experiment on Census Income data

For the experiment of Sec. .1} we used the Census Income data from the UCI repository [12],
ignoring the “fnlwgt” feature. The model-to-explain f was a dense network, with 2 hidden layers of
100 units. Using a 75/25 train/test split, the model was trained with default sklearn settings, using
early stopping on a validation fraction of 25%. While the data has a 76/24 class balance, the model f
achieves 84.7% test-set accuracy. The results in Sec. d.T| were computed on the test set.

Three variants of global Shapley values appear in Fig.[I[a). Each is an aggregation of local values
defined according to Eq. (5). The first variant, labelled “Off manifold”, is the standard one, defined
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with the off-manifold value function of Eq. (Z). We obtained a Monte Carlo estimate of this quantity
with 10 samples, plotting the resulting mean as the bar length in Fig. a) and the standard error of
the mean as the error bar.

The “On manifold” and “ASV” results in Fig. a) are similarly Monte Carlo estimates with 105
samples. These quantities are defined with respect to the on-manifold value function of Eq. ().
We computed the conditional distribution p(z’|zg) that appears in this value function using the
VAE-based method of [[16]]. In particular, we used dense neural networks for the encoder, decoder,
and masked encoder, each with 2 hidden layers of 100 units, trained using Adam [21]] for optimisation,
a batch size of 128, and early stopping with a validation fraction of 25% and patience of 20 epochs.
No hyperparameter tuning was performed.

B.2 Experiment on synthetic college admissions data

For the experiment of Sec. we used two synthetic college-admissions data sets, which we refer to
as “fair” and “unfair”, with data generating processes described qualitatively in Fig.[T(b). In both
data sets, gender X is a binary random variable, with X; = 0 for women and X; = 1 for men. It is
drawn according to

PXy=1)=1/2 (23)
Test score, X5, is a normally distributed random variable:
x9 ~ N(0,1) (24)
Department choice, X3, is a binary variable drawn differently for women and men:
P(X;=1/X;=0)=0.8 (25)
P(X;=1X;=1)=0.2

so that women mostly apply to department X3 = 1 and men to X3 = 0. College admission, Y, is a
binary variable drawn differently for the two data sets. In the fair case,

P(Y =1|X5 = 29, X3 = x3) = sigmoid(zy + 2235 — 1) (26)

making X3 = 1 the more competitive department. In the unfair case, admission is additionally based
on (binary) unreported referrals, X4, which are more prevalent for men than for women:

P(X,=1|X, =0)=1/3 27)
P(Xy=1|X, =1)=2/3

While X is not reported in the unfair data set, it has an important effect on admissions:

P(Y = 1|X2 = IQ,Xg = 133,X4 = Q?4) = Singid(IQ + 2$3 + 21‘4 — 2) (28)

Models-to-explain f) and funfaiD were fit to the two synthetic data sets. For each we used a
densely connected network with 2 hidden layers of 10 units. Using a 75/25 train/test split, each model
was trained with default sklearn settings, using early stopping on a validation fraction of 25%. While
each data set has a 50/50 class balance, ™" and f("f) achieve 73.6% and 73.2% test-set accuracy,
respectively. All results in Sec. [4.2] were computed on held-out test sets.

As in App. we used the VAE-based method of [16] to compute global ASVs for Fig. [Ic). We
used dense neural networks for the encoder, decoder, and masked encoder, each with 2 hidden layers
of 20 units, trained using Adam [21]] for optimisation, a batch size of 128, and early stopping with a
validation fraction of 25% and patience of 20 epochs. No hyperparameter tuning was performed. Bar
lengths in Fig. Ekc) correspond to means, and error bars to standard errors, with 10 Monte Carlo
samples.

B.3 Experiments on Seizure Recognition data

The experiments of Secs. [#.3]and .4 were performed on the Epileptic Seizure Recognition data [2]
from the UCI repository [[12]. The model-to-explain f was a recurrent neural network: an LSTM
with 20-dimensional hidden state. Using a 75/25 train/test split, the model was trained using Adam
[21] for optimisation, a batch size of 128, and early stopping with a validation fraction of 25% and
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patience of 20 epochs. While the data has an 80/20 class balance, the model f achieved 98.3% test-set
accuracy. All results shown in Sec. [4.3| were computed on the test set.

The global Shapley values in Fig. were computed using 10° Monte Carlo samples from the
off-manifold value function of Eq. (2). Central values in Figs. [2(b)] and [2(c)| represent means, with
shaded uncertainty bands for the standard error of the means. The global ASVs in Fig. were
computed similarly, but with the VAE-based method of [[16] used to compute the on-manifold value
function. We used LSTMs for the encoder, decoder, and masked encoder, each with a 20-dimensional
hidden state, trained using Adam [21]] for optimisation, a batch size of 512, and early stopping with
a validation fraction of 25% and patience of 100 epochs. We varied hyperparameters (for LSTM
dimension, batch size, and patience) up and down by a factor of 2 without significant effect.

As described in Sec.[4.4] Fig. 2(c)|displays the cumulative values corresponding to Fig.[2(b)] Fig.
also displays a gray curve labelled “Empirical accuracies”. For each point ¢ on this curve, a model

f® was trained to use the restricted time steps ¢’ < ¢ to perform the binary classification task. These
models were defined and trained identically to the model-to-explain f described above. We computed
Apey({t' < t}) — Ay ({}) for each model, with Ay (S) defined in Sec. These differences
are labelled “Empirical accuracies” in Fig. and can be interpreted as the accuracies, above a
randomised baseline, achieved by models f(*). We performed 5 trials for each value of t. Means
appear as the central curve and standard deviations as the shaded uncertainty band.
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