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A Complementary Experiments

We provide additional experimental results to further evidence the effectiveness of our approach.

A.1 Initializing ExpandNets
Table S1: Top-1 accuracy (%) of SmallNet with
7×7 kernels vs ExpandNets with r = 4 on CIFAR-
10 and CIFAR-100.

Model Transfer CIFAR-10 CIFAR-100

SmallNet w/o KD 78.63± 0.41 46.63± 0.27
FC(Arora18) [5] w/o KD 78.64± 0.39 46.59± 0.45

ACNet [11] w/o KD 79.37± 0.52 47.18± 0.57
SmallNet w/ KD 78.97± 0.37 47.04± 0.35

ExpandNet-CL

w/o KD

78.47± 0.20 46.90± 0.66
ExpandNet-CL+FC 79.11± 0.23 46.66± 0.43

ExpandNet-CL+FC+Init 79.98± 0.28 47.98± 0.48
ExpandNet-CK 80.27± 0.24 48.55± 0.51

ExpandNet-CK+FC 80.31± 0.27 48.62± 0.47
ExpandNet-CK+FC+Init 80.81± 0.27 49.82± 0.25

ExpandNet-CL+FC

w/ KD

79.60± 0.25 47.41± 0.51
ExpandNet-CL+FC+Init 80.29± 0.25 48.62± 0.34

ExpandNet-CK+FC 80.63± 0.31 49.13± 0.45
ExpandNet-CK+FC+Init 81.21± 0.17 50.37± 0.39

As demonstrated by our experiments in the
main paper, training an ExpandNet from scratch
yields consistently better results than training the
original compact network. However, with deep
networks, initialization can have an important
effect on the final results. While designing an
initialization strategy specifically for compact
networks is an unexplored research direction,
our ExpandNets can be initialized in a natural
manner. To this end, we exploit the fact that an
ExpandNet has a natural nonlinear counterpart,
which can be obtained by incorporating a non-
linear activation function between each pair of
linear layers. We therefore propose to initial-
ize the parameters of an ExpandNet by simply
training its nonlinear counterpart and transferring the resulting parameters to the ExpandNet. The
initialized ExpandNet is then trained in the standard manner.

Table S2: YOLO-LITE vs ExpandNets with
r = 4 on the PASCAL VOC2007 test set.

Model mAP(%)

YOLO-LITE 27.34
ExpandNet-CL 30.97

ExpandNet-CL+Init 35.14

We applied this initialization scheme to the SmallNets
used in our CIFAR-10 and CIFAR-100 experiments,
and report the results in Table S1 and S3, respectively,
where +Init denotes the use of our initialization strat-
egy. We also report the result of this initialization
scheme on object detection in Table S2.

Note that this strategy yields an additional accuracy boost to our approach. In particular, since
YOLO-LITE is very compact, this scheme boosts performance by more than 4pp.

Note that, on ImageNet and Cityscapes, the nonlinear counterparts of the ExpandNets did not
outperform the ExpandNets, and thus we did not use our initialization strategy. As a general rule, when
the nonlinear counterparts achieves better performance than the ExpandNets, we recommend using
them for initialization. This suggests interesting directions for future research on the initialization of
our ExpandNets and of compact networks in general.

A.2 SmallNet with 3× 3 Kernels on CIFAR-10 & CIFAR-100
Table S3: Top-1 accuracy (%) of SmallNet with
3×3 kernels vs ExpandNets with r = 4 on CIFAR-
10 and CIFAR-100.

Model Transfer CIFAR-10 CIFAR-100

SmallNet w/o KD 73.32± 0.20 40.40± 0.60
FC(Arora18) [5] w/o KD 73.78± 0.83 40.52± 0.71

ACNet [11] w/o KD 74.52± 0.30 41.61± 0.49
SmallNet w/ KD 73.34± 0.31 40.46± 0.56

ExpandNet-CL
w/o KD

73.96± 0.30 40.91± 0.47
ExpandNet-CL+FC 74.45± 0.29 41.12± 0.49

ExpandNet-CL+FC+Init 75.16± 0.23 42.41± 0.21
ExpandNet-CL+FC w/ KD 74.52± 0.37 41.51± 0.49

ExpandNet-CL+FC+Init 75.17± 0.51 42.67± 0.67

As mentioned in the main paper, we also evalu-
ate our approach using the same small network
as in [37]. It is composed of 3 convolutional
layers with 3× 3 kernels and no padding. These
3 layers have 8, 16 and 32 output channels, re-
spectively. Each of them is followed by a batch
normalization layer, a ReLU layer and a 2× 2
max pooling layer. The output of the last layer
is passed through a fully-connected layer with
64 units, followed by a logit layer with either
10 or 100 units. All networks, including our
ExpandNets, were trained for 150 epochs using
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Table S5: Small networks vs ExpandNets on CIFAR-10 (Top) and CIFAR-100 (Bottom). We
report the top-1 accuracy for the original compact networks and for different versions of our approach.
Note that our ExpandNets yield higher accuracy than the compact network in almost all cases
involving expanding convolutions. By contrast expanding FC layers does often not help.

Model r
Kernel size k

3 5 7 9

SmallNet 79.34± 0.42 81.25± 0.14 81.44± 0.20 80.08± 0.48

FC(Arora18)
2 79.13± 0.47 81.26± 0.33 80.98± 0.25 80.43± 0.22
4 78.92± 0.36 81.13± 0.46 80.85± 0.24 80.13± 0.29
8 79.64± 0.41 81.21± 0.18 80.75± 0.45 80.16± 0.16

ExpandNet-CL
2 79.46± 0.21 81.50± 0.31 81.30± 0.30 80.26± 0.66
4 79.90± 0.21 81.60± 0.15 81.15± 0.36 80.62± 0.32
8 79.78± 0.20 81.75± 0.40 81.53± 0.33 80.78± 0.25

ExpandNet-CK
2 N/A 81.72± 0.31 82.19± 0.24 81.60± 0.11
4 N/A 82.34± 0.43 82.34± 0.22 81.73± 0.33
8 N/A 82.37± 0.25 82.84± 0.28 82.53± 0.30

SmallNet 48.14± 0.29 50.44± 0.07 49.62± 0.50 48.70± 0.38

FC(Arora18)
2 47.21± 0.46 48.39± 0.77 47.88± 0.41 46.36± 0.34
4 47.44± 0.66 48.92± 0.47 48.43± 0.56 46.90± 0.34
8 47.55± 0.25 49.44± 0.65 48.66± 0.49 47.15± 0.28

ExpandNet-CL
2 47.68± 0.85 50.39± 0.45 49.78± 0.33 48.68± 0.70
4 48.25± 0.13 50.68± 0.27 49.81± 0.31 48.87± 0.65
8 48.93± 0.13 50.95± 0.42 49.95± 0.37 48.85± 0.42

ExpandNet-CK
2 N/A 51.18± 0.44 51.09± 0.41 50.40± 0.35
4 N/A 52.13± 0.36 51.82± 0.67 50.62± 0.65
8 N/A 52.05± 0.59 52.48± 0.54 51.57± 0.15

a batch size of 128. We used standard stochastic gradient descent (SGD) with a momentum of 0.9
and a learning rate of 0.01, divided by 10 at epochs 50 and 100. With this strategy, all networks
reached convergence. For this set of experiments, we make use of our CL expansion strategy, with
and without our initialization scheme discussed above, because the CK one does not apply to 3× 3
kernels.

As reported in Table S3, expanding the convolutional layers yields higher accuracy than the small
network. This is further improved by also expanding the fully-connected layer, and even more so
when using our initialization strategy.

A.3 Knowledge Transfer with ExpandNets

Table S4: Knowledge transfer from the
ResNet18 on CIFAR-10. Using ExpandNets as
student networks yields consistently better results
than directly using SmallNet.

Network Transfer Top-1 Accuracy

SmallNet Baseline 73.32± 0.20

SmallNet
KD 73.34± 0.31

Hint 33.71± 4.35
PKT 68.36± 0.35

ExpandNet KD 74.52± 0.37
Hint 52.46± 2.43

(CL+FC) PKT 70.97± 0.70

ExpandNet KD 75.17± 0.51
Hint 58.27± 3.83

(CL+FC+Init) PKT 71.65± 0.41

In the main paper, we claim that our ExpandNet
strategy is complementary to knowledge trans-
fer. Following [37], on CIFAR-10, we make use
of the ResNet18 as teacher. Furthermore, we
also use the same compact network with kernel
size 3 × 3 and training setting as in [37]. In
Table S4, we compare the results of different
knowledge transfer strategies, including knowl-
edge distillation (KD) [20], hint-based transfer
(Hint)[44] and probabilistic knowledge transfer
(PKT) [37], applied to the compact network and
to our ExpandNets, without and with our ini-
tialization scheme. Note that using knowledge
transfer with our ExpandNets, with and without
initialization, consistently outperforms using it
with the compact network. Altogether, we there-
fore believe that, to train a given compact network, one should really use both knowledge transfer
and our ExpandNets to obtain the best results.

A.4 Hyper-parameter Choices

In this section, we evaluate the influence of the hyper-parameters of our approach, i.e., the expansion
rate r and the kernel size k. We study the behavior of our different expansion strategies, FC, CL and
CK, separately, when varying the expansion rate r ∈ {2, 4, 8} and the kernel size k ∈ {3, 5, 7, 9}.
Compared to our previous CIFAR-10 and CIFAR-100 experiments, we use a deeper network with an
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extra convolutional layer with 64 channels, followed by a batch normalization layer, a ReLU layer
and a 2× 2 max pooling layer. We use SGD with a momentum of 0.9 and a weight decay of 0.0005
for 150 epochs. The initial learning rate was 0.01, divided by 10 at epoch 50 and 100. Furthermore,
we used zero-padding to keep the size of the input and output feature maps of each convolutional
layer unchanged.

The results of these experiments are provided in Table S5. We observe that our different strategies
to expand convolutional layers outperform the compact network in almost all cases, while only
expanding fully-connected layers doesn’t work well. In particular, for kernel sizes k > 3, ExpandNet-
CK yields consistently higher accuracy than the corresponding compact network, independently
of the expansion rate. For k = 3, where ExpandNet-CK is not applicable, ExpandNet-CL comes
as an effective alternative, also consistently outperforming the baseline. In almost all cases, the
performance of convolutional expansions improves as the expansion rate increases.

A.5 Working with Larger Networks

Table S6: Top-1 accuracy (%) of AlexNet vs Ex-
pandNets with r = 4 on the ILSVRC2012 val-
idation set for different number of channels in
the last convolutional layer. Note that, while our
expansion strategy always helps, its benefits de-
crease as the original model grows.

# Channels 128 256 (Original) 512

Baseline 46.72 54.08 58.35
ExpandNet-CK 49.66 55.46 58.75

↑ 2.94 1.38 0.4

We also evaluate the use of our approach with
a larger network. To this end, we make use of
AlexNet [28] on ImageNet. AlexNet relies on
kernels of size 11 and 5 in its first two convo-
lutional layers, which makes our CK expansion
strategy applicable.

We use a modified, more compact version
of AlexNet, where we replace the first fully-
connected layer with a global average pooling
layer, followed by a 1000-class fully-connected
layer with softmax. To evaluate the impact of
the network size, we explore the use of different dimensions, [128, 256, 512], for the final convolu-
tional features. We trained the resulting AlexNets and corresponding ExpandNets using the same
training regime as for our MobileNets experiments in Section 4.

As shown in Table S6, while our approach outperforms the baseline AlexNets for all feature dimen-
sions, the benefits decrease as the feature dimension increases. This indicates that our approach is
better suited for truly compact networks, and developing similar strategies for deeper ones will be the
focus of our future research.

A.6 Generalization Ability on Corrupted CIFAR-10 and CIFAR-100

Our experiments on corrupted datasets in the main paper imply better generalization. Here, we provide
more experimental results on Corrupted CIFAR-10 (in Table S7) and CIFAR-100 (in Tables S8 and S9)
by using different networks with kernel sizes of 3, 5, 7, 9, respectively. Our method consistently
improves the generalization error gap across all kernel sizes and corruption rates (20%, 50%, 80%)
and yields from around 1pp to over 6pp error drop in testing.

A.7 Additional Visualizations

Here, we provide additional visualizations for the training behavior and the loss landscapes of
Section 5, corresponding to networks with kernel sizes of 3, 5, 7, 9, respectively.

Table S7: Generalization ability (top-1 error (%)) on Corrupted CIFAR-10 (kernel size: 3, 7).

Dataset Model
Kernel size k

3 7
Best Test Last Test Train Best Test Last Test Train

20%

SmallNet 22.20± 0.43 22.33± 0.40 34.85± 0.18 21.64± 0.36 21.98± 0.42 30.42± 0.32
FC(Arora18) 22.40± 0.29 22.61± 0.27 35.12± 0.07 21.92± 0.23 22.35± 0.43 30.39± 0.19

ExpandNet-CL 21.55± 0.27 21.71± 0.30 34.89± 0.26 21.25± 0.41 21.54± 0.40 30.36± 0.24
ExpandNet-CK N/A N/A N/A 19.11± 0.33 19.30± 0.35 31.14± 0.11

50%

SmallNet 25.74± 0.25 25.94± 0.15 56.48± 0.25 26.99± 0.69 27.87± 0.71 53.27± 0.21
FC(Arora18) 25.54± 0.47 25.80± 0.41 56.37± 0.15 26.86± 0.46 28.23± 0.61 53.14± 0.20

ExpandNet-CL 25.48± 0.35 25.66± 0.43 56.41± 0.33 26.05± 0.31 26.99± 0.15 53.21± 0.16
ExpandNet-CK N/A N/A N/A 22.43± 0.47 22.61± 0.49 53.74± 0.16

80%

SmallNet 37.49± 0.62 37.87± 0.63 77.46± 0.16 39.08± 0.41 43.33± 0.77 74.69± 0.26
FC(Arora18) 37.26± 0.16 37.63± 0.14 77.54± 0.07 40.51± 0.39 44.82± 0.62 75.38± 0.23

ExpandNet-CL 35.86± 0.43 36.05± 0.44 77.56± 0.11 39.40± 0.93 42.77± 0.96 75.24± 0.22
ExpandNet-CK N/A N/A N/A 32.62± 0.28 33.86± 0.37 75.65± 0.16
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Table S8: Generalization ability (top-1 error (%)) on Corrupted CIFAR-100 (kernel size: 3, 5).

Dataset Model
Kernel size k

3 5
Best Test Last Test Train Best Test Last Test Train

20%

SmallNet 55.30± 0.42 55.48± 0.41 62.20± 0.31 53.95± 0.33 54.16± 0.34 58.53± 0.30
FC(Arora18) 56.15± 0.22 56.35± 0.23 62.60± 0.19 54.84± 0.71 55.05± 0.76 59.47± 0.32

ExpandNet-CL 54.85± 0.27 55.04± 0.33 61.62± 0.43 53.50± 0.35 53.71± 0.38 58.09± 0.31
ExpandNet-CK N/A N/A N/A 51.98± 0.28 52.10± 0.26 57.67± 0.63

50%

SmallNet 62.54± 0.74 62.71± 0.75 78.81± 0.39 61.84± 0.29 62.16± 0.21 76.78± 0.28
FC(Arora18) 63.65± 0.50 63.88± 0.47 79.40± 0.18 62.99± 0.69 63.21± 0.60 77.85± 0.31

ExpandNet-CL 61.95± 0.61 62.11± 0.59 78.78± 0.48 61.49± 0.39 61.70± 0.43 76.73± 0.26
ExpandNet-CK N/A N/A N/A 58.96± 0.32 59.14± 0.41 76.24± 0.30

80%

SmallNet 78.35± 0.83 78.52± 0.86 93.78± 0.18 78.59± 0.27 78.81± 0.35 93.10± 0.12
FC(Arora18) 80.36± 0.55 80.47± 0.55 94.38± 0.12 80.97± 0.51 81.15± 0.53 94.10± 0.16

ExpandNet-CL 79.44± 0.72 79.66± 0.75 94.02± 0.16 79.87± 0.29 80.04± 0.29 93.59± 0.20
ExpandNet-CK N/A N/A N/A 77.22± 0.47 77.38± 0.41 93.15± 0.25

Table S9: Generalization ability (top-1 error (%)) on Corrupted CIFAR-100 (kernel size: 7, 9).

Dataset Model
Kernel size k

7 9
Best Test Last Test Train Best Test Last Test Train

20%

SmallNet 55.36± 0.44 55.66± 0.43 56.33± 0.51 56.59± 0.72 57.26± 0.64 55.16± 0.32
FC(Arora18) 56.31± 0.78 56.58± 0.77 57.93± 0.29 57.82± 0.23 58.07± 0.22 57.09± 0.52

ExpandNet-CL 54.87± 0.47 55.22± 0.55 55.52± 0.49 56.05± 0.75 56.51± 0.76 54.99± 0.48
ExpandNet-CK 51.24± 0.60 51.40± 0.66 56.40± 0.21 52.36± 0.54 52.55± 0.47 57.76± 0.50

50%

SmallNet 63.76± 0.59 64.08± 0.58 75.45± 0.23 64.83± 0.41 65.63± 0.40 75.21± 0.31
FC(Arora18) 64.54± 0.72 64.91± 0.55 76.75± 0.39 66.11± 0.45 66.73± 0.41 76.44± 0.40

ExpandNet-CL 63.36± 0.49 63.73± 0.54 75.25± 0.45 64.36± 0.54 65.25± 0.37 74.84± 0.28
ExpandNet-CK 58.74± 0.25 58.98± 0.20 75.24± 0.24 60.42± 0.86 60.65± 0.86 76.73± 0.40

80%

SmallNet 79.73± 0.47 79.95± 0.36 92.58± 0.20 81.02± 0.92 81.70± 0.97 92.54± 0.26
FC(Arora18) 82.97± 0.83 83.20± 0.83 94.13± 0.34 83.42± 0.72 83.82± 0.71 93.94± 0.35

ExpandNet-CL 80.79± 0.54 81.09± 0.62 93.22± 0.30 81.02± 0.44 81.58± 0.46 93.25± 0.56
ExpandNet-CK 78.51± 0.41 78.64± 0.36 93.24± 0.15 80.15± 0.50 80.32± 0.55 94.04± 0.21
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Figure S1: Loss landscape plots on CIFAR-10 (We report top-1 error (%)).

We plot the loss landscapes of SmallNets and corresponding ExpandNets on CIFAR-10 in Figure S1,
and analyze the training behavior on CIFAR-10 in Figure S2 and on CIFAR-100 in Figure S3. These
plots further confirm that in almost all cases, our convolution expansion strategies (CL and CK)
facilitate training (with lower gradient confusion and more 0-concentrated gradient cosine similarity
density) and yield better generalization ability (with flatter minima).
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(a) kernel size: 3

(b) kernel size: 5

A

(c) kernel size: 7

(d) kernel size: 9

Figure S2: Training behavior of networks on CIFAR-10 (best viewed in color). Left: Training and
test curves over 150 epochs. Middle: Minimum pairwise gradient cosine similarity at the end of
each training epoch (higher is better). Right: Kernel density estimation of pairwise gradient cosine
similarity at the end of training (over 5 independent runs).
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(a) kernel size: 3

(b) kernel size: 5

(c) kernel size: 7

(d) kernel size: 9

Figure S3: Training behavior of networks on CIFAR-100 (best viewed in color). Left: Training
and test curves over 150 epochs. Middle: Minimum pairwise gradient cosine similarity at the end of
each training epoch (higher is better). Right: Kernel density estimation of pairwise gradient cosine
similarity at the end of training (over 5 independent runs).
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Table S10: ExpandNet complexity analysis on CIFAR-10, ImageNet, PASCAL VOC and
Cityscapes. Note that, within each task, the metrics are the same for all networks, since we can
compress our ExpandNets back to the small network.

Model # Params(M) # MACs GPU Speed (imgs/sec)
Train Test Train Test Train Test

SmallNet (7× 7) 0.07

0.07

4.49M

4.49M

147822.51

154850.52
ExpandNet-CL 0.55 57.49M 64651.81

ExpandNet-CL+FC 2.11 59.04M 61379.95
ExpandNet-CK 0.19 23.95M 75065.09

ExpandNet-CK+FC 1.75 25.5M 68679.89

MobileNet 4.23
4.23

0.58G
0.58G 3797.21

3829.81ExpandNet-CL 4.96 1.76G 729.78

MobileNetV2 3.50
3.50

0.32G
0.32G 3417.20

3419.43ExpandNet-CL 3.67 1.34G 1009.25

ShuffleNetV2 0.5× 1.37
1.37

0.04G
0.04G 5404.06

5434.58ExpandNet-CL 1.41 0.6G 4228.10

YOLO-LITE 0.57
0.57

1.81G
1.81G 7.94

19.82ExpandNet-CL 4.48 28.59G 6.07

U-Net 7.76
7.76

389.26G
389.26G 8.25

8.25ExpandNet-CL 82.97 2586.02G 2.98

B Complexity Analysis

Here, we compare the complexity of our expanded networks and the original networks in terms of
number of parameters, number of MACs and GPU speed.

In Table S10, we provide numbers for both training and testing. During training, because our approach
introduces more parameters, inference is 2 to 5 times slower than in the original network for an
expansion rate of 4. However, since our ExpandNets can be contracted back to the original network,
at test time, they have exactly the same number of parameters and MACs, and inference time, but our
networks achieve higher accuracy.

C Discussion of Related Methods
In this section, we discuss in more detail the two works that are most closely related to ours. These
two works also evidence the benefits of linear over-parameterization, thus strengthening our argument,
but differ significantly from ours in terms of specific strategy. Note that, as shown by our experiments,
our approach outperforms theirs.

C.1 Discussion of [5]

Arora et al. [5] worked mostly with purely linear, fully-connected models, with only one example
using a nonlinear model, where again only the fully-connected layer was expanded. By contrast, we
focus on practical, nonlinear, compact convolutional networks, and we propose two ways to expand
convolutional layers, which have not been studied before. As shown by our experiments in the main
paper and in Section A of this supplementary material, our convolutional linear expansion strategies
yield better solutions than vanilla training, with higher accuracy, more zero-centered gradient cosine
similarity during training and minima that generalize better. This is in general not the case when
expanding the fully-connected layers only, as proposed by Arora et al. [5]. Furthermore, in contrast
with [5], who only argue that depth speeds up convergence, we empirically show, by using different
expansion rates, that increasing width helps to reach better solutions. We now discuss in more detail
the only experiment in [5] with a nonlinear network.

In their paper, Arora et al. performed a sanity test on MNIST with a CNN, but only expanding the
fully-connected layer. According to our experiments, expanding fully-connected layers only (denoted
as FC(Arora18) in our results) is typically insufficient to outperform vanilla training of the compact
network. This was confirmed by using their code, with which we found that, in their setting, the
over-parameterized model yields higher test error. We acknowledge that Arora et al. [5] did not claim
that expansion led to better results but sped up convergence. Nevertheless, this seemed to contradict
our experiments, in which our FC expansion was achieving better results than that of Arora et al. [5].
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Figure S4: Product L2 vs Normal L2 (best viewed in color). Left: Training curves of the overall
loss function. Middle Left: Training curves of the cross-entropy. Middle Right: Curves of training
errors. Right: Curves of test errors. (Note that the y-axis is in log scale.)

While analyzing the reasons for this, we found that Arora et al. [5] used a different weight decay
regularizer than us. Specifically, considering a single fully-connected layer expanded into two, this
regularizer is defined as

Lr = ‖W̃fc‖22 = ‖Wfc1Wfc2‖22 , (S.1)

where Wfc1 and Wfc2 represent the parameter matrices of the two fully-connected layers after
expansion. That is, the regularizer is defined over the product of these parameter matrices. While this
corresponds to weight decay on the original parameter matrix, without expansion, it contrasts with
usual weight decay, which sums over the different parameter matrices, yielding a regularizer of the
form

Lr = ‖Wfc1‖22 + ‖Wfc2‖22 . (S.2)

The product L2 norm regularizer used by Arora et al. [5] imposes weaker constraints on the individual
parameter matrices, and we observed their over-parameterized model to converge to a worse minimum
and lead to worse test performance when used in a nonlinear CNN.

To evidence this, in Figure S4, we compare the original model with an over-parameterized one
relying on a product L2 regularizer as in [5], and with an over-parameterized network with normal
L2 regularization, corresponding to our FC expansion strategy. Even though the overall loss of Arora
et al. [5]’s over-parameterized model decreases faster than that of the baseline, the cross-entropy loss
term, the training error and the test error do not show the same trend. The test errors of the original
model, Arora et al. [5]’s over-parameterized model with product L2 norm and our ExpandNet-FC
with normal L2 norm are 0.9%, 1.1% and 0.8%, respectively. Furthermore, we also compare Arora
et al. [5]’s over-parameterized model and our ExpandNet-FC with an expansion rate r = 2. We
observe that Arora et al. [5]’s over-parameterized model performs even worse with a larger expansion
rate, while our ExpandNet-FC works well.

Note that, in the experiments in the main paper and below, the models denoted by FC(Arora18) rely
on a normal L2 regularizer, which we observed to yield better results and makes the comparison fair
as all models then use the same regularization strategy.

C.2 Discussion of ACNet [11]
k
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Figure S5: One ACNet block (best
viewed in color).

The work of Ding et al. [11], concurrent to ours, also pro-
posed a form of expansion of convolutions. Specifically,
as shown in Figure S5, their approach consists of replacing
a convolutional layer with k×k kernels with three parallel
layers: One with the same square k × k kernel, and two
with 1D asymmetric convolutions of size 1× k and k × 1.
These three different convolutions are then applied in par-
allel on the same input feature map, and their outputs are
combined via addition.

As argued in [11], the goal of this operation is to increase
the representation power of a standard square kernel by
strengthening the kernel skeletons. While effective, the over-parameterization resulting from this
approach remains limited; by using 1D convolutions in parallel to the original ones, it can only
add 2kmn parameters for every k × k kernel with m input and n output channels. By contrast, by
incorporating new convolutional layers in a serial manner, we can modify the number of channels
of the intermediate layers so as to increase the number of parameters of the network much more
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drastically, and in a much more flexible way, thanks to our expansion rate. Specifically, with
an expansion rate r, our CL expansion strategy yield rm2 + k2r2mn + rn2 parameters instead
of k2mn for the original convolution. Ultimately, while ACNet can indeed improve the image
classification performance, as shown in [11] and confirmed by our experiments, the greater flexibility
of our approach yields significantly better results, particularly for networks relying on depthwise
convolutions, as evidenced by our ImageNet results, and networks with kernel sizes larger than 3,
as evidenced by our results with a SmallNet with 7× 7 kernels. Furthermore, note that, in contrast
to Arora et al. [5] and Ding et al. [11], we also demonstrate the effectiveness of our expansion strategy
on object detection and semantic segmentation.

D Matrix Representation of a Convolution Operator

We provide an example of the matrix representation of a convolutional layer, following Eq. 1 in the
main paper. Given an input X1×1×3×3 and convolutional filters F1×1×2×2, expressed as

X1×1×3×3 =

[[[
x11 x12 x13

x21 x22 x23

x31 x32 x33

]]]
, F1×1×2×2 =

[[[
k11 k12
k21 k22

]]]
, (S.3)

the matrix representation of a convolution can be obtained by vectorizing the input as

Xv
9×1 = [x11 x12 x13 x21 x22 x23 x31 x32 x33]

T
, (S.4)

and by defining a highly-structured matrix containing the filters as

W F
4×9 =

k11 k12 0 k21 k22 0 0 0 0
0 k11 k12 0 k21 k22 0 0 0
0 0 0 k11 k12 0 k21 k22 0
0 0 0 0 k11 k12 0 k21 k22

 . (S.5)

Then, the convolution operation (∗) can be equivalently written as

Y1×1×2×2 = X1×1×3×3 ∗ F1×1×2×2 = reshape(W F
4×9 ×Xv

9×1) , (S.6)
where × denotes the standard matrix-vector product.

To contract an ExpandNet, one can then compute the matrix product of its expanded layers to
obtain a single matrix representing these multiple operations. This matrix can then be transferred
back to a standard convolution filter tensor representation following the reverse strategy to the
one explained above. For the details of how we contract our ExpandNets in practice, we invite
the reader to check our submitted code (codesource/exp_cifar/utils/compute_new_weights.py and
codesource/exp_imagenet/utils/compute_new_weights.py). Note that, in our implementation, we
take advantage of the Pytorch tensor operators.

Below, we provide some toy code to expand a convolutional layer with either standard or depthwise
convolutions and contract the expanded layers back. This code is based on our submitted code and
can also be found in codesource/dummy_test.py.

Pytorch code to expand and contract back a standard convolutional layer:
1 import torch
2 import torch.nn as nn
3

4 m = 3 # input channels
5 n = 8 # output channels
6 k = 5 # kernel size
7 r = int (4) # expansion rate
8 imgs = torch.randn ((8, m, 7, 7)) # input images with batch size as 8
9

10 # original standard convolutional layer
11 F = nn.Conv2d(m, n, k)
12

13 # Expand -CL with r
14 F1 = nn.Conv2d(m, r*m, 1)
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15 F2 = nn.Conv2d(r*m, r*n, k)
16 F3 = nn.Conv2d(r*n, n, 1)
17

18 # contracting
19 from exp_cifar.utils.compute_new_weights \
20 import compute_cl , compute_cl_2
21 tmp = compute_cl(F1 , F2)
22 tmp = compute_cl_2(tmp , F3)
23 F.weight.data , F.bias.data = tmp['weight '], tmp['bias']
24

25 # test
26 res_cl = F3(F2(F1(imgs)))
27 res_F = F(imgs)
28 print('Contract from Expand -CL: %.7f' % (res_cl -res_F).sum())# <10^-5
29

30 # Expand -CK
31 # k = 5, l=2
32 F1 = nn.Conv2d(m, r*m, 3)
33 F2 = nn.Conv2d(r*m, n, 3)
34

35 # contracting
36 from exp_cifar.utils.compute_new_weights import compute_ck
37 tmp = compute_ck(F1 , F2)
38 F.weight.data = tmp['weight ']
39 F.bias.data = tmp['bias']
40

41 # test
42 res_ck = F2(F1(imgs))
43 res_F = F(imgs)
44 print('Contract from Expand -CK: %.7f' % (res_ck -res_F).sum())# <10^-5

Listing 1: Expansion and contraction of a standard convolutional layer

Pytorch code to expand and contract back a depthwise convolutional layer with a kernel size of 3:
1 # for depthwise conv , input channels=out channels
2 m = 4 # input channels
3 n = 4 # output channels
4 k = 3 # kernel size
5 r = int (4) # expansion rate
6 imgs = torch.randn ((8, m, 7, 7))
7

8 # original depthwise convolutional layer
9 F = nn.Conv2d(m, n, k, groups=m, bias=False)

10

11 # Expand -CL with r
12 F1 = nn.Conv2d(m, r*m, 1, groups=m, bias=False)
13 F2 = nn.Conv2d(r*m, r*m, k, groups=m, bias=False)
14 F3 = nn.Conv2d(r*m, n, 1, groups=m, bias=False)
15

16 # contracting
17 from exp_imagenet.utils.compute_new_weights \
18 import compute_cl_dw_group , compute_cl_dw_group_2
19

20 tmp = compute_cl_dw_group(F1, F2)
21 tmp = compute_cl_dw_group_2(tmp , F3)
22

23 F.weight.data = tmp['weight ']
24

25 # test
26 res_depthwise_cl = F3(F2(F1(imgs)))
27 res_F = F(imgs)
28 print('Contract from depthwise Expand -CL: %.7f' % (res_depthwise_cl -

res_F).sum())# <10^-5
Listing 2: Expansion and contraction of a depthwise convolutional layer
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