
Table 1: Complexity analysis on CIFAR-10 for different expansion rates r. (The original network is the SmallNet with
kernel size 7 used in Section 5 (#Params:150.35K, #MACs: 6.12M, Epoch Time: 4.05s).

r 2 4 8
#Params #MACs Epoch Time #Params #MACs Epoch Time #Params #MACs Epoch Time

FC(Arora18) 339.40K 6.30M 4.09s 675.91K 6.64M 3.94s 1.74M 7.70M 4.02s
ExpandNet-CL 562.95K 25.16M 4.13s 2.17M 98.39M 4.61s 8.58M 389.35M 9.39s
ExpandNet-CK 237.72K 14.38M 4.10s 653.25K 42.64M 4.12s 2.07M 141.10M 5.50s

To R1: Thank you for the positive feedback. We will incorporate your suggestions in the final version.1

Gradient analysis. Following [49], we account for all the layers in each network to analyze the gradient confusion.2

Initialization. The gradients of the initialized ExpandNet before and after contraction are not the same, which indeed3

contributes to their different training behavior. This was studied in [5] for purely linear FC networks, and remains true4

for our new convolutional expansion strategies in non-linear CNNs. We will clarify this.5

Computational overheads and wall-clock training times. The numbers provided in Table 1 above for a SmallNet6

with kernel size 7 show that our expansion strategies can better leverage GPU computation, thus leading to only7

moderate wall-clock time increases as r grows, particularly for our CK strategy. We report additional values for8

MobileNets in Table 2 below and provide a complexity analysis in Section B of the supplementary material.9

Other suggestions: As a rule of thumb, “compact networks” in practice have < 10% of the parameters of conventional10

CNNs. There is indeed a bijection between the original and matrix form of a convolution. The padding/stride schemes11

maintain equivalence between the expanded and compact networks.12

Table 2: Top-1 accuracy (%) of MobileNets vs ExpandNets
with r = 4 on CIFAR-10 and CIFAR-100.

Model #Params #MACs Epoch Time CIFAR-10 CIFAR-100

MobileNet 3.22M 47.18M 13.08s 89.61 (88.87†) 67.93 (68.18†)
ExpandNet-CL 3.94M 101.36M 22.78s 91.79 69.75

MobileNetV2 2.30M 94.60M 24.88s 91.64 (90.85†) 71.66 (71.41†)
ExpandNet-CL 3.12M 207.87M 49.22s 92.58 72.33
† Accuracy with the same training time as ExpandNet-CL.
‡ #Params, #MACs and Epoch Time were evaluated on CIFAR-10 on 2 32G TITAN V100 GPUs.

To R2: Training time. As shown in Table 1 above,13

the training time only moderately increases with r, be-14

cause our models can better exploit the GPU to make15

full use of its capacity, particularly for very small net-16

works. For larger ones, the GPU usage saturates, and17

thus the training time of ExpandNets increases. To18

nonetheless confirm that our better results are not just19

due to longer training, we increased the training time20

of the MobileNets to match that of our ExpandNets-CL.21

This led to the accuracies highlighted in Table 2 with a †, which remain lower than those of our ExpandNets.22

Network pruning. Our work tackles a different problem from network pruning: 1) We aim to train a given compact23

architecture, whereas pruning yields an arbitrary one, which precludes a direct comparison; 2) We show that linear24

over-parameterization is beneficial for network training; 3) Contraction in our work yields no information loss.25

MobileNetV2 on ImageNet. Many people have observed that training MobileNetV2 on ImageNet following the26

experimental setting in [48] does not yield the reported results. In a recent repository1, heavy hyper-parameter tuning27

eventually led to 72.20% accuracy. In this setting, our ExpandNet-CL reaches 73.16%.28

CIFAR baselines. We focused on compact networks, which may not yield SOTA results, such as the SmallNet (∼80%29

on CIFAR-10) taken from [37]. Nonetheless, in Table 2, we report the results of new, stronger baselines – MobileNets30

on the CIFAR datasets. These results, which we will include in the final version, show that stronger baselines still31

benefit from our expansion strategies.32

To R3: Rationale of our method. Over-parameterization is widely acknowledged as beneficial for network training,33

and mathematical explanations have been studied in [1, 2, 5, 16, 50, 62] for linear networks under specific assumptions.34

Here, we contribute novel linear expansion strategies for convolutional networks and confirm the benefits of over-35

parameterization. Note that, as mentioned in Answer 2 to R1, our expansion schemes modify the network gradients,36

thus explaining their different training behavior. Importantly, all other reviewers acknowledge the thoroughness and37

interest of our empirical validation, and argue that our work is significant for the community.38

Backpropagation settings of non-expanded networks. As mentioned to R2, we used the hyper-parameters tuned for39

the non-expanded networks to train both the non-expanded networks and our ExpandNets. Despite this, our ExpandNets40

still reach better solutions. This remains true for our new MobileNetV2 experiments on ImageNet and CIFAR above.41

Felix Wu et al.. Thank you for the reference, which we will discuss. Wu et al. show that non-linearities can be removed42

from the MLP layers of graph convolution networks. Because they collapse multiple FC layers into one, their work is in43

fact closer to [5]. In contrast to our work, they do not remove the non-linearities of the conv layers and collapse them;44

do not introduce expansion strategies for conv layers; and do not study the benefits of linear over-parameterization.45

To R4: Thank you for the positive feedback. As correctly pointed out by R4, our work differs from matrix factorization46

in that, via our expansion strategies, we aim to incorporate over-parameterization in a given compact network so as to47

improve its accuracy. We will highlight this in the final version.48

1Reference: d-li14, PyTorch Implemention of MobileNetV2, available at https://github.com/d-li14/mobilenetv2.pytorch.


