
A Weaknesses of Mean Smoothing1

In contrast to classification networks, where each output head encodes a function f : R −→ [0, 1], the2

output of regression networks may vary over a larger range of values, e.g., between some lower and3

upper bounds l and u. If we directly apply the same techniques for certifying classification output,4

based on bounding the gap between the highest and second-highest class probabilities, the resulting5

bounds on regression can be rather loose. To better articulate this claim, we derived the following6

result following the work in [1], as we recall from the main paper.7

Corollary 1. [1] For any f : Rd −→ [l, u], the map η(x) = σ ·Φ−1( g(x)−lu−l ) is 1-Lipschitz, implying8

l + (u− l) · Φ
(
η(x)− ‖δ‖2

σ

)
≤ g(x+ δ) ≤ l + (u− l) · Φ

(
η(x) + ‖δ‖2

σ

)
(1)

In light of the statement above, we make the following remarks.9

Location dependence. Since Φ−1 is flatter around 0.5 and steeper as it gets closer to 0 or 1, the10

non-linear Lipschitz bound in Corollary 1 is tightest when g(x) is closer to u or l and loosest when11

g(x) = u−l
2 . In the context of bounding-box regression, the coordinate-wise bound for the bounding12

box would be tighter when the sides of the bounding box are closer to the edges of the image, but13

looser when the sides are closer to the middle of the image. This strong bias in the tightness of the14

bound depending on the location of the box weakens the resulting worst-case bounds and makes the15

system more vulnerable to attacks targeting the middle portion of the output range.16

Skewness. The mean-smoothed certificate is less sensitive to the shape of the distribution of17

f(x + G). Intuitively, we would hope that the bound should be tighter for a more concentrated18

distribution compared to one that is more uniform. For example, the distribution could be significantly19

concentrated around a certain value in the support, but the mean-smoothed certificate only uses the20

expectation E[f(x+G)], which can be skewed by long tails and outliers.21

Figure 1: Smoothing two functions with G ∼ N(0, 0.52): discrete (top) and continuous (bottom).

Blurring. When the base function f outputs discrete values, its median smoothing will also stay22

discrete, whereas mean smoothing would be continuous; see the first row of Figure 1. Moreover, when23

the base function is continuous, median smoothing tends to be more similar to the original function;24

see the second row of Figure 1 where mean-smoothed outputs are attracted to 1, e.g., overestimating25

f(2) and underestimating f(3) in contrast to median smoothing which is more concentrated in the26

neighborhood of each input.27
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B Proof of Lemma 2 - Adversarial Bounds for Percentile Smoothing28

Recall the definition of percentile smoothing as follows. Given a base function f : Rd −→ R, with29

G ∼ N(0, σ2I), we defined the percentile smoothing of f as30

hp(x) = sup{y ∈ R | P[f(x+G) ≤ y] ≤ p} (2)

hp(x) = inf{y ∈ R | P[f(x+G) ≤ y] ≥ p} (3)

where we use hp for convenience when the distinction is irrelevant.31

In this appendix, we derive a bound on the variation in the percentile-smoothed function hp when the32

input is corrupted by an adversarial perturbation δ of bounded `2-norm. We do so by proving the33

following statement, which we recall from the main paper.34

Lemma 2. A percentile-smoothed function hp with adversarial perturbation δ can be bounded as35

hp(x) ≤ hp(x+ δ) ≤ hp(x) ∀ ‖δ‖2 < ε, (4)

where p := Φ
(
Φ−1(p)− ε

σ

)
and p := Φ

(
Φ−1(p) + ε

σ

)
, with Φ being the standard Gaussian CDF.36

Proof. Consider the event f(x + G) ≤ hp(x), where G ∼ N(0, σ2I), and let 1f(x+G)≤hp(x)
be37

the corresponding indicator function. We can treat the expectation of the indicator as a function of38

x, which we denote by E(x) = E[1f(x+G)≤hp(x)
], and we have that E : Rd → [0, 1]. Hence, the39

mapping x 7→ σ · Φ−1(E(x)) is 1-Lipschitz by Corollary 1 [1]. Noting that E(x) = P[f(x+G) ≤40

hp(x)], we also have that41

x 7→ σ · Φ−1(P[f(x+G) ≤ hp(x)])

is 1-Lipschitz. It follows that under the perturbation by δ, we have42

σ · Φ−1(P[f(x+ δ +G) ≤ hp(x)]) ≥ σ · Φ−1(P[f(x+G) ≤ hp(x)])− ‖δ‖2.

Rearranging, we get that43

Φ−1(P[f(x+ δ +G) ≤ hp(x)]) ≥ Φ−1(P[f(x+G) ≤ hp(x)])− ‖δ‖2
σ

≥ Φ−1(P[f(x+G) ≤ hp(x)])− ε

σ
(‖δ‖2 ≤ ε)

= Φ−1(p)− ε

σ

(
By the definition of hp(x)

)
= Φ−1(p) (By the definition of p)

By the monotonicity of Φ, we get that44

P[f(x+ δ +G) ≤ hp(x)] ≥ p

Recalling that hp(x+ δ) = inf{y ∈ R | P[f(x+ δ +G) ≤ y] ≥ p}, we get that45

hp(x+ δ) ≤ hp(x). (5)

Similarly, it can be shown that for all ‖δ‖2 < ε, we have46

hp(x) ≤ hp(x+ δ). (6)

Combining the two bounds, and recalling the convenience notation of hp, the proof follows.47
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C Certified Precision and Recall for Varying `2-Norm Bounds48

To examine how the performance of our certified detector degrades as the adversary becomes stronger,49

we consider perturbations for larger values of ε. As in the experiments reported in the main paper, we50

use the first 500 images of the MS-COCO dataset for testing on a pretrained YOLOv3 detector with51

an objectness threshold of 0.8 and an IoU threshold of 0.4. As in the main paper, we used an IoU52

threshold τ = 0.5 for certification.53

Table 1 below shows the certified precision and recall for ‖δ‖2 ≤ ε, for varying values of ε compared54

to the setting ε = 0.36 we used in the main paper. For the purposes of this comparison, we used55

location sorting with location and label binning. Note that the non-certified clean precision and recall56

obtained for this setup are 89.30% and 16.07%, respectively.57

ε Certified Precision Certified Recall
0.10 63.13% 13.46%
0.25 41.39% 10.79%
0.36 28.86% 9.10%
0.50 15.82% 6.78%

Table 1: Certified precision and recall for different bounds on the perturbation ‖δ‖2 ≤ ε.

Note that the certified precision drops much faster because the maximum number of possible58

predictions increases quite quickly as ε becomes larger.59
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D Detailed Precision-Recall Curve for AP calculation60

Conf. Thresh. Sorting Binning Denoise Precision Recall Certified
Precision

Certified
Recall

0.8 Objectness None No 50.27% 8.01% 8.08% 2.30%
0.6 Objectness None No 38.72% 9.74% 6.17% 2.60%
0.4 Objectness None No 28.75% 10.76% 4.50% 2.69%
0.2 Objectness None No 18.24% 11.68% 2.79% 2.70%
0.1 Objectness None No 11.28% 11.94% 1.74% 2.71%
0.8 Location None No 53.81% 8.57% 7.70% 2.19%
0.6 Location None No 42.28% 10.64% 4.92% 2.07%
0.4 Location None No 31.51% 11.79% 2.73% 1.63%
0.2 Location None No 18.97% 12.15% 1.09% 1.06%
0.1 Location None No 10.87% 11.51% 0.42% 0.66%
0.8 Objectness Label No 58.40% 8.44% 8.07% 2.85%
0.6 Objectness Label No 47.52% 10.62% 6.29% 3.48%
0.4 Objectness Label No 37.41% 12.25% 4.71% 3.88%
0.2 Objectness Label No 25.65% 14.25% 2.98% 4.17%
0.1 Objectness Label No 17.04% 15.70% 1.93% 4.42%
0.8 Location Label No 61.96% 8.94% 9.27% 3.26%
0.6 Location Label No 51.42% 11.47% 6.88% 3.80%
0.4 Location Label No 41.13% 13.45% 4.56% 3.76%
0.2 Location Label No 28.41% 15.80% 2.43% 3.41%
0.1 Location Label No 18.63% 17.18% 1.26% 2.88%
0.8 Objectness Location No 58.25% 8.76% 10.01% 3.27%
0.6 Objectness Location No 47.74% 11.21% 7.72% 3.95%
0.4 Objectness Location No 38.35% 13.21% 5.75% 4.35%
0.2 Objectness Location No 26.09% 15.44% 3.68% 4.64%
0.1 Objectness Location No 17.18% 17.03% 2.40% 4.85%
0.8 Location Location No 59.44% 8.90% 9.88% 3.23%
0.6 Location Location No 48.24% 11.34% 7.01% 3.58%
0.4 Location Location No 38.87% 13.39% 4.59% 3.47%
0.2 Location Location No 26.20% 15.51% 2.25% 2.84%
0.1 Location Location No 16.90% 16.73% 1.08% 2.18%
0.8 Objectness Location+Label No 63.48% 8.79% 9.26% 3.52%
0.6 Objectness Location+Label No 52.92% 11.21% 7.17% 4.37%
0.4 Objectness Location+Label No 43.96% 13.38% 5.37% 5.00%
0.2 Objectness Location+Label No 31.62% 15.92% 3.42% 5.56%
0.1 Objectness Location+Label No 21.79% 18.07% 2.17% 5.90%
0.8 Location Location+Label No 64.45% 8.91% 9.78% 3.72%
0.6 Location Location+Label No 53.70% 11.40% 7.45% 4.54%
0.4 Location Location+Label No 44.99% 13.68% 5.32% 4.95%
0.2 Location Location+Label No 32.63% 16.46% 2.95% 4.80%
0.1 Location Location+Label No 22.41% 18.59% 1.63% 4.43%
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Conf. Thresh. Sorting Binning Denoise Precision Recall Certified
Precision

Certified
Recall

0.8 Objectness None Yes 75.12% 17.69% 18.51% 6.00%
0.6 Objectness None Yes 67.06% 20.38% 15.44% 6.45%
0.4 Objectness None Yes 58.76% 22.41% 12.71% 6.74%
0.2 Objectness None Yes 46.70% 24.49% 9.50% 6.95%
0.1 Objectness None Yes 35.69% 25.45% 7.05% 7.03%
0.8 Location None Yes 83.85% 19.75% 21.01% 6.80%
0.6 Location None Yes 76.12% 23.12% 16.55% 6.92%
0.4 Location None Yes 66.59% 25.41% 11.91% 6.30%
0.2 Location None Yes 51.92% 27.23% 7.09% 5.19%
0.1 Location None Yes 37.82% 27.00% 3.82% 3.80%
0.8 Objectness Label Yes 84.51% 19.47% 24.08% 8.57%
0.6 Objectness Label Yes 78.25% 23.01% 20.86% 9.89%
0.4 Objectness Label Yes 71.65% 26.19% 17.43% 10.77%
0.2 Objectness Label Yes 60.98% 29.96% 12.94% 11.68%
0.1 Objectness Label Yes 50.17% 32.89% 9.52% 12.34%
0.8 Location Label Yes 90.04% 20.75% 28.72% 10.24%
0.6 Location Label Yes 84.78% 24.96% 24.92% 11.81%
0.4 Location Label Yes 78.38% 28.63% 20.04% 12.38%
0.2 Location Label Yes 67.37% 33.10% 13.49% 12.17%
0.1 Location Label Yes 54.96% 36.03% 8.52% 11.04%
0.8 Objectness Location Yes 87.24% 20.13% 26.65% 9.63%
0.6 Objectness Location Yes 81.75% 24.26% 23.12% 10.98%
0.4 Objectness Location Yes 74.65% 27.61% 19.36% 11.85%
0.2 Objectness Location Yes 63.21% 31.73% 14.58% 12.67%
0.1 Objectness Location Yes 50.83% 34.57% 10.89% 13.21%
0.8 Location Location Yes 89.67% 20.68% 26.83% 9.70%
0.6 Location Location Yes 84.06% 24.95% 22.53% 10.71%
0.4 Location Location Yes 77.28% 28.56% 17.66% 10.81%
0.2 Location Location Yes 65.19% 32.74% 11.67% 10.14%
0.1 Location Location Yes 51.71% 35.17% 7.26% 8.81%
0.8 Objectness Location+Label Yes 90.42% 20.54% 27.73% 10.69%
0.6 Objectness Location+Label Yes 85.47% 24.74% 24.28% 12.49%
0.4 Objectness Location+Label Yes 79.61% 28.47% 20.41% 13.76%
0.2 Objectness Location+Label Yes 69.52% 33.05% 15.15% 15.04%
0.1 Objectness Location+Label Yes 58.13% 36.49% 11.06% 16.04%
0.8 Location Location+Label Yes 91.93% 20.87% 29.73% 11.44%
0.6 Location Location+Label Yes 87.33% 25.30% 25.87% 13.32%
0.4 Location Location+Label Yes 81.72% 29.23% 21.29% 14.36%
0.2 Location Location+Label Yes 71.90% 34.22% 15.11% 15.02%
0.1 Location Location+Label Yes 60.31% 37.85% 10.14% 14.71%
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