
ExpandNets: Linear Over-parameterization
to Train Compact Convolutional Networks

Shuxuan Guo
CVLab, EPFL

Lausanne 1015, Switzerland
shuxuan.guo@epfl.ch

Jose M. Alvarez
NVIDIA

Santa Clara, CA 95051, USA
josea@nvidia.com

Mathieu Salzmann
CVLab, EPFL

Lausanne 1015, Switzerland
mathieu.salzmann@epfl.ch

Abstract

We introduce an approach to training a given compact network. To this end, we
leverage over-parameterization, which typically improves both neural network
optimization and generalization. Specifically, we propose to expand each linear
layer of the compact network into multiple consecutive linear layers, without
adding any nonlinearity. As such, the resulting expanded network, or ExpandNet,
can be contracted back to the compact one algebraically at inference. In particular,
we introduce two convolutional expansion strategies and demonstrate their benefits
on several tasks, including image classification, object detection, and semantic
segmentation. As evidenced by our experiments, our approach outperforms both
training the compact network from scratch and performing knowledge distillation
from a teacher. Furthermore, our linear over-parameterization empirically reduces
gradient confusion during training and improves the network generalization.

1 Introduction
With the growing availability of large-scale datasets and advanced computational resources, con-
volutional neural networks have achieved tremendous success in a variety of tasks, such as image
classification [17, 28], object detection [39, 40, 42] and semantic segmentation [35, 45]. Over the
past few years, “Wider and deeper are better” has become the rule of thumb to design network archi-
tectures [17, 22, 51, 52]. This trend, however, raises memory- and computation-related challenges,
especially in the context of constrained environments, such as embedded platforms.

Deep and wide networks are well-known to be heavily over-parameterized, and thus a compact
network, both shallow and thin, should often be sufficient. Unfortunately, compact networks are
notoriously hard to train from scratch. As a consequence, designing strategies to train a given
compact network has drawn growing attention, the most popular approach consisting of transferring
the knowledge of a deep teacher network to the compact one of interest [19, 18, 20, 37, 44, 54, 60, 61].

In this paper, we introduce an alternative approach to training compact neural networks, com-
plementary to knowledge transfer. To this end, building upon the observation that network over-
parameterization improves both optimization and generalization [1, 2, 5, 26, 41, 49, 62], we propose
to increase the number of parameters of a given compact network by incorporating additional layers.
However, instead of separating every two layers with a nonlinearity, we advocate introducing consecu-
tive linear layers. In other words, we expand each linear layer of a compact network into a succession
of multiple linear layers, without any nonlinearity in between. Since consecutive linear layers are
equivalent to a single one [50], such an expanded network, or ExpandNet, can be algebraically
contracted back to the original compact one without any information loss.

While the use of successive linear layers appears in the literature, existing work [5, 6, 25, 29, 50, 63]
has been mostly confined to fully-connected networks without any nonlinearities and to the theoretical
study of their behavior under fairly unrealistic statistical assumptions. In particular, these studies aim

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



to understand the learning dynamics and the loss landscapes of deep networks. Here, by contrast, we
focus on practical, nonlinear, compact convolutional neural networks, and demonstrate the use of
linear expansion as a means to introduce over-parameterization and facilitate training, so that a given
compact network achieves better performance.

Convolutional Neural Network

Input

ConvLayer
n ⇥ m ⇥ k ⇥ k

<latexit sha1_base64="8OkJIEdMPb9h7p9d4zI/TwY9LlU=">AAACIXicbZDLSgMxFIYzXmu9VV0KEmwLrspMEdRdwY3LClaFtpRMekZDk8yQnBHL0J1v4s6tvoQ7cSe+gg9hOlbx9kPg4z/n5CR/mEhh0fdfvKnpmdm5+cJCcXFpeWW1tLZ+auPUcGjxWMbmPGQWpNDQQoESzhMDTIUSzsLB4bh+dgXGilif4DCBrmIXWkSCM3RWr7RV0bSDQoGl6hMGX1Dplcp+zc9F/0IwgTKZqNkrvXX6MU8VaOSSWdsO/AS7GTMouIRRsZNaSBgfsAtoO9TM7elm+T9GtOqcPo1i445GmrvfJzKmrB2q0HUqhpf2d21s/ldrpxjtdzOhkxRB849FUSopxnQcCu0LAxzl0AHjRri3Un7JDOMIpljt5IPZ+Noej5Vium9rCNejoosn+B3GXzit14Ld2sFxvdzwJ0EVyCbZJjskIHukQY5Ik7QIJzfkjtyTB+/We/SevOeP1ilvMrNBfsh7fQc1sqK4</latexit>

n ⇥ m ⇥ k ⇥ k

<latexit sha1_base64="8OkJIEdMPb9h7p9d4zI/TwY9LlU=">AAACIXicbZDLSgMxFIYzXmu9VV0KEmwLrspMEdRdwY3LClaFtpRMekZDk8yQnBHL0J1v4s6tvoQ7cSe+gg9hOlbx9kPg4z/n5CR/mEhh0fdfvKnpmdm5+cJCcXFpeWW1tLZ+auPUcGjxWMbmPGQWpNDQQoESzhMDTIUSzsLB4bh+dgXGilif4DCBrmIXWkSCM3RWr7RV0bSDQoGl6hMGX1Dplcp+zc9F/0IwgTKZqNkrvXX6MU8VaOSSWdsO/AS7GTMouIRRsZNaSBgfsAtoO9TM7elm+T9GtOqcPo1i445GmrvfJzKmrB2q0HUqhpf2d21s/ldrpxjtdzOhkxRB849FUSopxnQcCu0LAxzl0AHjRri3Un7JDOMIpljt5IPZ+Noej5Vium9rCNejoosn+B3GXzit14Ld2sFxvdzwJ0EVyCbZJjskIHukQY5Ik7QIJzfkjtyTB+/We/SevOeP1ilvMrNBfsh7fQc1sqK4</latexit>

Output

Nonlinear Layer

Nonlinear Layer

Fully-connected Layer

…
Fully-connected Layer

…

Fully-connected Layer

Fully-connected Layer

ConvLayer
rn ⇥ rm ⇥ k ⇥ k

<latexit sha1_base64="5Msy5sfzsZL4wRWZiD3DS2YUrhk=">AAACI3icbZDLSgMxFIYz9V5vVZdugm3B1TBTBHVXcONSwVahLSWTntHQJDMkZ8QydOubuHOrL+FO3LjwDXwI04vi7YfAx3/OyUn+KJXCYhC8eoWZ2bn5hcWl4vLK6tp6aWOzaZPMcGjwRCbmImIWpNDQQIESLlIDTEUSzqP+0ah+fg3GikSf4SCFjmKXWsSCM3RWt0QrRtM2CgWWGvVJ/S+odEvlwA/Gon8hnEKZTHXSLb23ewnPFGjkklnbCoMUOzkzKLiEYbGdWUgZ77NLaDnUzO3p5OOfDGnVOT0aJ8YdjXTsfp/ImbJ2oCLXqRhe2d+1kflfrZVhfNDJhU4zBM0ni+JMUkzoKBbaEwY4yoEDxo1wb6X8ihnGEUyx2h4P5qNruzxRiume9RFuhkUXT/g7jL/QrPnhnn94WivXg2lQi2Sb7JBdEpJ9UifH5IQ0CCe35J48kEfvznvynr2XSWvBm85skR/y3j4ACvCjsA==</latexit>

rn ⇥ rm ⇥ k ⇥ k

<latexit sha1_base64="5Msy5sfzsZL4wRWZiD3DS2YUrhk=">AAACI3icbZDLSgMxFIYz9V5vVZdugm3B1TBTBHVXcONSwVahLSWTntHQJDMkZ8QydOubuHOrL+FO3LjwDXwI04vi7YfAx3/OyUn+KJXCYhC8eoWZ2bn5hcWl4vLK6tp6aWOzaZPMcGjwRCbmImIWpNDQQIESLlIDTEUSzqP+0ah+fg3GikSf4SCFjmKXWsSCM3RWt0QrRtM2CgWWGvVJ/S+odEvlwA/Gon8hnEKZTHXSLb23ewnPFGjkklnbCoMUOzkzKLiEYbGdWUgZ77NLaDnUzO3p5OOfDGnVOT0aJ8YdjXTsfp/ImbJ2oCLXqRhe2d+1kflfrZVhfNDJhU4zBM0ni+JMUkzoKBbaEwY4yoEDxo1wb6X8ihnGEUyx2h4P5qNruzxRiume9RFuhkUXT/g7jL/QrPnhnn94WivXg2lQi2Sb7JBdEpJ9UifH5IQ0CCe35J48kEfvznvynr2XSWvBm85skR/y3j4ACvCjsA==</latexit>

ConvLayer 
rm ⇥ m ⇥ 1 ⇥ 1

<latexit sha1_base64="bU2fGFjUJPAJf8iHmmN74+CNYg8=">AAACInicbZDLSgMxFIYzXut4q7p0YbAKrsqMCOpOcOOygr1AW0omPdVgkhmSM2IZuvRN3LnVl3AnrgQfwYcw05ai1R8CH/85Jyf5o0QKi0Hw4c3Mzs0vLBaW/OWV1bX14sZmzcap4VDlsYxNI2IWpNBQRYESGokBpiIJ9ej2PK/X78BYEesr7CfQVuxai57gDJ3VKe7sGUVbKBRYOoFwAnudYikoB0PRvxCOoUTGqnSKX61uzFMFGrlk1jbDIMF2xgwKLmHgt1ILCeO37BqaDjVze9rZ8CMDuu+cLu3Fxh2NdOj+nMiYsravItepGN7Y6Vpu/ldrptg7aWdCJymC5qNFvVRSjGmeCu0KAxxl3wHjRri3Un7DDOMIxt9vDQez/NoOj5ViumvLCPcD38UTTofxF2qH5fCofHp5WDoLxkEVyDbZJQckJMfkjFyQCqkSTh7IE3kmL96j9+q9ee+j1hlvPLNFfsn7/AZgo6K/</latexit>

rm ⇥ m ⇥ 1 ⇥ 1

<latexit sha1_base64="bU2fGFjUJPAJf8iHmmN74+CNYg8=">AAACInicbZDLSgMxFIYzXut4q7p0YbAKrsqMCOpOcOOygr1AW0omPdVgkhmSM2IZuvRN3LnVl3AnrgQfwYcw05ai1R8CH/85Jyf5o0QKi0Hw4c3Mzs0vLBaW/OWV1bX14sZmzcap4VDlsYxNI2IWpNBQRYESGokBpiIJ9ej2PK/X78BYEesr7CfQVuxai57gDJ3VKe7sGUVbKBRYOoFwAnudYikoB0PRvxCOoUTGqnSKX61uzFMFGrlk1jbDIMF2xgwKLmHgt1ILCeO37BqaDjVze9rZ8CMDuu+cLu3Fxh2NdOj+nMiYsravItepGN7Y6Vpu/ldrptg7aWdCJymC5qNFvVRSjGmeCu0KAxxl3wHjRri3Un7DDOMIxt9vDQez/NoOj5ViumvLCPcD38UTTofxF2qH5fCofHp5WDoLxkEVyDbZJQckJMfkjFyQCqkSTh7IE3kmL96j9+q9ee+j1hlvPLNFfsn7/AZgo6K/</latexit>

<latexit sha1_base64="guMGP9ipNhbwJtdvZcx7xNePjV8=">AAAB6XicbZC7SgNBFIbPxluMt6ilzWAQrMKujekM2FhGMBdIljA7mU2GzM4uM2eFuOQNbCwUsfUVfBI7S19EnVwKTfxh4OP/z2HOOUEihUHX/XByK6tr6xv5zcLW9s7uXnH/oGHiVDNeZ7GMdSughkuheB0FSt5KNKdRIHkzGF5O8uYt10bE6gZHCfcj2lciFIyitejXd7dYcsvuVGQZvDmULt7uPqsAUOsW3zu9mKURV8gkNabtuQn6GdUomOTjQic1PKFsSPu8bVHRiBs/m046JifW6ZEw1vYpJFP3d0dGI2NGUWArI4oDs5hNzP+ydophxc+ESlLkis0+ClNJMCaTtUlPaM5QjixQpoWdlbAB1ZShPU7BHsFbXHkZGmdlz/K1V6q6MFMejuAYTsGDc6jCFdSgDgxCuIdHeHKGzoPz7LzMSnPOvOcQ/sh5/QHeSJET</latexit><latexit sha1_base64="FUYs8ooQjQMDw4vnSqJbBX/DXFY=">AAAB53icbVDLSgMxFL1TX7W+qi7dBIvgqsy40WXBjcsK9gHtIJlMpg1NMkNyRyhDf8CNC0Xc+kvu/BvTdhbaeiBwOOdccu+JMiks+v63V9nY3Nreqe7W9vYPDo/qxyddm+aG8Q5LZWr6EbVcCs07KFDyfmY4VZHkvWhyO/d7T9xYkeoHnGY8VHSkRSIYRSe1H+sNv+kvQNZJUJIGlHD5r2GcslxxjUxSaweBn2FYUIOCST6rDXPLM8omdMQHjmqquA2LxZ4zcuGUmCSpcU8jWai/JwqqrJ2qyCUVxbFd9ebif94gx+QmLITOcuSaLT9KckkwJfOjSSwMZyinjlBmhNuVsDE1lKGrpuZKCFZPXifdq2bg+H3QaPllHVU4g3O4hACuoQV30IYOMIjhGV7hzRPei/fufSyjFa+cOYU/8D5/AAUfjGU=</latexit><latexit sha1_base64="guMGP9ipNhbwJtdvZcx7xNePjV8=">AAAB6XicbZC7SgNBFIbPxluMt6ilzWAQrMKujekM2FhGMBdIljA7mU2GzM4uM2eFuOQNbCwUsfUVfBI7S19EnVwKTfxh4OP/z2HOOUEihUHX/XByK6tr6xv5zcLW9s7uXnH/oGHiVDNeZ7GMdSughkuheB0FSt5KNKdRIHkzGF5O8uYt10bE6gZHCfcj2lciFIyitejXd7dYcsvuVGQZvDmULt7uPqsAUOsW3zu9mKURV8gkNabtuQn6GdUomOTjQic1PKFsSPu8bVHRiBs/m046JifW6ZEw1vYpJFP3d0dGI2NGUWArI4oDs5hNzP+ydophxc+ESlLkis0+ClNJMCaTtUlPaM5QjixQpoWdlbAB1ZShPU7BHsFbXHkZGmdlz/K1V6q6MFMejuAYTsGDc6jCFdSgDgxCuIdHeHKGzoPz7LzMSnPOvOcQ/sh5/QHeSJET</latexit><latexit sha1_base64="FUYs8ooQjQMDw4vnSqJbBX/DXFY=">AAAB53icbVDLSgMxFL1TX7W+qi7dBIvgqsy40WXBjcsK9gHtIJlMpg1NMkNyRyhDf8CNC0Xc+kvu/BvTdhbaeiBwOOdccu+JMiks+v63V9nY3Nreqe7W9vYPDo/qxyddm+aG8Q5LZWr6EbVcCs07KFDyfmY4VZHkvWhyO/d7T9xYkeoHnGY8VHSkRSIYRSe1H+sNv+kvQNZJUJIGlHD5r2GcslxxjUxSaweBn2FYUIOCST6rDXPLM8omdMQHjmqquA2LxZ4zcuGUmCSpcU8jWai/JwqqrJ2qyCUVxbFd9ebif94gx+QmLITOcuSaLT9KckkwJfOjSSwMZyinjlBmhNuVsDE1lKGrpuZKCFZPXifdq2bg+H3QaPllHVU4g3O4hACuoQV30IYOMIjhGV7hzRPei/fufSyjFa+cOYU/8D5/AAUfjGU=</latexit>

ConvLayer
n ⇥ rn ⇥ 1 ⇥ 1

<latexit sha1_base64="MIGR6yrSubkG34aRx+9ok5LqCS8=">AAACInicbZDLSgMxFIYzXut4q7p0YbAKrsqMCOpOcOOygr1AW0omPdVgkhmSM2IZuvRN3LnVl3AnrgQfwYcw05ai1R8CH/85Jyf5o0QKi0Hw4c3Mzs0vLBaW/OWV1bX14sZmzcap4VDlsYxNI2IWpNBQRYESGokBpiIJ9ej2PK/X78BYEesr7CfQVuxai57gDJ3VKe7sadpCocBSM6FwAnudYikoB0PRvxCOoUTGqnSKX61uzFMFGrlk1jbDIMF2xgwKLmHgt1ILCeO37BqaDjVze9rZ8CMDuu+cLu3Fxh2NdOj+nMiYsravItepGN7Y6Vpu/ldrptg7aWdCJymC5qNFvVRSjGmeCu0KAxxl3wHjRri3Un7DDOMIxt9vDQez/NoOj5ViumvLCPcD38UTTofxF2qH5fCofHp5WDoLxkEVyDbZJQckJMfkjFyQCqkSTh7IE3kmL96j9+q9ee+j1hlvPLNFfsn7/AZjOKLB</latexit>

n ⇥ rn ⇥ 1 ⇥ 1

<latexit sha1_base64="MIGR6yrSubkG34aRx+9ok5LqCS8=">AAACInicbZDLSgMxFIYzXut4q7p0YbAKrsqMCOpOcOOygr1AW0omPdVgkhmSM2IZuvRN3LnVl3AnrgQfwYcw05ai1R8CH/85Jyf5o0QKi0Hw4c3Mzs0vLBaW/OWV1bX14sZmzcap4VDlsYxNI2IWpNBQRYESGokBpiIJ9ej2PK/X78BYEesr7CfQVuxai57gDJ3VKe7sadpCocBSM6FwAnudYikoB0PRvxCOoUTGqnSKX61uzFMFGrlk1jbDIMF2xgwKLmHgt1ILCeO37BqaDjVze9rZ8CMDuu+cLu3Fxh2NdOj+nMiYsravItepGN7Y6Vpu/ldrptg7aWdCJymC5qNFvVRSjGmeCu0KAxxl3wHjRri3Un7DDOMIxt9vDQez/NoOj5ViumvLCPcD38UTTofxF2qH5fCofHp5WDoLxkEVyDbZJQckJMfkjFyQCqkSTh7IE3kmL96j9+q9ee+j1hlvPLNFfsn7/AZjOKLB</latexit>

Expand-FC

Contract

…

ConvLayer
rm ⇥ m ⇥ 3 ⇥ 3

<latexit sha1_base64="yHqkgwFi2C1vGKH1sbSbjMGvRNs=">AAACInicbZDLSgMxFIYz9V5voy5dGKyCqzJTBXUnuHFZwdpCW0omPdXQJDMkZ8QydOmbuHOrL+FOXAk+gg9hekG09YfAx3/OyUn+KJHCYhB8eLmZ2bn5hcWl/PLK6tq6v7F5bePUcKjwWMamFjELUmiooEAJtcQAU5GEatQ9H9Srd2CsiPUV9hJoKnajRUdwhs5q+Tt7RtEGCgWW/sDhD+y1/EJQDIai0xCOoUDGKrf8r0Y75qkCjVwya+thkGAzYwYFl9DPN1ILCeNddgN1h5q5Pc1s+JE+3XdOm3Zi445GOnR/T2RMWdtTketUDG/tZG1g/lerp9g5aWZCJymC5qNFnVRSjOkgFdoWBjjKngPGjXBvpfyWGcYRTH6/MRzMBte2eKwU021bRLjv51084WQY03BdKoZHxdPLUuEsGAe1SLbJLjkgITkmZ+SClEmFcPJAnsgzefEevVfvzXsftea88cwW+SPv8xtnMaLD</latexit>

rm ⇥ m ⇥ 3 ⇥ 3

<latexit sha1_base64="yHqkgwFi2C1vGKH1sbSbjMGvRNs=">AAACInicbZDLSgMxFIYz9V5voy5dGKyCqzJTBXUnuHFZwdpCW0omPdXQJDMkZ8QydOmbuHOrL+FOXAk+gg9hekG09YfAx3/OyUn+KJHCYhB8eLmZ2bn5hcWl/PLK6tq6v7F5bePUcKjwWMamFjELUmiooEAJtcQAU5GEatQ9H9Srd2CsiPUV9hJoKnajRUdwhs5q+Tt7RtEGCgWW/sDhD+y1/EJQDIai0xCOoUDGKrf8r0Y75qkCjVwya+thkGAzYwYFl9DPN1ILCeNddgN1h5q5Pc1s+JE+3XdOm3Zi445GOnR/T2RMWdtTketUDG/tZG1g/lerp9g5aWZCJymC5qNFnVRSjOkgFdoWBjjKngPGjXBvpfyWGcYRTH6/MRzMBte2eKwU021bRLjv51084WQY03BdKoZHxdPLUuEsGAe1SLbJLjkgITkmZ+SClEmFcPJAnsgzefEevVfvzXsftea88cwW+SPv8xtnMaLD</latexit>

ConvLayer
n ⇥ rn ⇥ 3 ⇥ 3

<latexit sha1_base64="eesVZiS1rNkbxic+JQpU+3EvQHE=">AAACInicbZDLSgMxFIYz9V5voy5dGKyCqzJTBXUnuHFZwdpCW0omPdXQJDMkZ8QydOmbuHOrL+FOXAk+gg9hekG09YfAx3/OyUn+KJHCYhB8eLmZ2bn5hcWl/PLK6tq6v7F5bePUcKjwWMamFjELUmiooEAJtcQAU5GEatQ9H9Srd2CsiPUV9hJoKnajRUdwhs5q+Tt7mjZQKLDU/NDhD+y1/EJQDIai0xCOoUDGKrf8r0Y75qkCjVwya+thkGAzYwYFl9DPN1ILCeNddgN1h5q5Pc1s+JE+3XdOm3Zi445GOnR/T2RMWdtTketUDG/tZG1g/lerp9g5aWZCJymC5qNFnVRSjOkgFdoWBjjKngPGjXBvpfyWGcYRTH6/MRzMBte2eKwU021bRLjv51084WQY03BdKoZHxdPLUuEsGAe1SLbJLjkgITkmZ+SClEmFcPJAnsgzefEevVfvzXsftea88cwW+SPv8xtpxqLF</latexit>

n ⇥ rn ⇥ 3 ⇥ 3

<latexit sha1_base64="eesVZiS1rNkbxic+JQpU+3EvQHE=">AAACInicbZDLSgMxFIYz9V5voy5dGKyCqzJTBXUnuHFZwdpCW0omPdXQJDMkZ8QydOmbuHOrL+FOXAk+gg9hekG09YfAx3/OyUn+KJHCYhB8eLmZ2bn5hcWl/PLK6tq6v7F5bePUcKjwWMamFjELUmiooEAJtcQAU5GEatQ9H9Srd2CsiPUV9hJoKnajRUdwhs5q+Tt7mjZQKLDU/NDhD+y1/EJQDIai0xCOoUDGKrf8r0Y75qkCjVwya+thkGAzYwYFl9DPN1ILCeNddgN1h5q5Pc1s+JE+3XdOm3Zi445GOnR/T2RMWdtTketUDG/tZG1g/lerp9g5aWZCJymC5qNFnVRSjOkgFdoWBjjKngPGjXBvpfyWGcYRTH6/MRzMBte2eKwU021bRLjv51084WQY03BdKoZHxdPLUuEsGAe1SLbJLjkgITkmZ+SClEmFcPJAnsgzefEevVfvzXsftea88cwW+SPv8xtpxqLF</latexit>

Ex
pa

nd
-C

L
Ex

pa
nd

-C
K

C
on

tra
ct

k � 1

2<latexit sha1_base64="Fq3QD4S1T5q1bSZUXiD4Et89tIk=">AAAB9XicbZDLSgMxFIbP1Fsdb1WXboJFcGOZKYIuC25cVrAXaMeSSTNtaCYZkoxShnkPNy4Uceu7uPNtTNtZaOsPgY//nMM5+cOEM20879spra1vbG6Vt92d3b39g8rhUVvLVBHaIpJL1Q2xppwJ2jLMcNpNFMVxyGknnNzM6p1HqjST4t5MExrEeCRYxAg21npw+5HCJJtc+HlWzweVqlfz5kKr4BdQhULNQeWrP5QkjakwhGOte76XmCDDyjDCae72U00TTCZ4RHsWBY6pDrL51Tk6s84QRVLZJwyau78nMhxrPY1D2xljM9bLtZn5X62Xmug6yJhIUkMFWSyKUo6MRLMI0JApSgyfWsBEMXsrImNsczA2KNeG4C9/eRXa9Zpv+e6y2vCKOMpwAqdwDj5cQQNuoQktIKDgGV7hzXlyXpx352PRWnKKmWP4I+fzB6EokeE=</latexit><latexit sha1_base64="Fq3QD4S1T5q1bSZUXiD4Et89tIk=">AAAB9XicbZDLSgMxFIbP1Fsdb1WXboJFcGOZKYIuC25cVrAXaMeSSTNtaCYZkoxShnkPNy4Uceu7uPNtTNtZaOsPgY//nMM5+cOEM20879spra1vbG6Vt92d3b39g8rhUVvLVBHaIpJL1Q2xppwJ2jLMcNpNFMVxyGknnNzM6p1HqjST4t5MExrEeCRYxAg21npw+5HCJJtc+HlWzweVqlfz5kKr4BdQhULNQeWrP5QkjakwhGOte76XmCDDyjDCae72U00TTCZ4RHsWBY6pDrL51Tk6s84QRVLZJwyau78nMhxrPY1D2xljM9bLtZn5X62Xmug6yJhIUkMFWSyKUo6MRLMI0JApSgyfWsBEMXsrImNsczA2KNeG4C9/eRXa9Zpv+e6y2vCKOMpwAqdwDj5cQQNuoQktIKDgGV7hzXlyXpx352PRWnKKmWP4I+fzB6EokeE=</latexit><latexit sha1_base64="Fq3QD4S1T5q1bSZUXiD4Et89tIk=">AAAB9XicbZDLSgMxFIbP1Fsdb1WXboJFcGOZKYIuC25cVrAXaMeSSTNtaCYZkoxShnkPNy4Uceu7uPNtTNtZaOsPgY//nMM5+cOEM20879spra1vbG6Vt92d3b39g8rhUVvLVBHaIpJL1Q2xppwJ2jLMcNpNFMVxyGknnNzM6p1HqjST4t5MExrEeCRYxAg21npw+5HCJJtc+HlWzweVqlfz5kKr4BdQhULNQeWrP5QkjakwhGOte76XmCDDyjDCae72U00TTCZ4RHsWBY6pDrL51Tk6s84QRVLZJwyau78nMhxrPY1D2xljM9bLtZn5X62Xmug6yJhIUkMFWSyKUo6MRLMI0JApSgyfWsBEMXsrImNsczA2KNeG4C9/eRXa9Zpv+e6y2vCKOMpwAqdwDj5cQQNuoQktIKDgGV7hzXlyXpx352PRWnKKmWP4I+fzB6EokeE=</latexit><latexit sha1_base64="Fq3QD4S1T5q1bSZUXiD4Et89tIk=">AAAB9XicbZDLSgMxFIbP1Fsdb1WXboJFcGOZKYIuC25cVrAXaMeSSTNtaCYZkoxShnkPNy4Uceu7uPNtTNtZaOsPgY//nMM5+cOEM20879spra1vbG6Vt92d3b39g8rhUVvLVBHaIpJL1Q2xppwJ2jLMcNpNFMVxyGknnNzM6p1HqjST4t5MExrEeCRYxAg21npw+5HCJJtc+HlWzweVqlfz5kKr4BdQhULNQeWrP5QkjakwhGOte76XmCDDyjDCae72U00TTCZ4RHsWBY6pDrL51Tk6s84QRVLZJwyau78nMhxrPY1D2xljM9bLtZn5X62Xmug6yJhIUkMFWSyKUo6MRLMI0JApSgyfWsBEMXsrImNsczA2KNeG4C9/eRXa9Zpv+e6y2vCKOMpwAqdwDj5cQQNuoQktIKDgGV7hzXlyXpx352PRWnKKmWP4I+fzB6EokeE=</latexit>

(k > 3)

<latexit sha1_base64="uA/pYsiBSU7zlhdojQk0kOsdQPw=">AAACDHicbVDLTgIxFO3gC8cX6tJNI5DghsygiboxJG5cYiKPCBPSKRdoaDuTtmMkE37BlVv9CnfGrf/gR/gPzgALBU/S5OSce9rb44ecaeM4X1ZmZXVtfSO7aW9t7+zu5fYPGjqIFIU6DXigWj7RwJmEumGGQytUQITPoemPrlO/+QBKs0DemXEIniADyfqMEpNI94XSCF/h05MC7ubyTtmZAi8Td07yaI5aN/fd6QU0EiAN5UTrtuuExouJMoxymNidSENI6IgMoJ1QSQRoL55uPMHFROnhfqCSIw2eqr8TMRFaj4WfTApihnrRS8X/vHZk+hdezGQYGZB09lA/4tgEOP0+7jEF1PBxQghVLNkV0yFRhBpQtl3sTJNxem+XBkIQ2dNlA48TO+nHXWxjmTQqZfesfHlbyVedeVNZdISOUQm56BxV0Q2qoTqiSKJn9IJerSfrzXq3PmajGWueOUR/YH3+AEOumXE=</latexit>

Figure 1: ExpandNets. We propose 3 strategies to
linearly expand a compact network. An expanded
network can then be contracted back to the com-
pact one algebraically, and outperforms training the
compact one, even with knowledge distillation.

Specifically, as illustrated by Figure 1, we intro-
duce three ways to expand a compact network:
(i) replacing a k×k convolution by three convo-
lutional layers with kernel size 1× 1, k× k and
1×1, respectively; (ii) replacing a k×k convolu-
tion with k > 3 by multiple 3× 3 convolutions;
and (iii) replacing a fully-connected layer with
multiple ones. Our experiments demonstrate
that expanding convolutions is the key to ob-
taining more effective compact networks.

In short, our contributions are (i) a novel ap-
proach to training a given compact, nonlinear
convolutional network by expanding its linear
layers; (ii) a strategy to expand convolutional
layers with arbitrary kernels; and (iii) a strat-
egy to expand convolutional layers with kernel
size larger than 3. We demonstrate the bene-
fits of our approach on several tasks, including
image classification on ImageNet, object detec-
tion on PASCAL VOC and image segmentation
on Cityscapes. Our ExpandNets outperform
both training the corresponding compact networks from scratch and using knowledge distilla-
tion. We empirically show over-parameterization to be the key factor for such better performance.
Furthermore, we analyze the benefits of linear over-parameterization during training via experi-
ments studying generalization, gradient confusion and the loss landscape. Our code is available at
https://github.com/GUOShuxuan/expandnets.

2 Related Work

Very deep convolutional neural networks currently constitute the state of the art for many tasks.
These networks, however, are known to be heavily over-parameterized, and making them smaller
would facilitate their use in resource-constrained environments, such as embedded platforms. As a
consequence, much research has recently been devoted to developing more compact architectures.

Network compression constitutes one of the most popular trends in this area. In essence, it aims
to reduce the size of a large network while losing as little accuracy as possible, or even none at
all. In this context, existing approaches can be roughly grouped into two categories: (i) parameter
pruning and sharing [7, 9, 14, 16, 31, 32, 38, 55], which aims to remove the least informative
parameters, yielding an arbitrary compact network with information loss; and (ii) low-rank matrix
factorization [10, 24, 30, 34, 47], which uses decomposition techniques to reduce the size of the
parameter matrix/tensor in each layer. While compression is typically performed as a post-processing
step, it has been shown that incorporating it during training could be beneficial [3, 4, 56, 57]. In any
event, even though compression reduces a network’s size, it neither provides one with the flexibility
of designing a network with a specific architecture, nor incorporates over-parameterization to improve
the performance of compact network training. Furthermore, it often produces networks that are much
larger than the ones we consider here, e.g., compressed networks with O(1M) parameters vs O(10K)
for the SmallNets used in our experiments.

In a parallel line of research, several works have proposed design strategies to reduce a network’s
number of parameters [21, 36, 43, 48, 53, 58]. Again, while more compact networks can indeed
be developed with these mechanisms, they impose constraints on the network architecture, and
thus do not allow one to simply train a given compact network. Furthermore, as shown by our
experiments, our approach is complementary to these works. For example, we can improve the results
of MobileNets [21, 48] by training them using our expansion strategy.

2

https://github.com/GUOShuxuan/expandnets


Here, in contrast to the above-mentioned literature, we seek to train a given compact network with
an arbitrary architecture. This is also the task addressed by knowledge transfer approaches [18–
20, 37, 44, 54, 60, 61]. To achieve this, existing methods leverage the availability of a pre-trained very
deep teacher network. In this paper, we introduce an alternative strategy to train compact networks,
complementary to knowledge transfer. Inspired by the theory showing that over-parameterization
helps training [1, 2, 5, 26, 41, 49, 62], we expand each linear layer in a given compact network
into a succession of multiple linear layers. Our experiments evidence that training such expanded
networks, which can then be contracted back algebraically, yields better results than training the
original compact networks, thus empirically confirming the benefits of over-parameterization. Our
results also show that our approach outperforms knowledge distillation, even without using a teacher
network.

Note that linearly over-parameterized neural networks have been investigated both in the early neural
network days [6] and more recently [5, 15, 25, 29, 50, 63]. These methods, however, typically study
purely linear networks, with a focus on the convergence behavior of training in this linear regime.
For example, Gunasekar et al. [15] demonstrated that a different parameterization of the same model
dramatically affects the training behavior; Arora et al. [5] showed that linear over-parameterization
modifies the gradient updates in a unique way that speeds up convergence; Wu et al. [59] collapsed
multiple FC layers into a single one by removing the non-linearities from the MLP layers of a graph
convolutional network. In contrast to these methods, which focus on fully-connected layers, we
develop two strategies to expand convolutional layers, and empirically demonstrate the impact of our
expansion strategies on prediction accuracy, training behavior and generalization ability.

The concurrent work ACNet of Ding et al. [11] also advocates for expansion of convolutional layers.
However, the two strategies we introduce differ from their use of 1D asymmetric convolutions, and
our experiments show that our approach outperforms theirs. More importantly, this work constitutes
further evidence of the benefits of linear expansion.

3 ExpandNets
Let us now introduce our approach to training compact networks by linearly expanding their layers.
Below, we focus on our two strategies to expand convolutional layers, and then briefly discuss the
case of fully-connected ones.

3.1 Expanding Convolutional Layers

w

<latexit sha1_base64="F+1fAShAXYjIgsAAa60gG2xb0M8=">AAACBHicbVC7TsMwFHV4lvAqMLJEtJWYoqRCArZKLIxF0IfURpXj3LRWbSeyHaCKurKxwk+wIVb+g3/gI0jTDNByJEtH59xjXx8/ZlRpx/kyVlbX1jc2S1vm9s7u3n754LCtokQSaJGIRbLrYwWMCmhpqhl0YwmY+ww6/vhq5nfuQSoaiTs9icHjeChoSAnWmXRbfagOyhXHdnJYy8QtSAUVaA7K3/0gIgkHoQnDSvVcJ9ZeiqWmhMHU7CcKYkzGeAi9jArMQXlpvurUqmVKYIWRzI7QVq7+TqSYKzXhfjbJsR6pRW8m/uf1Eh1eeCkVcaJBkPlDYcIsHVmzf1sBlUA0m2QEE0mzXS0ywhITDdKs9fNgOrt2QCLOsQiUreFxamb1uItlLJN23XbP7MubeqXhFEWV0DE6QafIReeoga5RE7UQQUP0jF7Qq/FkvBnvxsd8dMUoMkfoD4zPH/FYmAU=</latexit>

h

<latexit sha1_base64="DWDqQEl6O+aCuMm6UQHR93aPkMA=">AAACBHicbVC7TsMwFHXKq4RXgZEloq3EVCUVErBVYmEsgj6kNqoc56a1ajuR7SCqqCsbK/wEG2LlP/gHPoIkzQAtR7J0dM499vXxIkaVtu0vo7S2vrG5Vd42d3b39g8qh0ddFcaSQIeELJR9DytgVEBHU82gH0nA3GPQ86bXmd97AKloKO71LAKX47GgASVYp9JdbVIbVap2w85hrRKnIFVUoD2qfA/9kMQchCYMKzVw7Ei7CZaaEgZzcxgriDCZ4jEMUiowB+Um+apzq54qvhWEMj1CW7n6O5FgrtSMe+kkx3qilr1M/M8bxDq4dBMqoliDIIuHgphZOrSyf1s+lUA0m6UEE0nTXS0ywRITDdKsD/Ngkl07IiHnWPiqoeFxbqb1OMtlrJJus+GcN65um9WWXRRVRifoFJ0hB12gFrpBbdRBBI3RM3pBr8aT8Wa8Gx+L0ZJRZI7RHxifP9kHl/Y=</latexit>

m
w

h

<latexit sha1_base64="5HJ0p7AeIkChwwP5wLuoSYpgJMc=">AAACBnicbVC7TsMwFHXKq4RXgZEloq3EFCUVErBVYmEsEn1IbVU5zk1r1XYi2wGqqDsbK/wEG2LlN/gHPgK3zQAtR7J0dM499vUJEkaV9rwvq7C2vrG5Vdy2d3b39g9Kh0ctFaeSQJPELJadACtgVEBTU82gk0jAPGDQDsbXM799D1LRWNzpSQJ9joeCRpRgbaRmhT+MKoNS2XO9OZxV4uekjHI0BqXvXhiTlIPQhGGlur6X6H6GpaaEwdTupQoSTMZ4CF1DBeag+tl82alTNUroRLE0R2hnrv5OZJgrNeGBmeRYj9SyNxP/87qpji77GRVJqkGQxUNRyhwdO7OfOyGVQDSbGIKJpGZXh4ywxESDtKu9eTCbXTsgMedYhMrV8Di1TT3+chmrpFVz/XP36rZWrnt5UUV0gk7RGfLRBaqjG9RATUQQRc/oBb1aT9ab9W59LEYLVp45Rn9gff4AlmCY7g==</latexit>

Vectorizing

b

<latexit sha1_base64="FDslQ5skw6s9E5WbS4SPz+tfsoI=">AAACBHicbVC7TsMwFHXKq4RXgZEloq3EFCUVErBVYmEsgj6kNqoc57a1ajuR7SCqqCsbK/wEG2LlP/gHPoIkzQAtR7J0dM499vXxI0aVdpwvo7S2vrG5Vd42d3b39g8qh0cdFcaSQJuELJQ9HytgVEBbU82gF0nA3GfQ9afXmd99AKloKO71LAKP47GgI0qwTqW7ml8bVqqO7eSwVolbkCoq0BpWvgdBSGIOQhOGleq7TqS9BEtNCYO5OYgVRJhM8Rj6KRWYg/KSfNW5VU+VwBqFMj1CW7n6O5FgrtSM++kkx3qilr1M/M/rx3p06SVURLEGQRYPjWJm6dDK/m0FVALRbJYSTCRNd7XIBEtMNEizPsiDSXbtkIScYxEoW8Pj3EzrcZfLWCWdhu2e21e3jWrTKYoqoxN0is6Qiy5QE92gFmojgsboGb2gV+PJeDPejY/FaMkoMsfoD4zPH89Nl/A=</latexit>

⇤

<latexit sha1_base64="S8Cq7zxkyiVpYKf3y/7yALw3rd4=">AAACOnicbVHLTtwwFHUoFEhpgXaJhCKGSmyYJCMkYIfUTZcgMQPSzGh049yAix+RfYMYRfMPbNtv6Y+wZYfY9gPqDLPgdSVbx+fcI18fZ6UUjpLkLpj7ML/wcXFpOfy08vnL6tr6154zleXY5UYae56BQyk0dkmQxPPSIqhM4ll29aPRz67ROmH0KY1LHCq40KIQHMhTve0BONoerbWSdjKt6C1IZ6DFZnU8Wg82B7nhlUJNXIJz/TQpaViDJcElTsJB5bAEfgUX2PdQg0I3rKfjTqLvnsmjwli/NEVT9rmjBuXcWGW+UwFdutdaQ76n9SsqDoa10GVFqPnTRUUlIzJR8/YoFxY5ybEHwK3ws0b8EixwQhuGg6mxjitnY2k4yJjwRoprjDtJetAcVLGb+y9pYCyh2Zvo42aQETdKgc5d29OT0Ceavs7vLeh12ule+/Ck0zpKZtkusQ22xXZYyvbZEfvJjlmXcfaL3bLf7E/wN7gPHoLHp9a5YOb5xl5U8O8/NBarTw==</latexit>

Xv

<latexit sha1_base64="mb+1DfbYU51rj5ZhpJ5/AtMej8E=">AAACPXicbVHLThsxFPVAeQ2PAl0ioREBiQ2ZmagSsENi0yVIBFIlIbrjuQMWfoxsT0Q0ylewhW/hO/iA7qpuu8UOWbTAlWwdn3OPfH2clZwZmyQvwczsl7n5hcWlcHllde3r+sbmpVGVptimiivdycAgZxLbllmOnVIjiIzjVXZ36vWrIWrDlLywoxL7Am4kKxgF66ifuz3RuR7uhuFgvZE0k0lFH0E6BQ0yrbPBRrDdyxWtBEpLORjTTZPS9mvQllGO47BXGSyB3sENdh2UIND068nE42jPMXlUKO2WtNGE/ddRgzBmJDLXKcDemveaJz/TupUtjvo1k2VlUdK3i4qKR1ZF/vlRzjRSy0cOANXMzRrRW9BALeow7E2MdVwZHXNFgccW7zkbYtxK0iN/EMVB7n7Fw5iD3336sR9kQJUQIHPTdPTYJ5q+z+8juGw10+/N4/NW4ySZZrtItsgO2ScpOSQn5Ac5I21CiSAP5JE8Bc/Br+B38OetdSaYer6R/yr4+wphxqvS</latexit>

k

<latexit sha1_base64="ZXvI5c1Zf9fnJKWi0vXCV7e1ync=">AAACBHicbVC7TsMwFHXKq4RXgZEloq3EVCUVErBVYmEsgj6kNqoc56a1ajuR7SCqqCsbK/wEG2LlP/gHPoIkzQAtR7J0dM499vXxIkaVtu0vo7S2vrG5Vd42d3b39g8qh0ddFcaSQIeELJR9DytgVEBHU82gH0nA3GPQ86bXmd97AKloKO71LAKX47GgASVYp9JdbVobVap2w85hrRKnIFVUoD2qfA/9kMQchCYMKzVw7Ei7CZaaEgZzcxgriDCZ4jEMUiowB+Um+apzq54qvhWEMj1CW7n6O5FgrtSMe+kkx3qilr1M/M8bxDq4dBMqoliDIIuHgphZOrSyf1s+lUA0m6UEE0nTXS0ywRITDdKsD/Ngkl07IiHnWPiqoeFxbqb1OMtlrJJus+GcN65um9WWXRRVRifoFJ0hB12gFrpBbdRBBI3RM3pBr8aT8Wa8Gx+L0ZJRZI7RHxifP93kl/k=</latexit>

k

<latexit sha1_base64="ZXvI5c1Zf9fnJKWi0vXCV7e1ync=">AAACBHicbVC7TsMwFHXKq4RXgZEloq3EVCUVErBVYmEsgj6kNqoc56a1ajuR7SCqqCsbK/wEG2LlP/gHPoIkzQAtR7J0dM499vXxIkaVtu0vo7S2vrG5Vd42d3b39g8qh0ddFcaSQIeELJR9DytgVEBHU82gH0nA3GPQ86bXmd97AKloKO71LAKX47GgASVYp9JdbVobVap2w85hrRKnIFVUoD2qfA/9kMQchCYMKzVw7Ei7CZaaEgZzcxgriDCZ4jEMUiowB+Um+apzq54qvhWEMj1CW7n6O5FgrtSMe+kkx3qilr1M/M8bxDq4dBMqoliDIIuHgphZOrSyf1s+lUA0m6UEE0nTXS0ywRITDdKsD/Ngkl07IiHnWPiqoeFxbqb1OMtlrJJus+GcN65um9WWXRRVRifoFJ0hB12gFrpBbdRBBI3RM3pBr8aT8Wa8Gx+L0ZJRZI7RHxifP93kl/k=</latexit>

mwh

<latexit sha1_base64="5HJ0p7AeIkChwwP5wLuoSYpgJMc=">AAACBnicbVC7TsMwFHXKq4RXgZEloq3EFCUVErBVYmEsEn1IbVU5zk1r1XYi2wGqqDsbK/wEG2LlN/gHPgK3zQAtR7J0dM499vUJEkaV9rwvq7C2vrG5Vdy2d3b39g9Kh0ctFaeSQJPELJadACtgVEBTU82gk0jAPGDQDsbXM799D1LRWNzpSQJ9joeCRpRgbaRmhT+MKoNS2XO9OZxV4uekjHI0BqXvXhiTlIPQhGGlur6X6H6GpaaEwdTupQoSTMZ4CF1DBeag+tl82alTNUroRLE0R2hnrv5OZJgrNeGBmeRYj9SyNxP/87qpji77GRVJqkGQxUNRyhwdO7OfOyGVQDSbGIKJpGZXh4ywxESDtKu9eTCbXTsgMedYhMrV8Di1TT3+chmrpFVz/XP36rZWrnt5UUV0gk7RGfLRBaqjG9RATUQQRc/oBb1aT9ab9W59LEYLVp45Rn9gff4AlmCY7g==</latexit>

n
w

0h
0

<latexit sha1_base64="MhCizSNW+6tffMXCPc5TYAsGTa4=">AAACCHicbVBLTsMwFHTKr4RfgSWbiLYqqyqpkIBdJTYsi0Q/UhtVjvPaWrWdyHaAKuoF2LGFS7BDbLkFd+AQJGkW0DKSpdHMG/t5vJBRpW37yyisrW9sbhW3zZ3dvf2D0uFRRwWRJNAmAQtkz8MKGBXQ1lQz6IUSMPcYdL3pdep370EqGog7PQvB5Xgs6IgSrBOpWxEPtUmtMiyV7bqdwVolTk7KKEdrWPoe+AGJOAhNGFaq79ihdmMsNSUM5uYgUhBiMsVj6CdUYA7KjbN151Y1UXxrFMjkCG1l6u9EjLlSM+4lkxzriVr2UvE/rx/p0aUbUxFGGgRZPDSKmKUDK/275VMJRLNZQjCRNNnVIhMsMdEgzeogC8bptUMScI6Fr+oaHudmUo+zXMYq6TTqznn96rZRbtp5UUV0gk7RGXLQBWqiG9RCbUTQFD2jF/RqPBlvxrvxsRgtGHnmGP2B8fkDY1iZUQ==</latexit>

Matrixing

W F

<latexit sha1_base64="oGKovilqpClTlnTphtu/WAJ39PM=">AAACP3icbVHLahRBFK2OUWP7SuJSCE0mghunuwfBuAsExGUEJxOYHofb1beTIvVoqm4Hh2Y+I1vzLfmMfIE7cevOqsks8jpQxalz7uVeTpWNFI6y7CpaebT6+MnTtWfx8xcvX71e39g8dKa1HIfcSGOPSnAohcYhCZJ41FgEVUoclaf7wR+doXXC6O80a3Ci4FiLWnAgL413CjX6UdCXnTierveyfrZAcp/kS9JjSxxMN6KtojK8VaiJS3BunGcNTTqwJLjEeVy0Dhvgp3CMY081KHSTbrHzPHnnlSqpjfVHU7JQb3Z0oJybqdJXKqATd9cL4kPeuKV6d9IJ3bSEml8PqluZkElCAEklLHKSM0+AW+F3TfgJWOCENo6LRWOXts6m0nCQKeFPKc4wHWT5bnio+kPl/yXQVEK4Q/5pWGTKjVKgK9f38jwkmt/N7z45HPTzj/3P3wa9vWyZ7Rp7y7bZe5azT2yPfWUHbMg4M+yc/WIX0WX0O/oT/b0uXYmWPW/YLUT//gPTc6yF</latexit>

X (b = 1, m = 1)

<latexit sha1_base64="iuICuvYG+u5afcdcthVEYm6PPrI=">AAACS3icbVFNaxRBEO1ZjcbxaxPxJEjjjhDB7MwsQuJBCHjxGMFNFnaXpaanJmnSH0N3TXAZ9sd41d/iD/B3eBMP9mz2oIkF3fX6vSq6eFXUSnrKsh9R79btrTt3t+/F9x88fPS4v7N74m3jBI6FVdZNCvCopMExSVI4qR2CLhSeFhfvO/30Ep2X1nyiZY1zDWdGVlIABWrRfxonM5okfC8p3uXJa57okF4t+oNsmK2D3wT5BgzYJo4XO9HzWWlFo9GQUOD9NM9qmrfgSAqFq3jWeKxBXMAZTgM0oNHP2/X8K/4yMCWvrAvHEF+zf3e0oL1f6iJUaqBzf13ryP9p04aqw3krTd0QGnH1UdUoTpZ3ZvBSOhSklgGAcDLMysU5OBCELo5n68Y2bbxLlRWgUsLPSl5iOsryw+6hq/0y7KiDqYLu7naRdoMshNUaTOmHgV7FwdH8un83wclomL8Zvv04GhxlG2+32TP2gu2xnB2wI/aBHbMxE6xlX9hX9i36Hv2MfkW/r0p70abnCfsnelt/AKMNrZ0=</latexit>

F (n = 1, m = 1)

<latexit sha1_base64="752IJQxzVMPOL382PMV3JkAm20E=">AAACS3icbVFNaxRBEO1ZjYnj10bxJEjjjhBBd2aWgPEgBATxGMFNArvLUtNTkzTpj6G7JrgM+2O8mt+SH+Dv8CYe7NnsQRMLuuv1e1V08aqolfSUZT+i3q3bG3c2t+7G9+4/ePiov/340NvGCRwLq6w7LsCjkgbHJEnhce0QdKHwqDj70OlH5+i8tOYLLWqcaTgxspICKFDz/tM4mdLHhO8k5n2evOaJDunVvD/Ihtkq+E2Qr8GAreNgvh09n5ZWNBoNCQXeT/KsplkLjqRQuIynjccaxBmc4CRAAxr9rF3Nv+QvA1PyyrpwDPEV+3dHC9r7hS5CpQY69de1jvyfNmmo2pu10tQNoRFXH1WN4mR5ZwYvpUNBahEACCfDrFycggNB6OJ4umps08a7VFkBKiX8quQ5pqMs3+seunpThh11MFXQ3d0u0m6QubBagyn9MNDLODiaX/fvJjgcDfPd4bvPo8F+tvZ2iz1jL9gOy9lbts8+sQM2ZoK17Bv7zi6iy+hn9Cv6fVXai9Y9T9g/0dv4A5eLrZc=</latexit>

⇥

<latexit sha1_base64="/6yIRQNmqrG0uPb92ttmRhocFwo=">AAACPHicbVFNT9tAEF0DLdSFEsqxErIakHohtiMk4IbUC0eQCERKomi8HsOK/bB2x4jIyp/gSn8L/6N3bqjXnlmHHFpgpF29eTNPM/s2K6VwlCS/g4XFpQ8fl1c+hZ9X176stza+njtTWY49bqSx/QwcSqGxR4Ik9kuLoDKJF9n1z6Z+cYPWCaPPaFLiSMGlFoXgQJ7qbw9JKHTb41Y76SSziN6CdA7abB4n441ga5gbXinUxCU4N0iTkkY1WBJc4jQcVg5L4NdwiQMPNfgxo3q28DTa8UweFcb6oymasf8qalDOTVTmOxXQlXtda8j3aoOKioNRLXRZEWr+MqioZEQmal4f5cIiJznxALgVfteIX4EFTmjDcDgT1nHlbCwNBxkT3kpxg3E3SQ+aRBW7uf+UBsYSmrsxP24WGXOjFOjcdTw9Db2j6Wv/3oLzbifd6xyedttHydzbFfaNfWc/WMr22RE7ZiesxziT7I7ds1/BQ/AYPAV/XloXgrlmk/0Xwd9nD5WsPQ==</latexit>

Figure 2: Matrix representation of a convo-
lutional layer (best viewed in color).

We propose to linearly expand a convolutional layer
by replacing it with a series of convolutional layers.
To explain this, we will rely on the fact that a con-
volution operation can be expressed in matrix form.
Specifically, let Xb×m×w×h be the input tensor to a
convolutional layer, with batch size b, m input chan-
nels, height h and width w, and Fn×m×k×k be the
tensor encoding the convolutional filters, with n out-
put channels and kernel size k. Ignoring the bias,
which can be taken into account by incorporating an
additional channel with value 1 to X, a convolution can be expressed as

Yb×n×w′×h′ = Xb×m×w×h ∗ Fn×m×k×k = reshape(W F
nw′h′×mwh ×Xv

mwh×b) , (1)

where Yb×n×w′×h′ is the output tensor, Xv
mwh×b is a matrix representation of X, and W F

nw′h′×mwh
is a highly structured sparse matrix containing the convolutional filters. This process, which is a
bijection, is depicted by Figure 2 for b = 1, m = 1 and n = 1.

With this matrix representation, one can therefore expand a layer linearly by replacing the matrix W F

with a product of an arbitrary number of matrices. However, using arbitrary matrices would ignore
the convolution structure, and thus alter the original operation performed by the layer. Fortunately,
multiplying several convolution matrices still yields a valid convolution, as can be confirmed by
observing the pattern within the matrix in Figure 2. Nevertheless, one cannot simply expand a
convolutional layer with kernel size k × k as a series of convolutions with arbitrary kernel sizes
because, in general, the resulting receptive field size would differ from the original one. To overcome
this, we propose the two expansion strategies discussed below.

3



Expanding general convolutions. For our first strategy, we note that 1 × 1 convolutions retain
the computational benefits of convolutional layers while not modifying the receptive field size. As
illustrated in Figure 1, we therefore propose to expand a k × k convolutional layer into 3 consecutive
convolutional layers: a 1×1 convolution; a k×k one; and another 1×1 one. Importantly, this allows
us to increase not only the number of layers, but also the number of channels by setting p, q > n,m.
To this end, we rely on the notion of expansion rate. Specifically, for an original layer with m input
channels and n output ones, given an expansion rate r, we define the number of output channels of
the first 1× 1 layer as p = rm and the number of output channels of the intermediate k × k layer
as q = rn. Note that other strategies are possible, e.g., p = rim, but ours has the advantage of
preventing the number of parameters from exploding.

Once such an expanded convolutional layer has been trained, one can contract it back to the original
one algebraically by considering the matrix form of Eq. 1. That is, given the filter tensors of the
intermediate layers, F1

p×m×1×1, F2
q×p×k×k and F3

n×q×1×1, the matrix representation of the original
layer can be recovered as

W F
nw′h′×mwh = W F3

nw′h′×qw′h′ ×W F2

qw′h′×pwh ×W F1

pwh×mwh , (2)

which encodes a convolution tensor. At test time, we can thus use the original compact network.
Because it applies to any size k, we will refer to this strategy as expanding convolutional layers.

Expanding k × k convolutions with k > 3. While 3 × 3 kernels are popular in very deep archi-
tectures [17], larger kernel sizes are often exploited in compact networks, so as to increase their
expressiveness and their receptive fields. As illustrated in Figure 1, k × k kernels with k > 3 can be
equivalently represented with a series of l 3× 3 convolutions, where l = (k − 1)/2. Note that k is
typically odd in CNNs. We then have

Y = X ∗ Fn×m×k×k = X ∗ F1
p1×m×3×3 ∗ · · · ∗ Fl−1

pl−1×pl−2×3×3 ∗ Fl
n×pl−1×3×3 . (3)

As before, the number of channels in the intermediate layers can be larger than that in the original
k × k one, thus allowing us to linearly over-parameterize the model. For an expansion rate r, we set
the number of output channels of the first 3× 3 layer to p1 = rm and that of the subsequent layers to
pi = rn. The same matrix-based strategy as before can be used to algebraically contract back the
expanded unit into Fn×m×k×k. We will refer to this strategy as expanding convolutional kernels.

3.2 Expanding Convolutions in Practice

Padding and strides. In modern convolutional networks, padding and strides are widely used to
retain information from the input feature map while controlling the size of the output one. To expand
a convolutional layer with padding p, we propose to use padding p in the first layer of the expanded
unit while not padding the remaining layers. Furthermore, to handle a stride s, when expanding
convolutional layers, we set the stride of the middle layer to s and that of the others to 1. When
expanding convolutional kernels, we use a stride 1 for all layers except for the last one whose stride
is set to s. These two strategies guarantee that the resulting ExpandNet can be contracted back to the
compact model without any information loss.

Depthwise convolutions. Depthwise convolutions are often used to design compact networks, such
as MobileNet [21], MobileNetV2 [48] and ShuffleNetV2 [36]. To handle them, we make use of our
general convolutional expansion strategy within each group. Specifically, we duplicate the input
channels r times and employ cross-channel convolutions within each group. This makes the expanded
layers equivalent to the original ones.

3.3 Expanding Fully-connected Layers

Beacuse the weights of a fully-connected layer can naturally be represented in matrix form, our
approach directly extends to such layers. That is, we can expand a fully-connected layer with m input
and n output dimensions into l layers as by noting that

Wn×m = Wn×pl−1
×Wpl−1×pl−2

× · · · ×Wp1×m , (4)

where we typically define p1 = rm and pi = rn, ∀i 6= 1. In practice, considering the computational
complexity of fully-connected layers, we advocate expanding each layer into only two or three layers
with a small expansion rate. Note that this expansion is similar to that used in [5], which we discuss in

4



more detail in the supplementary material. However, as will be shown by our experiments, expanding
only fully-connected layers, as in [5], does typically not yield a performance boost. By contrast, our
two convolutional expansion strategies do.

Altogether, our strategies allow us to expand an arbitrary compact network into an equivalent deeper
and wider one, and can be used independently or together. Once trained, the resulting ExpandNet
can be contracted back to the original compact architecture in an algebraic manner, i.e., at no loss of
information. Further implementation details are provided in the supplementary material.

4 Experiments

In this section, we demonstrate the benefits of our ExpandNets on image classification, object
detection, and semantic segmentation. We further provide an ablation study to analyze the influence
of different expansion strategies and expansion rates in the supplementary material.

We denote the expansion of convolutional layers by CL, of convolutional kernels by CK, and of
fully-connected layers by FC. Specifically, we use FC(Arora18) to indicate that the expansion strategy
is similar to the one used in [5]. When combining convolutional expansions with fully-connected
ones, we use CL+FC or CK+FC.

4.1 Image Classification

We first study the use of our approach with very small networks on CIFAR-10 and CIFAR-100 [27],
and then turn to the more challenging ImageNet [46] dataset, where we show that our method can
improve the results of the compact MobileNet [21], MobileNetV2 [48] and ShuffleNetV2 0.5× [36].

4.1.1 CIFAR-10 and CIFAR-100

Table 1: Top-1 accuracy (%) of SmallNet with 7×7
kernels vs ExpandNets with r = 4 on CIFAR-10
and CIFAR-100.

Model Transfer CIFAR-10 CIFAR-100

SmallNet w/o KD 78.63± 0.41 46.63± 0.27
FC(Arora18) [5] w/o KD 78.64± 0.39 46.59± 0.45

ACNet [11] w/o KD 79.37± 0.52 47.18± 0.57
SmallNet w/ KD 78.97± 0.37 47.04± 0.35

ExpandNet-CL

w/o KD

78.47± 0.20 46.90± 0.66
ExpandNet-CL+FC 79.11± 0.23 46.66± 0.43

ExpandNet-CK 80.27± 0.24 48.55± 0.51
ExpandNet-CK+FC 80.31± 0.27 48.62± 0.47
ExpandNet-CL+FC w/ KD 79.60± 0.25 47.41± 0.51
ExpandNet-CK+FC 80.63± 0.31 49.13± 0.45

Experimental setup. For CIFAR-10 and
CIFAR-100 [27], we use the same compact
network as in [37] (architecture and training
setting in the supplementary material). To eval-
uate our kernel expansion method, we report
results obtained with a similar network where
the 3× 3 kernels were replaced by 7× 7 ones,
with a padding of 3. In this set of experiments,
the expansion rate r is set to 4 to balance the
accuracy-efficiency trade-off. Since our expan-
sion strategy is complementary to knowledge
transfer, i.e., an ExpandNet can act as student
in knowledge transfer, we further demonstrate
its benefits in this setting by conducting ex-
periments using knowledge distillation (KD) [20], hint-based transfer (Hint)[44] or probabilistic
knowledge transfer (PKT) [37] from a ResNet18 teacher.

We then evaluate our expansion strategies on MobileNet [21], MobileNetV2 [48], which we train for
350 epochs using a batch size of 128. We use stochastic gradient descent (SGD) with a momentum
of 0.9, weight decay of 0.0005 and a learning rate of 0.1, divided by 10 at epochs 150 and 250. Note
that training an ExpandNet takes slightly more time than training the compact network because of the
extra parameters, as reported in Table 2. Therefore, to confirm that our better results are not just due
to longer training, we also report the results of the baselines trained for the same amount of time as
our ExpandNets.

Table 2: Top-1 accuracy (%) of MobileNets vs Ex-
pandNets with r = 4 on CIFAR-10 and CIFAR-100.

Model Epoch Time CIFAR-10 CIFAR-100

MobileNet 13.08s 89.61 (88.87†) 67.93 (68.18†)
ExpandNet-CL 22.78s 91.79 69.75

MobileNetV2 24.88s 91.64 (90.85†) 71.66 (71.41†)
ExpandNet-CL 49.22s 92.58 72.33
† Accuracy with the same training time as ExpandNet-CL.
‡ Epoch Time was evaluated on CIFAR-10 on 2 32G TITAN V100 GPUs.

Results. We first focus on the SmallNet with
7 × 7 kernels, for which we can evaluate all
our expansion strategies, including the CK
ones, and report the results of the model with
3 × 3 kernels in the supplementary material.
Table 1 provides the results over 5 runs of all
our networks with and without KD, which we
have found to be the most effective knowledge
transfer strategy, as evidenced by comparing

5



these results with those obtained by Hint and PKT in the supplementary material. As shown in the
top portion of the table, only expanding the fully-connected layer, as in [5], yields mild improvement.
However, expanding the convolutional ones clearly outperforms the compact network, and is further
boosted by expanding the fully-connected one. Overall, expanding the kernels yields the best results;
it outperforms even the concurrent convolutional expansion ACNet of [11]. Note that even without
KD, our ExpandNets outperform SmallNet with KD. The gap is further increased when we also use
KD, as shown in the bottom portion of the table.

In Table 2, we provide the results for MobileNet and MobileNetV2, including the baselines trained
for a longer time, denoted by a †. These results confirm that our expansion strategies also boost the
performance of these MobileNet models, even when the baselines are trained longer.

4.1.2 ImageNet

Table 3: Top-1 accuracy (%) on the ILSVRC2012
validation set (ExpandNets with r = 4).

Model MobileNet MobileNetV2 ShuffleNetV2

original 66.48 63.75 56.89
ACNet [11] 67.61 64.29 52.43

original (w/ KD) 69.01 65.40 57.59

ExpandNet-CL 69.40 65.62 57.38
ExpandNet-CL (w/ KD) 70.47 67.19 57.68

Experimental setup. For ImageNet [46],
we use the compact MobileNet [21], Mo-
bileNetV2 [48] and ShuffleNetV2 [36] mod-
els, which were designed to be compact and
yet achieve good results. We rely on a pytorch
implementation of these models. For our ap-
proach, we use our CL strategy to expand all
convolutional layers with kernel size 3× 3 in
MobileNet and ShuffleNetV2, while only expanding the non-residual 3× 3 convolutional layers in
MobileNetV2. We trained the MobileNets using the short-term regime advocated in [17], i.e., 90
epochs with a weight decay of 0.0001 and an initial learning rate of 0.1, divided by 10 every 30
epochs. We employed SGD with a momentum of 0.9 and a batch size of 256. For ShuffleNet, we
used the small ShuffleNetV2 0.5×, trained as in [36]. We also applied KD from a ResNet152 (with
78.32% top-1 accuracy), tuning the KD hyper-parameters to the best accuracy for each method.

Results. We compare the results of the original models with those of our expanded versions in Table 3.
Our expansion strategy increases the top-1 accuracy of MobileNet, MobileNetV2 and ShuffleNetV2
0.5× by 2.92, 1.87 and 0.49 percentage points (pp). It also yields consistently higher accuracy than
the concurrent ACNet of [11]. Furthermore, our ExpandNets without KD outperform the MobileNets
with KD, even though we do not require a teacher.

4.2 Object Detection

Table 4: YOLO-LITE vs ExpandNet with
r = 4 on the PASCAL VOC2007 test set.

Model mAP (%)

YOLO-LITE 27.34
ExpandNet-CL 30.97

Our approach is not restricted to image classification. We
demonstrate its benefits for one-stage object detection.

Experimental setup. YOLO-LITE [23], which was de-
signed to work in constrained environments. The YOLO-
LITE used here is very compact, consisting of a backbone
with only 5 convolutional layers and of a head. We ex-
panded the 5 backbone convolutional layers using our CL strategy with r = 4, and trained the
resulting network on the PASCAL VOC2007 + 2012 [12, 13] training and validation sets in the
standard YOLO fashion [39, 40]. We report the mean average precision (mAP) on the PASCAL
VOC2007 test set.

Results. The results are reported in Table 4. As for object detection, our expansion strategy boosts
the performance of the compact network. Specifically, we outperform it by over 3.5pp.

4.3 Semantic Segmentation

Table 5: U-Net vs ExpandNet with r = 4
on the Cityscapes validation set.

Model mIOU mRec mPrec

U-Net 56.59 74.29 65.11
ExpandNet-CL 57.85 76.53 65.94

We then demonstrate the benefits of our approach on
semantic segmentation using the Cityscapes dataset [8].

Experimental setup. For this experiment, we rely on the
U-Net [45], which is a relatively compact network con-
sisting of a contracting and an expansive path. We apply
our CL expansion strategy with r = 4 to all convolutions
in the contracting path. We train the networks on 4 GPUs using the standard SGD optimizer with a

6



A

Figure 3: Training behavior of networks with 7× 7 kernels on CIFAR-10 (best viewed in color).
Left: Training and test curves over 150 epochs. Middle: Minimum pairwise gradient cosine similarity
at the end of each training epoch (higher is better). Right: Kernel density estimation of pairwise
gradient cosine similarity at the end of training (over 5 independent runs).

Table 6: Complexity analysis on CIFAR-10 for different expansion rates r. The baseline network
is the SmallNet with kernel size 7 (#Params:150.35K, #MACs: 6.12M, Epoch Time: 4.05s). Note
that, for a given training setting, the wall-clock time only moderately increases as r grows.

r 2 4 8
#Params #MACs Epoch Time #Params #MACs Epoch Time #Params #MACs Epoch Time

FC(Arora18) 339.40K 6.30M 4.09s 675.91K 6.64M 3.94s 1.74M 7.70M 4.02s
ExpandNet-CL 562.95K 25.16M 4.13s 2.17M 98.39M 4.61s 8.58M 389.35M 9.39s
ExpandNet-CK 237.72K 14.38M 4.10s 653.25K 42.64M 4.12s 2.07M 141.10M 5.50s

momentum of 0.9 and a learning rate of 1e− 8. Following the standard protocol, we report the mean
Intersection over Union (mIOU), mean recall (mRec) and mean precision (mPrec).

Results. Our results on the Cityscapes validation set are shown in Table 5. Note that our ExpandNet
outperforms the original compact U-Net.

5 Analysis of our Approach

To further analyze our approach, we first study its behavior during training and its generalization
ability. For these experiments, we make use of the CIFAR-10 and CIFAR-100 datasets, and use the
settings described in detail in our ablation study in the supplementary material. We then propose and
analyze two hypotheses to empirically evidence that the better performance of our approach truly
is a consequence of over-parameterization during training. In the supplementary material, we also
showcase the use of our approach with the larger AlexNet architecture on ImageNet and evaluate the
complexity of the models in terms of number of parameters, multiply-and-accumulate operations
(MACs), and training and testing inference speed. Note that, since our ExpandNets can be contracted
back to the original networks, at test time, they have exactly the same number of parameters, MACs,
and inference time as the original networks, but achieve better performance.

5.1 Training Behavior

To investigate the benefits of linear over-parameterization on training, we make use of the gradient
confusion introduced by Sankararaman et al. [49] to show that the gradients of nonlinearly over-
parameterized networks were more consistent across mini-batches. Specifically, following [49], we
measure gradient confusion (or rather consistency) as the minimum cosine similarity of gradients
over 100 randomly-sampled pairs of mini-batches at the end of each training epoch. It measures the
negative correlation between the gradients of different mini-batches, and thus indicates a disagreement
on the parameter update. As in [49], we also combine the gradient cosine similarity of 100 pairs of
sampled mini-batches at the end of training from each independent run and perform Gaussian kernel
density estimation on this data.

We run each experiment 5 times and show the average values across all runs in Figure 3. The
training and test curves show that our ExpandNets-CL/CK speed up convergence and yield a smaller
generalization error. They also yield lower gradient confusion (higher minimum cosine similarity) and

7



Table 7: Generalization ability on Corrupted CIFAR-10. We report the top-1 error (%). Note that
our ExpandNets yield smaller generalization errors than the compact network in almost all cases
involving convolutional expansion. By contrast expanding FC layers often does not help.

Dataset Model
Kernel size k

5 9
Best Test Last Test Train Best Test Last Test Train

20%

SmallNet 20.90± 0.16 21.09± 0.20 32.05± 0.31 22.56± 0.39 22.93± 0.18 29.61± 0.36
FC(Arora18) 20.87± 0.29 21.06± 0.26 32.04± 0.12 22.95± 0.39 23.48± 0.38 29.83± 0.34

ExpandNet-CL 20.47± 0.46 20.62± 0.43 31.80± 0.23 22.13± 0.49 22.73± 0.53 29.76± 0.19
ExpandNet-CK 19.42± 0.20 19.63± 0.17 31.55± 0.25 19.32± 0.31 19.55± 0.30 31.65± 0.17

50%

SmallNet 25.38± 0.45 25.68± 0.52 54.49± 0.41 28.64± 0.46 30.44± 0.57 52.67± 0.45
FC(Arora18) 25.36± 0.63 25.71± 0.77 54.44± 0.08 28.46± 0.43 30.89± 0.38 52.51± 0.36

ExpandNet-CL 24.27± 0.33 24.63± 0.44 54.29± 0.24 27.42± 0.35 29.28± 0.50 52.67± 0.27
ExpandNet-CK 22.82± 0.27 23.00± 0.29 53.93± 0.23 22.77± 0.14 22.99± 0.15 54.37± 0.12

80%

SmallNet 37.99± 0.64 39.33± 0.75 76.14± 0.15 41.73± 0.58 47.96± 1.07 74.01± 0.32
FC(Arora18) 38.35± 0.59 39.61± 0.87 76.51± 0.15 42.31± 0.46 49.36± 1.44 74.59± 0.35

ExpandNet-CL 36.75± 0.64 38.08± 0.50 76.09± 0.11 41.44± 0.46 46.75± 0.49 74.46± 0.08
ExpandNet-CK 33.29± 1.04 34.24± 0.85 75.77± 0.22 33.29± 0.58 33.75± 0.49 76.27± 0.23

�����6PDOO1HW�������� ����([SDQG1HW�)&�U ���������� ����([SDQG1HW�&/�U ���������� ����([SDQG1HW�&.�U ����������

Figure 4: Loss landscapes of networks with 9× 9 kernels on CIFAR-10 (We report top-1 error (%)).

a more zero-peaked density of pairwise gradient cosine similarity. This indicates that our networks
are easier to train than the compact model. By contrast, only expanding the FC layers, as in [5], does
not facilitate training. Additional plots are provided in the supplementary material.

Computational overheads and complexity analysis. To evaluate the influence of r on the com-
plexity of training, we report the number of parameters, MACs and wall-clock training time of a
SmallNet with kernel size 7 on CIFAR-10 on a single 12G TITAN V. As shown in Table 6, our
expansion strategies better leverage GPU computation, thus leading to only moderate wall-clock
time increases as r grows, particularly for our CK strategy. We provide further comparisons of the
complexity of our expanded networks and of the original ones in terms of number of parameters,
MACs and GPU speed with full use of GPUs in the supplementary material. Overall, as for very
compact networks, our ExpandNets better exploit the GPU to make full use of its capacity, leading to
similar training time to the original networks. For larger networks, such as MobileNets in Table 2,
the GPU usage saturates, and thus the training time of ExpandNets increases. Nevertheless, since our
ExpandNets can be contracted back to the original network, at test time, they have exactly the same
number of parameters, MACs and inference time as the original networks, but our networks achieve
better performance.

5.2 Generalization Ability

We then analyse the generalization ability of our approach. To this end, we first study the loss
landscapes using the method in [33]. As shown in Figure 4, our ExpandNets with CL and CK
expansion produce flatter minima, which, as discussed in [33], indicates better generalization.

As a second study of generalization, we evaluate the memorization ability of our ExpandNets on
corrupted datasets, as suggested by Zhang et al. [62]. To this end, we utilize the open-source
implementation of Zhang et al. [62] to generate three CIFAR-10 and CIFAR-100 training sets,
containing 20%, 50% and 80% of random labels, respectively, while the test set remains clean.

In Table 7 (and Tables S7, S8 and S9 in the supplementary material), we report the top-1 test errors
of the best model and of the one after the last epoch, as well as the training errors of the last model.
These results evidence that CL and CK expansion typically yields lower test errors and higher training
ones, which implies that our better results in the other experiments are not due to simply memorizing
the datasets, but truly to better generalization ability.

8



5.3 Is Over-parameterization the Key to the Success?

In the previous experiments, we have shown the good training behavior and generalization abil-
ity of our expansion strategies. Below, we explore and reject two hypotheses other than over-
parameterization that could be thought to explain our better results.

Hypothesis 1: The improvement comes from the different initialization resulting from expansion.

Table 8: Top-1 accuracy (%) of compact networks
initialized with different ExpandNets on CIFAR-
10, CIFAR-100 and ImageNet.

Model Initialization CIFAR-10 CIFAR-100

SmallNet

Standard 78.63± 0.41 46.63± 0.27
FC(Arora18) 79.09± 0.56 46.52± 0.36

ExpandNet-CL 78.65± 0.36 46.65± 0.47
ExpandNet-CL+FC 78.81± 0.52 46.43± 0.72

ExpandNet-CK 78.84± 0.30 46.56± 0.23
ExpandNet-CK+FC 79.27± 0.29 46.62± 0.29

ExpandNet-CK+FC Standard 80.31± 0.27 48.62± 0.47

Model Initialization ImageNet

MobileNet Standard 66.48
MobileNet ExpandNet-CL 66.44
ExpandNet-CL Standard 69.40
MobileNetV2 Standard 63.75
MobileNetV2 ExpandNet-CL 63.07
ExpandNet-CL Standard 65.62
ShuffleNetV2 0.5× Standard 56.89
ShuffleNetV2 0.5× ExpandNet-CL 56.91
ExpandNet-CL Standard 57.38

The standard (e.g., Kaiming) initialization of
our ExpandNets is in fact equivalent to a non-
standard initialization of the compact network.
In other words, an alternative would consist of
initializing the compact network with an un-
trained algebraically-contracted ExpandNet. To
investigate the influence of such different ini-
tialization schemes, we conduct several experi-
ments on CIFAR-10, CIFAR-100 and ImageNet.

The results are provided in Table 8. On
CIFAR-10, the compact networks initialized
with FC(Arora18) and ExpandNet-CL yield
slightly better results than training the corre-
sponding ExpandNets. However, the same
trend does not occur on CIFAR-100 and Im-
ageNet, where, with ExpandNet initialization,
MobileNet, MobileNetV2 and ShuffleNetV2
0.5× reach results similar to or worse than standard initialization, while training ExpandNet-CL
always outperforms the baselines. Moreover, the compact networks initialized by ExpandNet-CK
always yield worse results than training ExpandNets-CK from scratch. This confirms that our results
are not due to a non-standard initialization.

Hypothesis 2: The improvement is due to an intrinsic property of the CK expansion.

Table 9: Top-1 accuracy (%) of SmallNet with
7× 7 kernels vs ExpandNets with different rs on
CIFAR-10 and CIFAR-100.

r #params(K)† CIFAR-10 CIFAR-100

0.25 37.91/43.76 72.32± 0.62 39.23± 0.84
0.50 42.81/48.66 76.77± 0.36 43.68± 0.51
0.75 48.43/54.28 78.70± 0.42 46.41± 0.52
1.00 54.77/60.62 79.22± 0.52 47.25± 0.40

SmallNet 66.19/72.04 78.63± 0.41 46.63± 0.27

2.0 87.32/93.17 79.97± 0.18 48.13± 0.42
4.0 187.0/192.8 80.27± 0.24 48.55± 0.51

† #params(K) denotes the number of parameters (CIFAR-10 / CIFAR-100).

The amount of over-parameterization is directly
related to the expansion rate r. Therefore,
if some property of the CK strategy was the
sole reason for our better results, and not over-
parameterization, setting r ≤ 1 should be suf-
ficient. To study this, we follow the same
experimental setting as for Table 1 but set
r ∈ {0.25, 0.50, 0.75, 1.0, 2.0, 4.0}. As shown
in Table 9, for r < 1, the performance of
ExpandNet-CK drops by 6.38pp on CIFAR-10
and by 7.09pp on CIFAR-100 as the number of
parameters decreases. For r > 1, ExpandNet-CK consistently outperforms SmallNet. Interestingly,
with r = 1, ExpandNet-CK still yields better performance. This shows that our method benefits from
both ExpandNet-CK and over-parameterization.

6 Conclusion

We have introduced an approach to training a given compact network from scratch by exploiting linear
over-parameterization. Specifically, we have shown that over-parameterizing the network linearly
facilitates the training of compact networks, particularly when linearly expanding convolutional
layers. Our analysis has further evidenced that over-parameterization is the key to the success of
our approach, improving both the training behavior and generalization ability of the networks, and
ultimately leading to better performance at inference without any increase in computational cost.
Our technique is general and can also be used in conjunction with knowledge transfer approaches to
further boost performance. Finally, as shown in the supplementary material, initializing an ExpandNet
with its trained nonlinear counterpart can further boost its results. This motivates us to investigate the
design of other effective initialization schemes for compact networks in the future.

9



Broader Impact

Our work introduces a general approach to improve the performance of a given compact convolutional
neural network. It builds on the theoretical research on over-parameterization, but provides practical
and effective ways to facilitate the training of convolutional layers, with extensive experiments
and empirical analysis of our expansion strategies and of their impact on training behavior and
generalization ability. Currently, our results on AlexNet in the supplementary material seem to
indicate that expansion is not as effective on large networks than it is on compact ones. We nonetheless
expect that our work will motivate other researchers to study solutions for this scenario.

Our approach is general, and thus applicable to a broad range of problems, including those demon-
strated in our experiments, i.e., image classification, object detection and semantic segmentation,
but not limited to them. In particular, because we focus on compact network, our work could have
a significant impact for applications in resource-constrained environments, such as mobile phones,
drones, or autonomous navigation. As a matter of fact, we are actively working on deploying our
approach for perception-based autonomous driving. We acknowledge that such applications present
security risks, e.g., related to adversarial attacks. We nonetheless expect these risks to be mitigated
by the parallel research advances in adversarial robustness. Finally, from an ecological standpoint,
our approach requires more training resources than the compact network, thus increasing its carbon
footprint. Note, however, that this is mitigated by the fact that, at training time, we observed our
expanded networks to make better use of the GPU resources than the compact ones.

Acknowledgement

This work is supported in part by the Swiss National Science Foundation and by the Chinese
Scholarship Council.

References
[1] Z. Allen-Zhu, Y. Li, and Y. Liang. Learning and generalization in overparameterized neural

networks, going beyond two layers. arXiv Preprint, 2018.

[2] Z. Allen-Zhu, Y. Li, and Z. Song. A convergence theory for deep learning via over-
parameterization. arXiv Preprint, 2018.

[3] J. M. Alvarez and M. Salzmann. Learning the number of neurons in deep networks. In Advances
in Neural Information Processing Systems. Curran Associates, Inc., 2016.

[4] J. M. Alvarez and M. Salzmann. Compression-aware training of deep networks. In Advances in
Neural Information Processing Systems. Curran Associates, Inc., 2017.

[5] S. Arora, N. Cohen, and E. Hazan. On the optimization of deep networks: Implicit acceleration
by overparameterization. In International Conference on Machine Learning, 2018.

[6] P. Baldi and K. Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. IEEE Transactions on Neural Networks, 1989.

[7] A. M. Carreira-Perpinan and Y. Idelbayev. “learning-compression” algorithms for neural net
pruning. In Conference on Computer Vision and Pattern Recognition, 2018.

[8] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth,
and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In Conference
on Computer Vision and Pattern Recognition, 2016.

[9] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural networks:
Training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv
Preprint, 2016.

[10] M. Denil, B. Shakibi, L. Dinh, N. De Freitas, et al. Predicting parameters in deep learning. In
Advances in Neural Information Processing Systems, 2013.

10



[11] X. Ding, Y. Guo, G. Ding, and J. Han. Acnet: Strengthening the kernel skeletons for powerful
cnn via asymmetric convolution blocks. In International Conference on Computer Vision,
October 2019.

[12] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-
network.org/challenges/VOC/voc2007/workshop/index.html, 2007.

[13] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html, 2012.

[14] M. Figurnov, A. Ibraimova, D. P. Vetrov, and P. Kohli. Perforatedcnns: Acceleration through
elimination of redundant convolutions. In Advances in Neural Information Processing Systems,
2016.

[15] S. Gunasekar, J. D. Lee, D. Soudry, and N. Srebro. Implicit bias of gradient descent on linear
convolutional networks. In Advances in Neural Information Processing Systems. 2018.

[16] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv Preprint, 2015.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Conference on Computer Vision and Pattern Recognition, 2016.

[18] B. Heo, J. Kim, S. Yun, H. Park, N. Kwak, and J. Y. Choi. A comprehensive overhaul of feature
distillation. In International Conference on Computer Vision, 2019.

[19] B. Heo, M. Lee, S. Yun, and J. Y. Choi. Knowledge transfer via distillation of activation
boundaries formed by hidden neurons. In American Association for Artificial Intelligence
Conference, 2019.

[20] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. arXiv
Preprint, 2015.

[21] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications.
arXiv Preprint, 2017.

[22] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger. Densely connected convolutional
networks. In Conference on Computer Vision and Pattern Recognition, 2017.

[23] R. Huang, J. Pedoeem, and C. Chen. Yolo-lite: A real-time object detection algorithm optimized
for non-gpu computers. In IEEE International Conference on Big Data. IEEE, 2018.

[24] J. Jin, A. Dundar, and E. Culurciello. Flattened convolutional neural networks for feedforward
acceleration. In International Conference on Learning Representations, 2015.

[25] K. Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems, 2016.

[26] K. Kawaguchi, L. P. Kaelbling, and Y. Bengio. Generalization in deep learning. In Mathematics
of Deep Learning, Cambridge University Press. Prepint avaliable as: MIT-CSAIL-TR-2018-014,
Massachusetts Institute of Technology, 2018.

[27] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. 2009.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, 2012.

[29] T. Laurent and J. von Brecht. Deep linear networks with arbitrary loss: All local minima are
global. In International Conference on Machine Learning, 2018.

[30] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and V. Lempitsky. Speeding-up convolutional
neural networks using fine-tuned cp-decomposition. arXiv Preprint, 2014.

11



[31] Y. LeCun, J. S. Denker, and S. A. Solla. Optimal brain damage. In Advances in Neural
Information Processing Systems, 1990.

[32] N. Lee, T. Ajanthan, and P. H. Torr. Snip: Single-shot network pruning based on connection
sensitivity. In International Conference on Learning Representations, 2019.

[33] H. Li, Z. Xu, G. Taylor, C. Studer, and T. Goldstein. Visualizing the loss landscape of neural
nets. In Advances in Neural Information Processing Systems, 2018.

[34] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky. Sparse convolutional neural networks.
In Conference on Computer Vision and Pattern Recognition, 2015.

[35] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation.
In Conference on Computer Vision and Pattern Recognition, 2015.

[36] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun. Shufflenet v2: Practical guidelines for efficient cnn
architecture design. In European Conference on Computer Vision, September 2018.

[37] N. Passalis and A. Tefas. Learning deep representations with probabilistic knowledge transfer.
In European Conference on Computer Vision, 2018.

[38] M. Pavlo, T. Stephen, K. Tero, A. Timo, and K. Jan. Pruning convolutional neural networks for
resource efficient inference. In International Conference on Learning Representations, 2017.

[39] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. arXiv Preprint, 2016.

[40] J. Redmon and A. Farhadi. Yolov3: An incremental improvement. arXiv Preprint, 2018.

[41] R. Reed. Pruning algorithms-a survey. IEEE Transactions on Neural Networks, 4(5):740–747,
Sep. 1993. ISSN 1045-9227. doi: 10.1109/72.248452.

[42] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with
region proposal networks. In Advances in Neural Information Processing Systems, 2015.

[43] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo. Erfnet: Efficient residual factorized
convnet for real-time semantic segmentation. IEEE Transactions on Intelligent Transportation
Systems, 2017.

[44] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio. Fitnets: Hints for
thin deep nets. arXiv Preprint, 2014.

[45] O. Ronneberger, P.Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In Conference on Medical Image Computing and Computer Assisted Intervention,
2015.

[46] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale visual recognition
challenge. International Journal of Computer Vision, 2015.

[47] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran. Low-rank ma-
trix factorization for deep neural network training with high-dimensional output targets. In
International Conference on Acoustics, Speech, and Signal Processing, 2013.

[48] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Conference on Computer Vision and Pattern Recognition,
2018.

[49] K. A. Sankararaman, S. De, Z. Xu, W. R. Huang, and T. Goldstein. The impact of neural
network overparameterization on gradient confusion and stochastic gradient descent. arXiv
Preprint, 2019.

[50] A. M. Saxe, J. L. McClelland, and S. Ganguli. Exact solutions to the nonlinear dynamics of learn-
ing in deep linear neural networks. In International Conference on Learning Representations,
2014.

12



[51] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. In International Conference on Learning Representations, 2015.

[52] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In Conference on Computer Vision and Pattern
Recognition, 2015.

[53] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception ar-
chitecture for computer vision. In Conference on Computer Vision and Pattern Recognition,
2016.

[54] Y. Tian, D. Krishnan, and P. Isola. Contrastive representation distillation. In International
Conference on Learning Representations, 2020.

[55] K. Ullrich, E. Meeds, and M. Welling. Soft weight-sharing for neural network compression. In
International Conference on Learning Representations, 2017.

[56] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li. Learning structured sparsity in deep neural
networks. In Advances in Neural Information Processing Systems, 2016.

[57] W. Wen, C. Xu, C. Wu, Y. Wang, Y. Chen, and H. Li. Coordinating filters for faster deep neural
networks. In International Conference on Computer Vision, 2017.

[58] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer. Squeezedet: Unified, small, low power fully
convolutional neural networks for real-time object detection for autonomous driving. arXiv
Preprint, 2016.

[59] F. Wu, A. Souza, T. Zhang, C. Fifty, T. Yu, and K. Weinberger. Simplifying graph convolutional
networks. In International Conference on Machine Learning, pages 6861–6871, 2019.

[60] J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowledge distillation: Fast optimization,
network minimization and transfer learning. In Conference on Computer Vision and Pattern
Recognition, 2017.

[61] S. Zagoruyko and N. Komodakis. Paying more attention to attention: Improving the performance
of convolutional neural networks via attention transfer. In International Conference on Learning
Representations, 2017.

[62] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires
rethinking generalization. In International Conference on Learning Representations, 2017.

[63] Y. Zhou and Y. Liang. Critical points of linear neural networks: Analytical forms and landscape
properties. In International Conference on Learning Representations, 2018.

13


	Introduction
	Related Work
	ExpandNets
	Expanding Convolutional Layers
	Expanding Convolutions in Practice
	Expanding Fully-connected Layers

	Experiments
	Image Classification
	CIFAR-10 and CIFAR-100
	ImageNet

	Object Detection
	Semantic Segmentation

	Analysis of our Approach
	Training Behavior
	Generalization Ability
	Is Over-parameterization the Key to the Success?

	Conclusion

