
Understanding Deep Architectures with Reasoning Layer

Xinshi Chen
Georgia Institute of Technology
xinshi.chen@gatech.edu

Yufei Zhang
University of Oxford

yufei.zhang@maths.ox.ac.uk

Christoph Reisinger
University of Oxford

christoph.reisinger@maths.ox.ac.uk

Le Song
Georgia Institute of Technology

lsong@cc.gatech.edu

Abstract

Recently, there has been a surge of interest in combining deep learning models
with reasoning in order to handle more sophisticated learning tasks. In many cases,
a reasoning task can be solved by an iterative algorithm. This algorithm is often
unrolled, and used as a specialized layer in the deep architecture, which can be
trained end-to-end with other neural components. Although such hybrid deep archi-
tectures have led to many empirical successes, the theoretical foundation of such
architectures, especially the interplay between algorithm layers and other neural
layers, remains largely unexplored. In this paper, we take an initial step towards
an understanding of such hybrid deep architectures by showing that properties of
the algorithm layers, such as convergence, stability and sensitivity, are intimately
related to the approximation and generalization abilities of the end-to-end model.
Furthermore, our analysis matches closely our experimental observations under
various conditions, suggesting that our theory can provide useful guidelines for
designing deep architectures with reasoning modules (i.e., algorithm layers).

1 Introduction

time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,

Sanchez-Lengeling et al., Science 361, 360–365 (2018) 27 July 2018 2 of 6

Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.

IM
A
G
E
:A

D
A
P
T
E
D

B
Y
K
.
H
O
LO

S
K
I

on June 4, 2020

http://science.sciencem
ag.org/

Downloaded from

time between steps. The ultimate aim is to
concurrently propose, create, and characterize
new materials, with each component transmitt-
ing and receiving data simultaneously. This
process is called “closing the loop,” and inverse
design is a critical facet (12, 15).

Inverse design

Quantum chemical methods reveal properties
of a molecular system only after specifying the
essential parameters of the constituent atomic
nuclei and their three-dimensional (3D) coor-
dinate positions (16). Inverse design, as its name
suggests, inverts this paradigm by starting with
the desired functionality and searching for an
ideal molecular structure. Here the input is the
functionality and the output is the structure.
Functionality need not necessarily map to one
unique structure but to a distribution of prob-
able structures. Inverse design (Fig. 2) uses
optimization, sampling, and search methods
to navigate the manifold of functionality of
chemical space (17, 18).
One of the earliest efforts in inverse design

was the methodology of high-throughput virtual
screening (HTVS). HTVS has its roots in the
pharmaceutical industry for drug discovery, where
simulation is an exploratory tool for screening a
large number of molecules (19, 20). HTVS starts
with an initial library of molecules built on the
basis of researchers’ intuition, which narrows
down the pool of possible candidate molecules
to a tractable range of a thousand to a million.
Initial candidates are filtered on the basis of
focused targets such as ease of synthesis, sol-
ubility, toxicity, stability, activity, and selectivity.
Molecules are also filtered by expert opinion,
eventually considered as potential lead com-
pounds for organic synthesis. Successful motifs
and substructures are further incorporated in
future cycles to further optimize functionality.
Although HTVS might seem like an ensemble

version of the direct approach for material
design, it differs in its underlying philosophy
(4). HTVS is focused on data-driven discovery,
which incorporates automation, time-critical per-
formance, and computational funnels; promising
candidates are further processed by more ex-
pensive methodologies. A crucial component is
feedback between theory and experiment.
The HTVS methodology has been quite suc-

cessful at generating new and high-performing
materials in other domains. In organic photo-
voltaics, molecules have been screened on the
basis of frontier orbital energies and photovoltaic
conversion efficiency and orbital energies (21–24).
In organic redox flow batteries, redox potential,
solubility, and ease of synthesis (25, 26) are
prioritized. For organic light-emitting diodes,
molecules have been screened for their singlet-
triplet gap and photoluminescent emission (27).
Massive explorations of reactions for catalysis
(28) or redox potentials in biochemistry have
been undertaken (28). For inorganic materials,
the Materials Project (29) spawns many appli-
cations such as dielectric and optical materials
(30), photoanode materials for generation of

chemical fuels from sunlight (31), and battery
electrolytes (32).
Arguably, an optimization approach is pref-

erable to HTVS because it generally visits a
smaller number of configurations when ex-
ploring the manifold of functionality. An op-
timization incorporates and learns geometric
information of the functionality manifold, guided
by general trends, directions, and curvature (17).
Within discrete optimization methods, Evolu-

tion Strategies (ES) is a popular choice for global
optimization (33–35) and has been used to map
chemical space (36). ES involves a structured
search that incorporates heuristics and proce-
dures inspired by natural evolution (37). At each
iteration, parameter vectors (“genotypes”) in a
population are perturbed (“mutated”) and their
objective function value (“fitness”) evaluated.
ES has been likened to hill-climbing in high-
dimensional space, following the numerical
finite difference across parameters that aremore
successful at optimizing the fitness. With ap-
propriately designed genotypes and muta-
tion operations, ES can be quite successful at
hard optimization problems, even overcoming
state-of-the-artmachine learning approaches (38).
In other cases, inverse design is realized by

incorporating expert knowledge into the op-
timization procedure, via improved Bayesian
sampling with sequential Monte Carlo (39),
invertible system Hamiltonians (18), deriving
analytical gradients of properties with respect
to a molecular system (40), optimizing potential
energy surfaces of chemical systems (41), or dis-
covering design patterns via data-mining tech-
niques (42, 43).
Finally, another approach involves generative

models stemming from the field of machine
learning. Before delving into the details, it is
appropriate to highlight the differences between
generative and discriminative models. A dis-
criminativemodel tries to determine conditional

probabilities (p(y|x)): that is, the probability of
observing properties y (such as the bandgap
energy or solvation energy), given x (a mole-
cular representation). By contrast, a generative
model attempts to determine a joint probability
distribution p(x, y): the probability of observing
both the molecular representation and the phys-
ical property. By conditioning the probability
on a molecule (x) or a property (y), we retrieve
the notion of direct (p(y|x)) and inverse design
(p(x|y)).
As expected, deep generative models are more

challenging to create than directML approaches,
but DL algorithms and computational strategies
have advanced substantially in the last few years,
producing astonishing results for generating
natural-looking images (44), constructing high-
quality audiowaveforms containing speech (45),
generating coherent and structured text (46),
and most recently, designing molecules (47).
There are several ways of building generative
models, but for the purposes of this Review, we
will focus on threemain approaches: variational
autoencoders (VAEs) (48), reinforcement learn-
ing (RL) (49), and generative adversarial net-
works (GANs) (44).
Before describing how each approach differs,

we consider representations of molecules, which
in turn determine the types of tools available and
the types of information that can be exploited in
the models.

Representation of molecules

Tomodel molecular systems accurately, wemust
solve the Schrödinger equation (SE) for the
molecular electronic Hamiltonian, from which
we obtain properties relating to the energy, geom-
etry, and curvature of the potential energy
surface of our system. In the SE, the molecule
is represented as a set of nuclear charges and
the corresponding Cartesian coordinates of
the atomic positions in 3D space. Meanwhile,

Sanchez-Lengeling et al., Science 361, 360–365 (2018) 27 July 2018 2 of 6

Fig. 2. Schematic of the different approaches toward molecular design. Inverse design starts
from desired properties and ends in chemical space, unlike the direct approach that leads from
chemical space to the properties.

IM
A
G
E
:A

D
A
P
T
E
D

B
Y
K
.H

O
LO

S
K
I

on June 4, 2020

http://science.sciencem
ag.org/

Downloaded from

x

E𝜃(x,y)

Alg𝜙(E𝜃(x,・))

reasoning m
odule

neural m
odule

Figure 1: Hybrid architecture.

Many real world applications require perception and reasoning to work
together to solve a problem. Perception refers to the ability to un-
derstand and represent inputs, while reasoning refers to the ability
to follow prescribed steps and derive answers satisfying certain con-
straints. To tackle such sophisticated learning tasks, recently, there has
been a surge of interests in combining deep perception models with
reasoning modules (or algorithm layers).

Typically, a reasoning module is stacked on top of a neural module,
and treated as an additional layer of the overall deep architecture; then
all the parameters in the architecture are optimized end-to-end with
loss gradients (Fig 1). Very often these reasoning modules can be
implemented as unrolled iterative algorithms, which can solve more
sophisticated tasks with carefully designed and interpretable opera-
tions. For instance, SATNet [1] integrated a satisfiability solver into
its deep model as a reasoning module; E2Efold [2] used a constrained
optimization algorithm on top of a neural energy network to predict
and reason about RNA structures, while [3] used optimal transport algorithm as a reasoning module
for learning to sort. Other algorithms such as ADMM [4, 5], Langevin dynamics [6], inductive logic
programming [7], DP [8], k-means clustering [9], message passing [10, 11], power iterations [12] are

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

also used as differentiable reasoning modules in deep models for various learning tasks. Thus in the
remainder of the paper, we will use reasoning module and algorithm layer interchangeably.

While these previous works have demonstrated the effectiveness of combining deep learning with
reasoning, the theoretical underpinning of such hybrid deep architectures remains largely unexplored.
For instance, what is the benefit of using a reasoning module based on unrolled algorithms compared
to generic architectures such as recurrent neural networks (RNN)? How exactly will the reasoning
module affect the generalization ability of the deep architecture? For different algorithms which can
solve the same task, what are their differences when used as reasoning modules in deep models?
Despite the rich literature on rigorous analysis of algorithm properties, there is a paucity of work
leveraging these analyses to formally study the learning behavior of deep architectures containing
algorithm layers. This motivates us to ask the crucial and timely question of

How will the algorithm properties of an algorithm layer affect the learning behavior
of deep architectures containing such layers?

In this paper, we provide a first step towards an answer to this question by analyzing the approximation
and generalization abilities of such hybrid deep architectures. To the best our knowledge, such an
analysis has not been done before and faces several difficulties: 1) The analysis of certain algorithm
properties such as convergence can be complex by itself; 2) Models based on highly structured
iterative algorithms have rarely been analyzed before; 3) The bound needs to be sharp enough to
match empirical observations. In this new setting, the complexities of the algorithm’s analysis and
generalization analysis are intertwined together, making the analysis even more challenging.

Summary of results. We find that standard Rademacher complexity analysis, widely used for neural
networks [13, 14, 15], is insufficient for explaining the behavior of these hybrid architectures. Thus
we resort to a more refined local Rademacher complexity analysis [16, 17], and find the following:

• Relation to algorithm properties. Algorithm properties such as convergence, stability and
sensitivity all play important roles in the generalization ability of the hybrid architecture. Generally
speaking, an algorithm layer that is faster converging, more stable and less sensitive will be able to
better approximate the joint perception and reasoning task, while at the same time generalize better.
• Which algorithm? There is a tradeoff that a faster converging algorithm has to be less stable [18].
Therefore, depending on the precise setting, the best choice of algorithm layer may be different.
Our theorem reveals that when the neural module is over- or under-parameterized, stability of the
algorithm layer can be more important than its convergence; but when the neural module is has an
‘about-right’ parameterization, a faster converging algorithm layer may give a better generalization.
• What depth? With deeper algorithm layers, the representation ability gets better, but the gen-
eralization becomes worse if the neural module is over/under-parameterized. Only when it has
’about-right’ complexity, deeper algorithm layers can induce both better representation and general-
ization.
• What if RNN? It has been shown that RNN (or graph neural networks, GNN) can represent
reasoning and iterative algorithms [19, 15]. On the example of RNN we demonstrate in Sec 6 that
these generic reasoning modules can also be analyzed under our framework, revealing that RNN
layers induce better representation but worse generalization compared to traditional algorithm layers.
• Experiments. We conduct empirical studies to validate our theory and show that it matches well
with experimental observations under various conditions. These results suggest that our theory can
provide useful practical guidelines for designing deep architectures with algorithm layers.

Contributions and limitations. To the best of our knowledge, this is the first result to quantitatively
characterize the effects of algorithm properties on the learning behavior of hybrid deep architectures
with reasoning modules (algorithm layers), showing that algorithm biases can help reduce sample
complexity of such architectures. Our result also reveals a subtle and previously unknown interplay
between algorithm convergence, stability and sensitivity when affecting model generalization, and
thus provides design principles for deep architectures with algorithm layers. To simplify the analysis,
our initial study is limited to a setting where the reasoning module is an unconstrained optimization
algorithm and the neural module outputs a quadratic energy function. However, our analysis frame-
work can be extended to more complicated cases and the insights can be expected to apply beyond
our current setting.

Related theoretical works. Our analysis borrows proof techniques for analyzing algorithm properties
from the optimization literature [18, 20] and for bounding Rademacher complexity from the statistical
learning literature [13, 16, 17, 21, 22], but our focus and results are new. More precisely, the ‘leave-

2

one-out’ stability of optimization algorithms have been used to derive generalization bounds [23, 24,
25, 18, 26, 27]. However, all existing analyses are in the context where the optimization algorithms
are used to train and select the model, while our analysis is based on a fundamentally different
viewpoint where the algorithm itself is unrolled and integrated as a layer in the deep model. Also,
existing works on the generalization of deep learning mainly focus on generic neural architectures
such as feed-forward neural networks, RNN, GNN, etc [13, 14, 15]. The complexity of models
based on highly structured iterative algorithms and the relation to algorithm properties have not been
investigated. Furthermore, we are not aware of any previous use of local Rademacher complexity
analysis for deep learning models.

2 Setting: Optimization Algorithms as Reasoning Modules

In many applications, reasoning can be accomplished by solving an optimization problem defined by a
neural perceptual module. For instance, a visual SUDOKU puzzle can be solved using a neural module
to perceive the digits followed by a quadratic optimization module to maximize a logic satisfiability
objective [1]. The RNA folding problem can be tackled by a neural energy model to capture pairwise
relations between RNA bases and a constrained optimization module to minimize the energy, with
additional pairing constraints, to obtain a folding [2]. In a broader context, MAML [28, 29] also has a
neural module for joint initialization and a reasoning module that performs optimization steps for task-
specific adaptation. Other examples include [6, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43].
More specifically, perception and reasoning can be jointly formulated in the form

y(x) = arg miny∈Y Eθ(x,y), (1)

where x is an input, and Eθ(x,y) is a neural energy function with parameters θ, which specifies
the type of information needed for performing reasoning, and together with constraints Y on the
output y, specifies the style of reasoning. Very often, the optimizer can be approximated by iterative
algorithms, so the mapping in Eq. 1 can be approximated by the following end-to-end hybrid model

fφ,θ(x) := Algkφ (Eθ(x, ·)) : X 7→ Y. (2)

Algkφ is the reasoning module with parameters φ. Given a neural energy, it performs k-step iterative
updates to produce the output (Fig 1). When k is finite, Algkφ corresponds to approximate reasoning.
As an initial attempt to analyze deep architectures with reasoning layers, we will restrict our analysis
to a simple case whereEθ(x,y) is quadratic in y. A reason is that the analysis of advanced algorithms
such as Nesterov accelerated gradients will become very complex for general cases. Similar problems
occur in [18] which also restricts the proof to quadratic objectives. Specifically:

Problem setting: Consider a hybrid architecture where the neural module is an energy function of
the form Eθ((x, b),y) = 1

2y
>Qθ(x)y + b>y, with Qθ a neural network that maps x to a matrix.

Each energy can be uniquely represented by (Qθ(x), b), so we can write the overall architecture as

fφ,θ(x, b) := Algkφ(Qθ(x), b). (3)

Assume we are given a set of n i.i.d. samples Sn = {((x1, b1),y∗1), · · · , ((xn, bn),y∗n)}, where the
labels y∗ are given by the exact minimizer Opt of the corresponding Q∗, i.e.,

y∗ = Opt(Q∗(x), b). (4)

Then the learning problem is to find the best model fφ,θ from the space F := {fφ,θ : (φ, θ) ∈ Φ×Θ}
by minimizing the empirical loss function

min
fφ,θ∈F

1

n

n∑
i=1

`φ,θ(xi, bi), (5)

where `φ,θ(x, b) := ‖Algkφ (Qθ(x), b)− Opt(Q∗(x), b)‖2. Furthermore, we assume:

• We have Y = Rd, and both Qθ and Q∗ map X to Sd×dµ,L , the space of symmetric positive definite
(SPD) matrices with µ,L > 0 as its smallest and largest singular values, respectively. Thus the
induced energy function Eθ will be µ-strongly convex and L-smooth, and the output of Opt is unique.
• The input (x, b) is a pair of random variables where x ∈ X ⊆ Rm and b ∈ B ⊆ Rd. Assume
b satisfies E[bb>] = σ2

b I . Assume x and b are independent, and their joint distribution follows a
probability measure P . Assume samples in Sn are drawn i.i.d. from P .

3

• Assume B is bounded, and let M = sup(Q,b)∈Sd×dµ,L ×B
‖Opt(Q, b)‖2.

Though this setting does not encompass the full complexity of hybrid deep architectures, it already
reveals interesting connections between algorithm properties of the reasoning module and the learning
behaviors of hybrid architectures.

3 Properties of Algorithms

In this section, we formally define the algorithm properties of the reasoning module Algkφ, under the
problem setting presented in Sec 2. After that, we compare the corresponding properties of gradient
descent, GDkφ, and Nesterov’s accelerated gradients, NAGkφ, as concrete examples.

(I) The convergence rate of an algorithm expresses how fast the optimization error decreases as k
grows. Formally, we say Algkφ has a convergence rate Cvg(k, φ) if for any Q ∈ Sd×dµ,L , b ∈ B,

‖Algkφ(Q, b)− Opt(Q, b)‖2 ≤ Cvg(k, φ)‖Alg0
φ(Q, b)− Opt(Q, b)‖2. (6)

(II) Stability of an algorithm characterizes its robustness to small perturbations in the optimization
objective, which corresponds to the perturbation of Q and b in the quadratic case. For the purpose of
this paper, we say an algorithm Algkφ is Stab(k, φ)-stable if for any Q,Q′ ∈ Sd×dµ,L and b, b′ ∈ B,

‖Algkφ(Q, b)− Algkφ(Q′, b′)‖2 ≤ Stab(k, φ)‖Q−Q′‖2 + Stab(k, φ)‖b− b′‖2, (7)

where ‖Q−Q′‖2 is the spectral norm of the matrix Q−Q′.
(III) Sensitivity characterizes the robustness to small perturbations in the algorithm parameters φ.
We say the sensitivity of Algkφ is Sens(k) if it holds for all Q ∈ Sd×dµ,L , b ∈ B, and φ, φ′ ∈ Φ that

‖Algkφ(Q, b)− Algkφ′(Q, b)‖2 ≤ Sens(k)‖φ− φ′‖2. (8)

This concept is referred in the deep learning community to “parameter perturbation error” or “sharp-
ness” [44, 45, 46]. It has been used for deriving generalization bounds of neural networks, both in
the Rademacher complexity framework [13] and PAC-Bayes framework [47].

(IV) The stable region is the range Φ of the parameters φ where the algorithm output will remain
bounded as k grows to infinity, i.e., numerically stable. Only when the algorithms operate in the
stable region, the corresponding Cvg(k, φ), Stab(k, φ) and Sens(k) will remain finite for all k. It is
usually very difficult to identity the exact stable region, but a sufficient range can be provided.

GD and NAG. Now we will compare the above four algorithm properties for gradient descent and
Nesterov’s accelerated gradient method, both of which can be used to solve the quadratic optimization
in our problem setting. First, the algorithm update steps are summarized bellow:

GDφ : yk+1 ← yk − φ(Qyk + b) NAGφ :

{
yk+1 ← zk − φ(Qzk + b)

zk+1 ← yk+1 + 1−
√
µφ

1+
√
µφ

(yk+1 − yk)
(9)

where the hyperparameter φ corresponds to the step size. The initializations y0, z0 are set to zero
vectors throughout this paper. Denote the results of k-step update, yk, of GD and NAG by GDkφ(Q, b)

and NAGkφ(Q, b), respectively. Then their algorithm properties are summarized in Table 1.

Table 1: Comparison of algorithm properties between GD and NAG. For simplicity, only the order in k is
presented. Complete statements with detailed coefficients and proofs are given in Appendix A.

Alg Cvg(k, φ) Stab(k, φ) Sens(k) Stable region Φ

GDkφ O
(
(1− φµ)k

)
O
(
1− (1− φµ)k

)
O
(
k(1− c0µ)k−1

)
[c0,

2
µ+L]

NAGkφ O
(
k(1−

√
φµ)k

)
O
(
1− (1−

√
φµ)k

)
O
(
k3(1−√c0µ)k

)
[c0,

4
µ+3L]

Table 1 shows: (i) Convergence: NAG converges faster than GD, especially when µ is very small,
which is a well-known result. (ii) Stability: However, as k grows, NAG is less stable than GD for a
fixed k, in contrast to their convergence behaviors. This is pointed out in [18], which proves that a
faster converging algorithm has to be less stable. (iii) Sensitivity: The sensitivity behaves similar to

4

the convergence, where NAG is less sensitive to step-size perturbation than GD. Also, the sensitivity
of both algorithms gets smaller as k grows larger. (iv): Stable region: Since µ < L, the stable
region of GD is larger than that of NAG. It means a larger step size is allowable for GD that will not
lead to exploding outputs even if k is large. Note that all the other algorithm properties are based
on the assumption that φ is in the stable region Φ. Furthermore, as k goes to infinity, the space
{Algkφ : φ ∈ Φ} will finally shrink to a single function, which is the exact minimizer {Opt}.

Our purpose of comparing the algorithm properties of GD and NAG is to show in a later section their
difference as a reasoning layer in deep architectures. However, some results in Table 1 are new by
themselves, which may be of independent interest. For instance, we are not aware of other analysis
of the sensitivity of GD and NAG to their step-size perturbation. Besides, for the stability results, we
provide a proof with a weaker assumption where φ can be larger than 1/L, which is not allowed in
[18]. This is necessary since in practice the learned step size φ is usually larger than 1/L.

4 Approximation Ability

How will the algorithm properties affect the approximation ability of deep architecture with reasoning
layers? Given a model space F := {Algkφ (Qθ(·), ·) : φ ∈ Φ, θ ∈ Θ}, we are interested in its
approximation ability to functions of the form Opt (Q∗(x), b). More specifically, we define the loss

`φ,θ(x, b) := ‖Algkφ (Qθ(x), b)− Opt(Q∗(x), b)‖2, (10)

and measure the approximation ability by infφ∈Φ,θ∈Θ supQ∗∈Q∗ P`φ,θ, where Q∗ := {X 7→ Sd×dµ,L }
and P`φ,θ = Ex,b[`φ,θ(x, b)]. Intuitively, using a faster converging algorithm, the model Algkφ could
represent the reasoning-task structure, Opt, better and improve the overall approximation ability.
Indeed we can prove the following lemma confirming this intuition.

Lemma 4.1. (Faster Convergence⇒ Better Approximation Ability). Assume the problem setting
in Sec 2. The approximation ability can be bounded by two terms:

inf
φ∈Φ,θ∈Θ

sup
Q∗∈Q∗

P`φ,θ ≤ σbµ−2 inf
θ∈Θ

sup
Q∗∈Q∗

P‖Qθ −Q∗‖F︸ ︷︷ ︸
approximation ability of the neural module

+M inf
φ∈Φ

Cvg(k, φ)︸ ︷︷ ︸
best convergence

. (11)

With Lemma 4.1, we conclude that: A faster converging algorithm can define a model with better ap-
proximation ability. For example, for a fixed k and Qθ, NAG converges faster than GD, so NAGkφ can
approximate Opt more accurately than GDkφ, which is experimentally validated in Sec 7.

Similarly, we can also reverse the reasoning, and ask the question that, given two hydrid architectures
with the same approximation error, which architecture has a smaller error in representing the energy
function Q∗? We show that this error is also intimately related to the convergence of the algorithm.

Lemma 4.2. (Faster Convergence⇒ Better Representation of Q∗). Assume the problem setting
in Sec 2. Then ∀φ ∈ Φ, θ ∈ Θ, Q∗ ∈ Q∗ it holds true that

P‖Qθ −Q∗‖2F ≤ σ−2
b L4(

√
P`2φ,θ +M · Cvg(k, φ))2. (12)

Lemma 4.2 highlights the benefit of using an algorithmic layer that aligns with the reasoning-task
structure. Here the task structure is represented by Opt, the minimizer, and convergence measures how
well Algkφ is aligned with Opt. Lemma 4.2 essentially indicates that if the structure of a reasoning
module can better align with the task structure, then it can better constrain the search space of the
underlying neural module Qθ, making it easier to learn, and further lead to better sample complexity,
which we will explain more in the next section.

As a concrete example for Lemma 4.2, if GDkφ (Qθ, ·) and NAGkφ (Qθ, ·) achieve the same accuracy for
approximating Opt (Q∗, ·), then the neural module Qθ in NAGkφ (Qθ, ·) will have a better accuracy
for approximating Q∗ than Qθ in GDkφ (Qθ, ·). In other words, a faster converging algorithm imposes
more constraints on the energy function Qθ, making it approach Q∗ faster.

5

5 Generalization Ability

How will algorithm properties affect the generalization ability of deep architectures with reasoning
layers? We theoretically showed that the generalization bound is determined by both the algorithm
properties and the complexity of the neural module. Moreover, it induces interesting implications -
when the neural module is over- or under- parameterized, the generalization bound is dominated by
algorithm stability; but when the neural module has an about-right parameterization, the bound is
dominated by the product of algorithm stability and convergence.

More specifically, we will analyze generalization gap between the expected loss and empirical loss,

P`φ,θ = Ex,b`φ,θ(x, b) and Pn`φ,θ = 1
n

∑n
i=1`φ,θ(xi, bi), respectively, (13)

where Pn is the empirical probability measure induced by the samples Sn. Let `F := {`φ,θ : φ ∈
Φ, θ ∈ Θ} be the function space of losses of the models. The generalization gap, P`φ,θ − Pn`φ,θ,
can be bounded by the Rademacher complexity, ERn`F , which is defined as the expectation of the
empirical Rademacher complexity,Rn`F := Eσ supφ∈Φ,θ∈Θ

1
n

∑n
i=1 σi`φ,θ(xi, bi),where {σi}ni=1

are n independent Rademacher random variables uniformly distributed over {±1}. Generalization
bounds derived from Rademacher complexity have been studied in many works [48, 49, 50, 51].

However, deriving the Rademacher complexity of `F is highly nontrivial in our case, and we are not
aware of prior bounds for deep learning models with reasoning layers. Aiming at bridging the relation
between algorithm properties and generalization ability that can explain experimental observations,
we find that standard Rademacher complexity analysis is insufficient. The shortcoming of the standard
Rademacher complexity is that it provides global estimates of the complexity of the model space,
which ignores the fact that the training process will likely pick models with small errors. Taking this
factor into account, we resort to more refined analysis using local Rademacher complexity [13, 16, 17].
Remarkably, we found that the bounds derived via global and local Rademacher complexity will lead
to different conclusions about the effects of algorithm layers. That is, an algorithm that converges
faster could lead to a model space that has a larger global Rademacher complexity but a smaller
local Rademacher complexity. Also, the global Rademacher complexity is dominated by algorithmic
stability. However, in the local counterpart, there is a trade-off term between stability and convergence,
which aligns better with the experimental observations.

Main Result. More specifically, the local Rademacher complexity of `F at level r is defined as

ERn`locF (r) where `locF (r) := {`φ,θ : φ ∈ Φ, θ ∈ Θ, P `2φ,θ ≤ r}. (14)

This notion is less general than the one defined in [16, 17] but is sufficient for our purpose. Here
we also define a loss function space `Q := {‖Qθ −Q∗‖F : θ ∈ Θ} for the neural module Qθ, and
introduce its local Rademacher complexity ERn`locQ (rq), where `locQ (rq) =

{
‖Qθ − Q∗‖F ∈ `Q :

P‖Qθ −Q∗‖2F ≤ rq
}

. With these definitions, we can show that the local Rademacher complexity of
the hybrid architecture is explicitly related to all considered algorithm properties, namely convergence,
stability and sensitivity, and there is an intricate trade-off.

Theorem 5.1. Assume the problem setting in Sec 2. Then we have for any t > 0 that

ERn`locF (r) ≤
√

2dn−
1
2 Stab(k)

(√
(Cvg(k)M +

√
r)2C1(n) + C2(n, t) + C3(n, t) + 4

)
(15)

+ Sens(k)BΦ, (16)

where Stab(k) = supφ Stab(k, φ) and Cvg(k) = supφ Cvg(k, φ) are worst-case stability and

convergence, BΦ = 1
2 supφ,φ′∈Φ ‖φ− φ′‖2, C1(n) = O(logN(n)), C3(n, t) = O(logN(n)√

n
+

√
logN(n)

et),

C2(n, t) = O(t logN(n)
n + (C3(n, t) + 1) logN(n)√

n
), and N(n) = N (1√

n
, `Q, L∞) is the covering number

of `Q with radius 1√
n

and L∞ norm.

Proof Sketch. We will explain the key steps here, and the full proof details are deferred to Appendix C.
The essence of the proof is to find the relation between Rn`locF (r) and Rn`locQ (rq), and also the
relation between the local level r and rq. Then the analysis of the local Rademachar complexity of
the end-to-end model Algkφ(Qθ, ·) can be reduced to that of the neural module Qθ.

6

More specifically, we first show that the loss `φ,θ is Stab(k)-Lipschitz in Qθ and Sens(k)-Lipschitz
in φ. By the triangle inequality and algorithm properties, we can bound the sensitivity of the loss by

|`φ,θ(x)− `φ′,θ′(x)| ≤ Stab(k)‖Qθ(x)−Qθ′(x)‖2 + Sens(k)‖φ− φ′‖2. (17)

Second, by leveraging vector-contraction inequality for Rademacher complexity of vector-valued
hypothesis [21, 22] and our previous observations in Lemma 4.2, we can turn the sensitivity bound
on the loss function in Eq. 17 to a local Rademacher complexity bound

Rn`
loc
F (r) ≤

√
2d Stab(k)Rn`

loc
Q (rq) + Sens(k)BΦ with rq = σ−2

b L4(
√
r +MCvg(k))2. (18)

Therefore, bounding the local Rademacher complexity of `locF at level r resorts to bounding that of
`locQ at level rq . This inequality has already revealed the role of stability, convergence, and sensitivity
in bounding local Rademacher complexity, and is the key step in the proof.

Third, based on an extension of Talagrand’s inequality for empirical processes [52, 16], we can
bound the empirical error Pn‖Qθ −Q∗‖2F using rq and some other terms with high probability. Then
Rn`

loc
Q (rq) can be bounded using the covering number of `Q via the classical Dudley entropy integral

[53], where the upper integration bound is given by the upper bound of Pn‖Qθ −Q∗‖2F .

Trade-offs between convergence, stability and sensitivity. Generally speaking, the convergence
rate Cvg(k) and sensitivity Sens(k) have similar behavior, but Stab(k) behaves opposite to them;
see illustrations in Fig 2. Therefore, the way these three quantities interact in Theorem 5.1 suggests
that in different regimes one may see different generalization behavior. More specially, depending
on the parameterization of Qθ, the coefficients C1, C2, and C3 in Eq. 15 may have different scale,
making the local Rademacher complexity bound dominated by different algorithm properties. Since
the coefficients Ci are monotonely increasing in the covering number of `Q, we expect that:

(i) When Qθ is over-parameterized, the covering number of `Q becomes large, as do the three
coefficients. Large Ci will reduce the effect of Cvg(k) and make Eq. 15 dominated by Stab(k);

(ii) When Qθ is under-parameterized, the three coefficients get small, but they still reduce the effect
of Cvg(k) given the constant 4 in Eq. 15, again making it dominated by Stab(k);

(iii) When the parametrization of Qθ is about-right, we can expect Cvg(k) to play a critical role in
Eq. 15, which will then behave similar to the product Stab(k)Cvg(k), as illustrated schematically in
Fig 2. We experimentally validate these implications in Sec 7.

k

Cvg(k) or Sens(k)
GD
NAG

k

Stab(k)
GD
NAG

k

Cvg(k) * Stab(k)
GD
NAG

Figure 2: Overall trend of algorithm properties.

Trade-off of the depth. Combining the above
implications with the approximation ability anal-
ysis in Sec 4, we can see that in the above-
mentioned cases (i) and (ii), deeper algorithm
layers will lead to better approximation accuracy
but worse generalization. Only in the ideal case
(iii), a deeper reasoning module can induce both better representation and generalization abilities.
This result provides practical guidelines for some recently proposed infinite-depth models [54, 55].

Standard Rademacher complexity analysis. If we consider the standard Rademacher complexity
and directly bound it by the covering number of `F via Dudley’s entropy integral in the way some
existing generalization bounds of deep learning are derived [13, 14, 15], we will get the following
upper bound for the covering number, where Cvg(k) does not play a role:

N (ε, `F , L2(Pn)) ≤ N (ε/ (2Stab(k)) ,Q, L2(Pn)) · N (ε/ (2Sens(k)) ,Φ, ‖ · ‖2). (19)

Since Φ only contains the hyperparameters in the algorithm and Q := {Qθ, θ ∈ Θ} is often highly
expressive, typically stability will dominate this bound. Or, consider the case when algorithm layers
are fixed so Φ only contains one element. Then this covering number is determined by stability, which
infers that NAGk1(Qθ, ·) has a larger Rademacher complexity than GDk1(Qθ, ·) since it is less stable.
However, in the local Rademacher complexity bound in Theorem 5.1, even if Sens(k) in Eq. 16
is ignored, there is still a trade-off between convergence and stability which implies NAGk1(Qθ, ·)
can have a smaller local Rademacher complexity than GDk1(Qθ, ·), leading to a different conclusion.
Our experiments show the local Rademacher complexity bound is better for explaining the actual
observations.

7

6 Pros and Cons of RNN as a Reasoning Layer
It has been shown that RNN (or GNN) can represent reasoning and iterative algorithms over struc-
tures [19, 15]. Can our analysis framework also be used to understand RNN (or GNN)? How will its
behavior compare with more interpretable algorithm layers such as GDkφ and NAGkφ? In the case of
RNN, the algorithm update steps in each iteration are given by an RNN cell

yk+1 ← RNNcell (Q, b,yk) := V σ
(
WLσ

(
WL−1 · · ·W 2σ

(
W 1

1 yt +W 1
2 gt
)))

. (20)
where the activation function σ = ReLU takes yk and the gradient gt = Qyt + b as inputs. Then
a recurrent neural network RNNkφ having k unrolled RNN cells can be viewed as a neural algorithm.
The algorithm properties of RNNkφ are summarized in Table 2. Assume φ = {V,W 1

1 ,W
1
2 ,W

2:L} is
in a stable region with cφ := supQ‖V ‖2‖W 1

1 +W 1
2Q‖2

∏L
l=2 ‖W l‖2 < 1, so that the operations in

RNNcell are strictly contractive, i.e., ‖yk+1 − yk‖2 < ‖yk − yk−1‖2. In this case, the stability and
sensitivity of RNNkφ are guaranteed to be bounded.

Table 2: Properties of RNNkφ. (Details
are given in Appendix D.)

Stable region Φ cφ < 1
Stab(k, φ) O(1− ckφ)

Sens(k) O(1− (infφ cφ)k)
minφ Cvg(k, φ) O(ρk) with ρ < 1

However, the fundamental disadvantage of RNN is its lack of
worst-case guarantee for convergence. In general the outputs
of RNNkφ may not converge to the minimizer Opt, meaning that
its worst-case convergence rate can be much larger than 1. This
will lead to worse generalization bound according to our theory
compared to GDkφ and NAGkφ.

The advantage of RNN is its expressiveness, especially given the universal approximation ability of
MLP in the RNNcell. One can show that RNNkφ can express GDkφ or NAGkφ with suitable choices of φ.
Therefore, its best-case convergence can be as small as O(ρk) for some ρ < 1. When the needed
types of reasoning is unknown or beyond what existing algorithms are capable of, RNN has the
potential to learn new reasoning types given sufficient data.

7 Experimental Validation

Our experiments aim to validate our theoretical prediction with computational simulations, rather
than obtaining state-of-the-art results. We hope the theory together with these experiments can lead
to practical guidelines for designing deep architectures with reasoning layers. We conduct two sets of
experiments, where the first set of experiments strictly follows the problem setting described in Sec 2
and the second is conducted on BSD500 dataset [56] to demonstrate the possibility of generalizing
the theorem to more realistic applications. Implementations in Python are released1.

7.1 Synthetic Experiments

The experiments follow the problem setting in Sec 2. We sample 10000 pairs of (x, b) uniformly as
overall dataset. During training, n samples are randomly drawn from these 10000 data points as the
training set. Each Q∗(x) is produced by a rotation matrix and a vector of eigenvalues parameterized
by a randomly fixed 2-layer dense neural network with hidden dimension 3. Then the labels are
generated according to y = Opt(Q∗(x), b). We train the model Algkφ(Qθ, ·) on Sn using the loss in
Eq. 10. Here, Qθ has the same overall architecture as Q∗ but the hidden dimension could vary. Note
that in all figures, each k corresponds to an independently trained model with k iterations in the
algorithm layer, instead of the sequential outputs of a single model. Each model is trained by ADAM
and SGD with learning rate grid-searched from [1e-2,5e-3,1e-3,5e-4,1e-4], and only the best result is
reported. Furthermore, error bars are produced by 20 independent instantiations of the experiments.
See Appendix E for more details.

0 5 10 15 20 25 30
k

0

10

20

30

em
pi

ric
al

 e
rro

r

dim=16
GD
NAG

Figure 3

Approximation ability. To validate Lemma 4.1, we compare GDkφ (Qθ, ·) and
NAGkφ (Qθ, ·) in terms of approximation accuracy. For various hidden sizes of
Qθ, the results are similar, so we report one representative case in Fig 3. The
approximation accuracy aligns with the convergence of the algorithms, showing
that faster converging algorithm can induce better approximation ability.

Faster convergence⇒better Qθ. We report the error of the neural module Qθ in Fig 4. Note that
Algkφ(Qθ, ·) is trained end-to-end, without supervision on Qθ. In Fig 4, the error of Qθ decreases as

1https://github.com/xinshi-chen/Deep-Architecture-With-Reasoning-Layer

8

k grows, in a rate similar to algorithm convergence. This validates the implication of Lemma 4.2 that,
when Algkφ is closer to Opt, it can help the underlying neural module Qθ to get closer to Q∗.

0 5 10 15 20 25 30
k

0.0

0.1

0.2

0.3

0.4
P|
Q
−
Q

* |
2 F

dim=16
GD
NAG

0 5 10 15 20 25 30
k

0.1

0.2

0.3

0.4

P|
Q
−
Q

* |
2 F

dim=32
GD
NAG

Figure 4: P‖Qθ −Q∗‖2F

0 5 10 15 20 25 30
k

0.0

0.5

1.0

ge
ne

ra
liz

at
io

n
ga

p dim=0
GD
NAG

0 5 10 15 20 25 30
k

0.0

0.5

1.0

1.5

2.0

ge
ne

ra
liz

at
io

n
ga

p dim=16
GD
NAG

0 5 10 15 20 25 30
k

0

1

2

3

ge
ne

ra
liz

at
io

n
ga

p dim=32
GD
NAG

Figure 5: Generalization gap

5 10 15 20
k

0

2

4

6

8

tra
in

in
g

er
ro

r GD
NAG
RNN

5 10 15 20
k

0

10

20

30

40

ge
ne

ra
liz

at
io

n
ga

p

GD
NAG
RNN

Figure 6: Algorithm layers vs RNN.

Generalization gap. In Fig 5, we report the generaliza-
tion gaps, with hidden sizes of Qθ being 0, 16, and 32,
which corresponds to the three cases (ii), (iii), and (i) dis-
cussed under Theorem 5.1, respectively. Comparing Fig 5
to Fig 2, we can see that the experimental results match
very well with the theoretical implications.

RNN. As discussed in Sec 6, RNN can be viewed as neural algorithms. To have a cleaner comparison,
we report their behaviors under the ‘learning to optimize’ senario where the objectives (Q, b) are
given. Fig 6 shows that RNN has a better representation power but worse generalization ability.

7.2 Experiments on Real Dataset

(a) original image

(b) noisy image

(c) denoised by
GD12
φ (Eθ(X, ·))

To show the real world applicability of our theoretical framework, we consider
the local adaptive image denoising task. Details are given below.

Dataset. We split BSD500 (400 images) into a training set (100 images)
and a test set (300 images). Gaussian noises are added to each pixel with
noise levels depending on image local smoothness, making the noise levels on
edges lower than non-edge regions. The task is to restore the original image
from the noisy version X ∈ [0, 1]180×180.

Architecture. In Algkφ (Eθ(X, ·)), Algkφ is a k-step unrolled minimiza-
tion algorithm to the `2-regularized reconstruction objective Eθ(X,Y) :=
1
2‖Y + gθ(X)−X‖2F + 1

2

∑
i,j |[fθ(X)]i,jYi,j |2, and the residual gθ(X)

and position-wise regularization coefficient fθ(X) are both DnCNN networks
as in [57]. The optimization objective, Eθ(X,Y), is quadratic in Y .

Generalization gap. We instantiate the hybrid architecture into different
models using GD and NAG algorithms with different unrolled steps k. Each
model is trained with 3000 epochs, and the generalization gaps are reported
in Fig. 7. The results also show good consistency with our theory, where
stabler algorithm (GD) can generalize better given over/under-parameterized
neural module, and for the about-right parameterization case, the generalization gap behaviors are
similar to Stab(k) ∗ Cvg(k).

0 5 10 15 20 25 30
k

0.062

0.064

0.066

ge
ne

ra
liz

at
io

n
ga

p dim=20-2-3-2

GD
NAG

0 5 10 15 20 25 30
k

0.064

0.066

0.068

ge
ne

ra
liz

at
io

n
ga

p dim=3-2-3-2
GD
NAG

0 5 10 15 20 25 30
k

0.060

0.062

0.064

0.066

0.068

ge
ne

ra
liz

at
io

n
ga

p dim=3-2-0-0
GD
NAG

Figure 7: Generalization gap. Each k corre-
sponds to a separately trained model. Left (under-
parameterized): fθ is a DnCNN with 3 channels and
2 hidden layers and gθ = 0. Middle (about-right):
both fθ and gθ have 3 channels and 2 hidden layers.
Right (over-parameterized): fθ has 20 channels.

Visualization. To show that the learned hybrid
model has a good performance in this real appli-
cation, we include a visualization of the original,
noisy, and denoised images.

8 Conclusion and Discussion
In this paper, we take an initial step towards the
theoretical understanding of deep architectures with
reasoning layers. Our theorem indicates intriguing relation between algorithm properties of the
reasoning module and the approximation and generalization of the end-to-end model, which in turn
provides practical guideline for designing reasoning layers. The current analysis is limited due to the
simplified problem setting. However, assumptions we made are only for avoiding the non-uniqueness
of the reasoning solution and the instability of the mapping from the reasoning solution to the neural
module. The assumptions could be relaxed if we can involve other techniques to resolve these issues.
These additional efforts could potentially generalize the results to more complex cases.

9

Broader Impact

A common ethical concern of deep learning models is that they may not perform well on unseen
examples, which could lead to the risk of producing biased content reflective of the training data.
Our work, which learns an energy optimization model from the data, is not an exception. The
approach we adopt to address this issue is to design hybrid deep architectures containing specialized
reasoning modules. In the setting of quadratic energy functions, our theoretical analysis and numerical
experiments show that hybrid deep models produce more reliable results than generic deep models on
unseen data sets. More work is needed to determine the extent to which such hybrid model prevents
biased outputs in more sophisticated tasks

Acknowledgement

We would like to thank Professor Vladimir Koltchinskii for providing valuable suggestions and thank
anonymous reviewers for providing constructive feedbacks. This work is supported in part by NSF
grants CDS&E-1900017 D3SC, CCF-1836936 FMitF, IIS-1841351, CAREER IIS-1350983 to L.S.

References
[1] Po-Wei Wang, Priya Donti, Bryan Wilder, and Zico Kolter. Satnet: Bridging deep learning and

logical reasoning using a differentiable satisfiability solver. In International Conference on
Machine Learning, pages 6545–6554, 2019.

[2] Xinshi Chen, Yu Li, Ramzan Umarov, Xin Gao, and Le Song. Rna secondary structure prediction
by learning unrolled algorithms. arXiv preprint arXiv:2002.05810, 2020.

[3] Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable sorting using optimal
transport: The sinkhorn cdf and quantile operator. arXiv preprint arXiv:1905.11885, 2019.

[4] Harsh Shrivastava, Xinshi Chen, Binghong Chen, Guanghui Lan, Srinivas Aluru, Han Liu, and
Le Song. GLAD: Learning sparse graph recovery. In International Conference on Learning
Representations, 2020.

[5] Y Yang, J Sun, H Li, and Z Xu. Admm-net: A deep learning approach for compressive sensing
mri. corr. arXiv preprint arXiv:1705.06869, 2017.

[6] John Ingraham, Adam Riesselman, Chris Sander, and Debora Marks. Learning protein structure
with a differentiable simulator. In International Conference on Learning Representations, 2019.

[7] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Deepproblog: Neural probabilistic logic programming. In Advances in Neural
Information Processing Systems, pages 3749–3759, 2018.

[8] Arthur Mensch and Mathieu Blondel. Differentiable dynamic programming for structured
prediction and attention. In 35th International Conference on Machine Learning, volume 80,
2018.

[9] Bryan Wilder, Eric Ewing, Bistra Dilkina, and Milind Tambe. End to end learning and
optimization on graphs. In Advances in Neural Information Processing Systems, pages 4674–
4685, 2019.

[10] Justin Domke. Parameter learning with truncated message-passing. In CVPR 2011, pages
2937–2943. IEEE, 2011.

[11] Despoina Paschalidou, Osman Ulusoy, Carolin Schmitt, Luc Van Gool, and Andreas Geiger.
Raynet: Learning volumetric 3d reconstruction with ray potentials. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3897–3906, 2018.

[12] Wei Wang, Zheng Dang, Yinlin Hu, Pascal Fua, and Mathieu Salzmann. Backpropagation-
friendly eigendecomposition. In Advances in Neural Information Processing Systems, pages
3156–3164, 2019.

[13] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds
for neural networks. In Advances in Neural Information Processing Systems, pages 6240–6249,
2017.

10

[14] Minshuo Chen, Xingguo Li, and Tuo Zhao. On generalization bounds of a family of recurrent
neural networks. arXiv preprint arXiv:1910.12947, 2019.

[15] Vikas K Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and representational
limits of graph neural networks. arXiv preprint arXiv:2002.06157, 2020.

[16] Peter L Bartlett, Olivier Bousquet, Shahar Mendelson, et al. Local rademacher complexities.
The Annals of Statistics, 33(4):1497–1537, 2005.

[17] Vladimir Koltchinskii et al. Local rademacher complexities and oracle inequalities in risk
minimization. The Annals of Statistics, 34(6):2593–2656, 2006.

[18] Yuansi Chen, Chi Jin, and Bin Yu. Stability and convergence trade-off of iterative optimization
algorithms. arXiv preprint arXiv:1804.01619, 2018.

[19] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom
Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by
gradient descent. In Advances in Neural Information Processing Systems, pages 3981–3989,
2016.

[20] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.
Springer Science & Business Media, 2013.

[21] Andreas Maurer. A vector-contraction inequality for rademacher complexities. In International
Conference on Algorithmic Learning Theory, pages 3–17. Springer, 2016.

[22] Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang. Structured prediction theory
based on factor graph complexity. In Advances in Neural Information Processing Systems,
pages 2514–2522, 2016.

[23] Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of machine learning
research, 2(Mar):499–526, 2002.

[24] Shivani Agarwal and Partha Niyogi. Generalization bounds for ranking algorithms via algorith-
mic stability. Journal of Machine Learning Research, 10(Feb):441–474, 2009.

[25] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. arXiv preprint arXiv:1509.01240, 2015.

[26] Omar Rivasplata, Emilio Parrado-Hernández, John S Shawe-Taylor, Shiliang Sun, and Csaba
Szepesvári. Pac-bayes bounds for stable algorithms with instance-dependent priors. In Advances
in Neural Information Processing Systems, pages 9214–9224, 2018.

[27] Saurabh Verma and Zhi-Li Zhang. Stability and generalization of graph convolutional neural
networks. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1539–1548, 2019.

[28] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1126–1135. JMLR. org, 2017.

[29] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with
implicit gradients. In Advances in Neural Information Processing Systems, pages 113–124,
2019.

[30] David Belanger, Bishan Yang, and Andrew McCallum. End-to-end learning for structured
prediction energy networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 429–439. JMLR. org, 2017.

[31] Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in
stochastic optimization. In Advances in Neural Information Processing Systems, pages 5484–
5494, 2017.

[32] Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural
networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 136–145. JMLR. org, 2017.

[33] Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek.
Differentiation of blackbox combinatorial solvers. In International Conference on Learning
Representations, 2019.

11

[34] Michal Rolínek, Paul Swoboda, Dominik Zietlow, Anselm Paulus, Vít Musil, and Georg Martius.
Deep graph matching via blackbox differentiation of combinatorial solvers. arXiv preprint
arXiv:2003.11657, 2020.

[35] Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable perturbed optimizers. arXiv preprint arXiv:2002.08676,
2020.

[36] Xiaohan Chen, Jialin Liu, Zhangyang Wang, and Wotao Yin. Theoretical linear convergence
of unfolded ista and its practical weights and thresholds. In Advances in Neural Information
Processing Systems, pages 9061–9071, 2018.

[37] Aaron Ferber, Bryan Wilder, Bistra Dilkina, and Milind Tambe. Mipaal: Mixed integer program
as a layer. In AAAI, pages 1504–1511, 2020.

[38] Patrick Knobelreiter, Christian Reinbacher, Alexander Shekhovtsov, and Thomas Pock. End-to-
end training of hybrid cnn-crf models for stereo. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2339–2348, 2017.

[39] Vlad Niculae, Andre Martins, Mathieu Blondel, and Claire Cardie. Sparsemap: Differentiable
sparse structured inference. In International Conference on Machine Learning, pages 3799–
3808, 2018.

[40] Matthew MacKay, Paul Vicol, Jon Lorraine, David Duvenaud, and Roger Grosse. Self-tuning
networks: Bilevel optimization of hyperparameters using structured best-response functions.
arXiv preprint arXiv:1903.03088, 2019.

[41] Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-
propagation for bilevel optimization. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 1723–1732. PMLR, 2019.

[42] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimilano Pontil.
Bilevel programming for hyperparameter optimization and meta-learning. arXiv preprint
arXiv:1806.04910, 2018.

[43] Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. Learning-to-learn
stochastic gradient descent with biased regularization. In International Conference on Machine
Learning, pages 1566–1575, 2019.

[44] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp minima.
arXiv preprint arXiv:1609.04836, 2016.

[45] Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization in deep learning.
arXiv preprint arXiv:1710.05468, 2017.

[46] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring
generalization in deep learning. In Advances in Neural Information Processing Systems, pages
5947–5956, 2017.

[47] Behnam Neyshabur, Srinadh Bhojanapalli, and Nathan Srebro. A PAC-bayesian approach to
spectrally-normalized margin bounds for neural networks. In International Conference on
Learning Representations, 2018.

[48] Vladimir Koltchinskii and Dmitriy Panchenko. Rademacher processes and bounding the risk of
function learning. In High dimensional probability II, pages 443–457. Springer, 2000.

[49] Vladimir Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Transac-
tions on Information Theory, 47(5):1902–1914, 2001.

[50] Vladimir Koltchinskii, Dmitry Panchenko, et al. Empirical margin distributions and bounding
the generalization error of combined classifiers. The Annals of Statistics, 30(1):1–50, 2002.

[51] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds
and structural results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

[52] Michel Talagrand. Sharper bounds for gaussian and empirical processes. The Annals of
Probability, pages 28–76, 1994.

[53] Richard M Dudley. Uniform central limit theorems, volume 142. Cambridge university press,
2014.

12

[54] Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In Advances in
Neural Information Processing Systems, pages 688–699, 2019.

[55] Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, and Armin Askari. Implicit deep learning.
arXiv preprint arXiv:1908.06315, 2019.

[56] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection
and hierarchical image segmentation. IEEE transactions on pattern analysis and machine
intelligence, 33(5):898–916, 2010.

[57] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a gaussian
denoiser: Residual learning of deep cnn for image denoising. IEEE Transactions on Image
Processing, 26(7):3142–3155, 2017.

13

	Introduction
	Setting: Optimization Algorithms as Reasoning Modules
	Properties of Algorithms
	Approximation Ability
	Generalization Ability
	Pros and Cons of RNN as a Reasoning Layer
	Experimental Validation
	Synthetic Experiments
	Experiments on Real Dataset

	Conclusion and Discussion

