
(a) original image

(b) noisy image

(c) denoised by
GD12φ (Eθ(X, ·))

We would like to thank all reviewers for their careful reading, thoughtful comments, and overall1

positive assessment! We address the questions raised by reviewers below.2

Real-world application [Reviewer #1, #2, #3, #4]. To show the real world applicability of our3

theoretical framework, we consider the local adaptive image denoising task, where the noise4

levels in different parts of the images can be different. More specifically,5

(i) Dataset. We split BSD500 dataset (400 images) [1] into a training set (100 images) and a test6

set (300 images). Gaussian noises are added to each pixel with noise levels depending on image7

local smoothness, making the noise levels on edges lower than non-edge regions. The task is to8

restore the original image from the noisy version X ∈ [0, 1]180×180.9

(ii) Architecture. We designed a hybrid architecture Algkφ (Eθ(X, ·)) where Algkφ is a k-step10

unrolled minimization algorithm to the `2-regularized reconstruction objective Eθ(X,Y ) :=11
1
2‖Y + gθ(X)−X‖2F + 1

2

∑
i,j |[fθ(X)]i,jYi,j |2, and the residual gθ(X) and position-wise reg-12

ularization coefficient fθ(X) are both DnCNN networks as in [2]. The optimization objective,13

Eθ(X,Y ), is quadratic in Y , which follows the settings our theory focused on.14

(iii) Generalization gap. We instantiate the hybrid architecture into different models using GD15

and NAG algorithms with different unrolled steps k. Each model is trained with 3000 epochs,16

and the generalization gaps between training and test errors are reported in Fig. 1. The results17

also show good consistency with our theory, where stabler algorithm (GD) can generalize better18

given over-/under-parameterized neural module, and for the about-right parameterization case,19

the generalization gap behaviors similar to Stab(k) ∗ Cvg(k). We will conduct more experimental20

trials and provide figures with smoother curves and error bars in our revised paper.21

(iv) Visualization. To show that the learned hybrid model has a good performance in this real22

application, we include a visualization of the original, noisy, and denoised images.23
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Figure 1: Generalization gap. Each k corresponds to a
separately trained model. Left (under-parameterized): fθ is
a DnCNN with 3 channels and 2 hidden layers and gθ = 0.
Middle (about-right): both fθ and gθ have 3 channels and 2
hidden layers. Right (over-parameterized): fθ has 20 channels.

Generality of problem setting [Reviewer #1, #2, #3, #4].24

We acknowledged that our theoretical analysis is performed25

under a simplified problem setting, but we’d like to clarify26

a few points to avoid confusion.27

•We assume Eθ(x,y) is quadratic in y but it can depend on28

any way in the input x (i.e., Qθ can be any neural network).29

This can cover many real applications. For example, the30

above image denoising task, and many other data reconstruc-31

tion problems can be cast into quadratic energy minimization.32

• Even though in the paper we only present the results for33

using GD and NAG algorithms as the reasoning module, the main theorems which state the relation between the learning34

behavior and algorithm properties can be applied to any optimization algorithm as long as corresponding properties of35

the algorithm are provided. [Reviewer #3].36

• Our analysis framework can be extended to more general settings where the neural network module outputs a suitable37

strongly convex energy function. In fact the key component of our approximation and generalization analysis is the38

Lipschitz stability of the maps between the energy function and the exact minimizer, which can be ensured for general39

convex optimization problems if suitable regularization terms are introduced in the energy functions. We aim to analyze40

this general setting in future research.41

Other questions.42

• Space shrinks to a single function. [Reviewer #2] We sincerely thank Reviewer #2 for his/her very detailed comments.43

Regarding why {Alg∞φ : φ ∈ Φ} contains only a single function, this comes from the convergence guarantee of the44

algorithms. That is, when the step size φ is in the stable region Φ, the optimization error will decrease in each iteration45

and gradually decrease to 0 when k →∞. Therefore, for every step size φ ∈ Φ, Alg∞φ = Opt, the exact minimizer.46

• Generalized to DP? [Reviewer #3] Thanks Reviewer #3 for bringing in this interesting question, which is also what47

we want to address in our future work. Our analysis for RNN/GNN can potentially be adapted to the case where48

RNN/GNN are used to learn problems requiring DP, since RNN/GNN can present those operations in DP. However, as49

explained in our theory, one may not able to obtain as a tight bound as GD/NAG due to the difficulty of analyzing RNN.50

Furthermore, in the case of DP, the notion of convergence with respect the number of step k is different: the k is a fixed51

number of stages needed to run the DP iterations to solve the optimization. This will require more research.52
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