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Abstract

It is known that learning deep neural-networks is computationally hard in the
worst-case. In fact, the proofs of such hardness results show that even weakly
learning deep networks is hard. In other words, no efficient algorithm can find a
predictor that is slightly better than a random guess. However, we observe that
on natural distributions of images, small patches of the input image are corre-
lated to the target label, which implies that on such natural data, efficient weak
learning is trivial. While in the distribution-free setting, the celebrated boosting
results show that weak learning implies strong learning, in the distribution-specific
setting this is not necessarily the case. We introduce a property of distributions,
denoted “local correlation”, which requires that small patches of the input image
and of intermediate layers of the target function are correlated to the target label.
We empirically demonstrate that this property holds for the CIFAR and ImageNet
data sets. The main technical results of the paper is proving that, for some classes
of deep functions, weak learning implies efficient strong learning under the “local
correlation” assumption.

1 Introduction and Motivation

It is well known (e.g. [26]) that while deep neural-networks can express any function that can
be run efficiently on a computer, in the general case, learning neural-networks is computationally
hard. Despite this theoretic pessimism, in practice, deep neural networks are successfully trained on
real world datasets. Bridging this theoretical-practical gap seems to be the holy grail of theoretical
machine learning nowadays. Maybe the most natural direction to bridge this gap is to find a property
of data distributions that determines whether learning them is computationally easy or hard. The goal
of this paper is to propose such a property.

To start off, let us take a closer look into computational hardness results on learning neural-networks.
Over the years, the theoretical machine learning community has established many such hardness
results, drawing from different hardness assumptions [26, 29, 9, 33]. While these results differ
in their technical details, they all share one thing in common: they all show that weakly learning
neural-networks is computationally hard. That is, all these works analyze cases where no efficient
algorithm can achieve test performance that is even slightly better than a random guess, although
there exists a neural-network that perfectly fits the data.

While these results have great theoretical implications, we claim that they have nothing to do with
understanding learnability of neural-networks on natural data. Indeed, in natural problems, even
ones that are considered very challenging, achieving better-than-random performance is usually
trivial. To demonstrate this, we perform the following simple experiment: we train a linear classifier
on a single patch taken from images in some image classification task. We observe that even on a
complex task such as ImageNet, a linear predictor that gets only a 3⇥ 3 patch as an input, achieves

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



1.5% top-5 accuracy — much better than a random guess (0.5% top-5 accuracy). Figure 1 details
the results of this experiment.

CIFAR 3⇥ 3 patch 18.0-21.3 %
Random 10 %

ImageNet 3⇥ 3 patch 0.25-0.46%
Random 0.1%

ImageNet
(top-5)

3⇥ 3 patch 1.2-1.5%
Random 0.5%

Figure 1: Performance of linear classifier on a single 3⇥3 patch from different locations in the image,
trained using Adam optimizer, for 10 epochs. Left: an example image with network prediction on
every patch (DE: deer, FR: frog, BI: bird, HO: horse, DO: dog). Right: mean test accuracy for
patches taken from different locations in the image (worst to best) vs. a random-guess performance.

So, achieving better-than-random test performance (weak learning) is fairly easy when considering
natural data, even when observing only a small fraction of the input. However, we are interested
in achieving strong learning - i.e., finding a classifier with arbitrarily small error on the test data.
Can we leverage our weak patch-based learners to find a strong learner? In our theoretical results
(detailed in section 3.2), we show that this is indeed possible using a gradient-based layerwise op-
timization process, for some family of deep functions. The key property that is required for such
strong learning is local correlation: correlation between intermediate outputs of the target function
that we wish to approximate, and the target label. Here, we verify that this property holds for the
ImageNet classification task. As the “target labeling function” we take a pre-trained architecture
(ResNet-50), and for some layer l, with output of size H⇥W ⇥C (i.e., output O 2 RH⇥W⇥C), and
for some position (i, j), we train a linear classifier from the C channels in the (i, j) position (with
input Oi,j,:) to predict the label (in the ImageNet classification task). As expected, when observ-
ing higher layers, and positions closer to the center of the image, the performance of the classifier
improves significantly. However, we note that even in layers very close to the input and far from
the center, the accuracy of the predictor is much better than a random guess. The results of this
experiments are shown in figure 2.

Figure 2: Top-5 accuracy of linear readout from feature-vectors in different layers of a pre-trained
ResNet-50 network. The classifiers are trained with Adam optimizer, for 5 epochs, to predict the
ImageNet classes. Each pixel in the image shows the top-5 accuracy of the (i, j) feature-vector in
the given layer, sampled in a 7⇥ 7 grid. Note that random-guess performance is 0.5%.

2 Local correlations in k-parities

In the previous section, we showed that in natural distributions, small parts of the input already con-
tain some information about the target label. We start by formalizing the notion of local correlations
in a well-known learning problem: the k-parity problem. Let X = {±1}n be the instance space
and Y = {±1} be the label set. In the k-parity problem, there is a subset I ✓ [n] of k relevant
bits (which are unknown to the learner), and the label is given by fI(x) =

Q
i2I xi. Namely, the
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label is 1 if the number of �1’s among the relevant bits is even and �1 otherwise. The problem of
learning parities was studied extensively in the literature of learning theory [17, 18, 8, 33, 10]. It
is well known (e.g. [33]) that the parity problem can be expressed by a fully connected two layer
network or by a depth log(n) locally connected 1 network.
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Figure 3: Training depth-two ReLU networks of
size 128 with Adam, on both instances of the k-
parity problem (k = 5, n = 128). The figure
shows the accuracy on a test set.

It is known that when the distribution over
the inputs is uniform, weakly learning k-
parities using any noisy2 gradient-based algo-
rithm needs n⌦(k) updates (see [33]). So, un-
less k is constant, gradient-based algorithms
cannot efficiently find a better-than-random
predictor for the k-parity problem, under the
uniform distribution. However, we observe that
when the distribution is biased, finding a better-
than-random predictor is trivial.

To see this formally, fix some distribution D
over X , some subset I ✓ [n] of size |I| = k,
and some coordinate i 2 [n]. Denote the ac-
curacy of xi with respect to fI by CD(xi) =

PD [xi = fI(x)]. Denote the bias of the target
fI by b := PD [fI(x) = 1], and without loss
of generality we assume that b � 1/2. Observe
that the bias is the accuracy of the trivial predic-
tor that always predict the label 1, and this triv-
ial predictor is better than the “random guess”
predictor (whose accuracy is always 1/2). It follows that CD(xi) > b if and only if the function
x 7! xi is a non-trivial predictor of the label fI(x). Next, using
ED [xifI(x)] = PD [xi = fI(x)]� PD [xi 6= fI(x)] = CD(xi)� (1� CD(xi)) = 2CD(xi)� 1 ,

using the definition fI(x) =
Q

j2I xj , and assuming that xj , xj0 are independent for every j, j0, we
get that

CD(xi) =
1

2

+

1

2

ED [xifI(x)] =
1

2

+

1

2

Y

j2I\{i}

ED [xj ]

So, when D is the uniform distribution, ED [xj ] = 0 and therefore for every i 2 [n] we have that
CD(xi) = 1/2 = b, while if D is a biased distribution, where every bit is 1 w.p. 1

2

+ ✏, we have that
ED [xj ] = 2✏, which yields, for every i 2 I:

CD(xi) =
1

2

+

1

2

(2✏)k�1 >
1

2

+

1

2

(2✏)k = b .

Therefore, if k = O(log n), we get that in the biased distribution, the bits of the parity weakly
approximate the target label. In this case, to solve the k-parity problem it is enough to iterate over
all the input bits, and find all the bits that predict the input with better-than-chance performance.
Since all the bits outside the set I are independent of the label, this gives a simple algorithm for
finding the set I exactly. That is, in this simple example, we can use the fact that weak learning is
easy to find a strong learner.

The above discussion shows two distributions, the uniform one and the biased one, where the former
has no local correlations between input bits and the target label and the latter has local correlations
between the relevant bits and the target label. In addition, the former is not learnable by gradient-
based algorithms while the latter is learnable by a simple algorithm. In the next section we will
formalize this distinction by generalizing the problem, but before that, to complete the picture for
parities, we observe the empirical behavior of a one hidden-layer neural network trained on the
k-parity problem, for the uniform and biased distributions (in the biased case, the probability of
every bit to be 1 is 0.6). As can be seen in figure 3, adding a slight bias to the probability of each
bit dramatically affects the behavior of the network: while on the uniform distribution the training
process completely fails, in the biased case it converges to a perfect solution.

1i.e. every two adjacent neurons are only connected to one neuron in the upper layer.
2Even an extremely small amount of noise, below the machine precision.
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Figure 4: Tree-structured Boolean Circuit.

3 Learning Tree-structured Boolean Circuits

In this section we give a formal definition of the local correlation assumption (LCA), that is aligned
with the properties of natural data we observe in section 1. We focus on the class of tree-structured
Boolean circuits, which generalize the k-parity problem. For this class of functions, we construct
a gradient-based algorithm for learning deep architectures and prove that it is a strong learner on
distributions that satisfy LCA.

3.1 Problem Setting

We define a circuit C to be a directed graph with n input nodes and a single output node,
where each inner node has exactly two incoming edges, and is labeled by some arbitrary Boolean
function f : {±1}2 ! {±1}, which we call a gate. For each node v in C we denote by
�(v) 2 �f : {±1}2 ! {±1} its gate. We recursively define hv,C : {±1}n ! {±1} to be:

hv,C(x) = �(v) (hu1,C(x), hu2,C(x))

where u
1

, u
2

are the nodes with outcoming edges to v. Define hC = ho,C , for the output node o.

We study the problem of learning the target function hC , when C is a full binary tree, and n = 2

d,
where d is the depth of the tree. The leaves of the tree are the input bits, ordered by x

1

, . . . xn.
We denote by H the family of functions that can be implemented by such tree-structured Boolean
circuit. Admittedly, H is much smaller than the family of all circuits of depth d, but still gives a
rather rich family of functions. For example, H contains all the parity functions on any k bits of the
input. We note that the the size of H grows like 6

n, as shown in [16].

We introduce a few notations that are used in the sequel. Fix some tree-structured Boolean circuit
C. This circuit has d levels, and we denote vi,j the j-th node in the i-th level of the tree, and denote
�i,j = �(vi,j). Fix some i 2 [d], let ni := 2

i, and denote by �i : {±1}ni ! {±1}ni/2 the function
calculated by the i-th level of the circuit: �i(x) =

�
�i�1,1(x1

, x
2

), . . . , �i�1,ni/2(xni�1

, xni)

�
. For

i < i0, we denote: �i...i0 := �i � · · · � �i0 . So, the full circuit is given by hC(x) = �

1...d(x).

As noted, our goal is to learn Boolean circuits with neural-networks. To do so, we use a network
architecture that aims to imitate the Boolean circuits described above. We replace each Boolean gate
with a neural-gate: a one hidden-layer ReLU network, with a hard-tanh3 activation on its output.
Formally, let � be the ReLU activation, and let � be the hard-tanh activation, so:

�(x) = max(x, 0), �(x) = max(min(x, 1),�1)
Define a neural-gate to be a neural-network with one hidden-layer of size k, input dimension 2, with
ReLU activation for the hidden-layer and hard-tanh for the output node. So, denote g

w,v : R2 ! R
s.t.:

g
w,v(x) = �(

kX

l=1

vi�(hwl,xi))

where w,v are the weights of the first and second layer respectively. Notice that a neural-gate g
w,v

of width 4 or more can implement any Boolean gate. That is, we can replace any Boolean gate with a

3We chose to use the hard-tanh activation over the more popular tanh activation since it simplifies our
theoretical analysis. However, we believe the same results can be given for the tanh activation.
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neural-gate, and maintain the same expressive power. To implement the full Boolean circuit defined
above, we construct a deep network of depth d (the depth of the Boolean circuit), with the same
structure as the Boolean circuit. We define d blocks, each block has neural-gates with the same
structure and connectivity as the Boolean circuit. A block B

W

(i),V (i) : R2

i ! R2

i�1

, is defined by:

B
W

(i),V (i)(x) = [g
w

(i,1),v(i,1)(x
1

, x
2

), g
w

(i,2),v(i,2)(x
3

, x
4

), . . . , g
w

(i,2i�1),v(i,2i�1)(x
2

i�1

, x
2

i
)]

We consider the process of training neural-networks of the form NW,V = B
W

(1),V (1) � · · · �
B

W

(d),V (d) . Notice that indeed, a network NW,V can implement any tree-structured Boolean cir-
cuit of depth d. We analyze a layerwise optimization algorithm, that performs gradient updates
layer-by-layer. Such approach has been recently shown to achieve performance that is comparable
to end-to-end training, scaling up to the ImageNet dataset [6].

Denote by P the average-pooling operator, defined by P (x
1

, . . . , xn) =
1

n

Pn
i=1

xi. To define the
objective, we use the hinge-loss defined by `(ŷ, y) = max(1 � yŷ, 0), and add a regularization
term R�(ŷ) = � |1 + ŷ| to break symmetry in the optimization. We denote the overall loss on the
distribution D and on a sample S ✓ X ⇥ Y by:

LD(f) = E
(x,y)⇠D [`(f(x), y) +R�(f(x))] , LS(f) =

1

|S|
X

(x,y)2S

`(f(x), y) +R�(f(x))

The layerwise gradient-descent algorithm for learning deep networks is described in algorithm 1.

Algorithm 1 Layerwise Gradient-Descent
input:

Sample S ✓ X ⇥ Y , number of iterations T 2 N, learning rate ⌘ 2 R.
Let Nd  id
for i = d . . . 1 do

Initialize W

(i)
0

,V (i)
0

.
for t = 1 . . . T do

Update W

(i)
t  W

(i)
t�1

� ⌘ @

@W
(i)
t�1

LS(P (B
W

(i)
t�1,V

(i)
0
�Ni))

end for
Update Ni�1

 B
W

(i)
T ,V

(i)
0
�Ni

end for
Return N

0

For simplicity, we assume that the second layer of every neural-gate is randomly initialized and
fixed, such that v 2 {±1}. Notice that this does not limit the expressive power of the network.
Algorithm 1 iteratively optimizes the output of the network’s layers, starting from the bottom-most
layer. For each layer, the average-pooling operator is applied to reduce the output of the layer to
a single bit, and this output is optimized with respect to the target label. Note that in fact, we can
equivalently optimize each neural-gate separately and achieve the same algorithm. However, we
present a layerwise training process to conform with algorithms used in practice.

3.2 Main Results

Our main result shows that algorithm 1 can learn a function implemented by the circuit C, when
running on “nice” distributions, with the local correlation property. We start by describing the
distributional assumptions needed for our main results. Let D be some distribution over X ⇥Y . For
some function f : X ! Z , we denote by f(D) the distribution of (f(x), y) where (x, y) ⇠ D. Let
D(i) be the distribution �

(i+1)...d(D). Denote by ci,j the correlation between the output of the j-th
gate in the i-th layer and the label, so: ci,j := ED(i) [xjy]. Denote the influence of the (i, j) gate
with respect to the uniform distribution (U ) by:

Ii,j := P
x⇠U [�i�1

(x) 6= �i�1

(x� ej)] := P
x⇠U [�i�1

(x) 6= �i�1

(x
1

, . . . ,�xj , . . . , xn)]

We assume w.l.o.g. that for every i, j such that Ii,j = 0, the (i, j) gate is constant �i,j ⌘ 1. Since
the output of this gate has no influence on the output of the circuit, we can choose it freely without
changing the target function. Again w.l.o.g., we assume ED [y] � 0. Indeed, if this does not hold, we
can observe the same distribution with swapped labels. Now, our main assumption is the following:
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Assumption 1. (LCA) There exists some � 2 (0, 1) such that for every layer i 2 [d] and for every
gate j 2 [2

i
] with Ii,j 6= 0, the value of ci,j satisfies |ci,j | > ED [y] +�.

Essentially, this assumption requires that the output of every gate in the circuit will “explain” the
label slightly better than simply observing the bias between positive and negative examples. Clearly,
gates that have no influence on the target function never satisfy this property, so we require it only
for influencing gates. Recall that in section 1 we showed that a similar property indeed holds for
natural data. In section 3.3 we discuss examples of distributions where this assumption typically
holds.

Now, we start by considering the case of non-degenerate product distributions:
Definition 1. A distribution D is a �-non-degenerate product distribution, if the following holds:

• For every j 6= j0, the variables xj and xj0 are independent, for (x, y) ⇠ D.

• For every j, we have P
(x,y)⇠D [xj = 1] 2 (�, 1��).

Our first result shows that for non-degenerate product distributions satisfying LCA, our algorithm
returns a network with zero loss w.h.p., with polynomial sample complexity and run-time:

Theorem 1. Fix �,� 2 (0, 1

2

) and integer n = 2

d. Let k � log

�1

(

4

3

) log(

2nd
� ), ⌘  1

32k

and � = E [y] + �

4

. Fix some h 2 H, and let D be a �-non-degnerate product distribu-
tion labeled by h s.t. D satisfies assumption 1 (LCA) with parameter �. Assume we sample
S ⇠ D, with |S| > 2

15

�

6 log(

8nd
� ). Then, w.p. � 1 � �, when running algorithm 1 with initial-

ization of W s.t.
���W (i)

0

���
max

 1

4

p
2k

on the sample S, the algorithm returns a function N
0

s.t.

P
(x,y)⇠D [N

0

(x) 6= y] = 0, when running T > 24np
2⌘�3 steps per layer.

In fact, we can show this result for a larger family of distributions, going beyond product distribu-
tions. First, we show that a non-degenerate product distribution D that satisfies LCA, satisfies the
following properties:
Property 1. There exists some fixed � 2 (0, 1) such that for every layer i 2 [d] and for every gate
j 2 [2

i
], the output of the j-th gate in the i-th layer satisfies one of the following:

• The value of the gate j is independent of the label y, and its influence is zero: Ii,j = 0.

• The value of ci,j satisfies |ci,j | > ED [y] +�.

Property 2. For every layer i 2 [d], and every gate j 2 [2

i�1

], the value of (x
2j�1

, x
2j) (i.e, the

input to the j-th gate of layer i� 1) is independent of the label y given the output of the j-th gate:

P
(x,y)⇠D(i) [(x

2j�1

, x
2j) = p, y = y0|�i�1,j(x2j�1

, x
2j)]

= P
(x,y)⇠D(i) [(x

2j�1

, x
2j) = p|�i�1,j(x2j�1

, x
2j)] · P

(x,y)⇠D(i) [y = y0|�i�1,j(x2j�1

, x
2j)]

Property 3. There exists some fixed ✏ 2 (0, 1) such that for every layer i 2 [d], for every gate
j 2 [2

i�1

] and for every p 2 {±1}2 such that P
(x,y)⇠D(i) [(x

2j�1

, x
2j) = p] > 0, it holds that:

P
(x,y)⇠D(i) [(x

2j�1

, x
2j) = p] � ✏.

From the following lemma, these properties generalize the case of product distributions with LCA:
Lemma 1. Any �-non-degenerate product distribution D satisfying assumption 1 (LCA), satisfies
properties 1-3, with ✏ = �

2

4

.

Notice that properties 1, 2 and 3 may hold for distributions that are not product distributions (as
we show in the next section). Specifically, property 2 is a very common assumption in the field
of Graphical Models (see [23]). As in Theorem 1, given a distribution satisfying properties 1-
3, we show that with high probability, algorithm 1 returns a function with zero loss, with sample
complexity and run-time polynomial in the dimension n:

Theorem 2. Fix �,�, ✏ 2 (0, 1

2

) and integer n = 2

d. Let k � log

�1

(

4

3

) log(

2nd
� ), ⌘  1

32k

and � = E [y] + �

4

. Fix some h 2 H, and let D be a distribution labeled by h which satisfies
properties 1-3 with �, ✏. Assume we sample S ⇠ D, with |S| > 2

11

✏2�2 log(
8nd
� ). Then, w.p. � 1� �,
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when running algorithm 1 with initialization of W s.t.
���W (i)

0

���
max

 1

4

p
2k

on the sample S, the

algorithm returns a function s.t. P
(x,y)⇠D [N

0

(x) 6= y] = 0, running T > 6np
2⌘✏�

steps per layer.

We give the full proof of the theorems in the appendix, and give a sketch of the argument here. First,
note that Theorem 1 follows from Theorem 2 and Lemma 1. To prove Theorem 2, observe that the
input to the (i, j)-th neural-gate is a pattern of two bits. The target gate (the (i, j)-th gate in the
circuit C) identifies each of the four possible patterns with a single output bit. For example, if the
gate is OR, then the patterns {(1, 1), (�1, 1), (1,�1)} get the value 1, and the pattern (�1,�1) gets
the value �1. Fix some pattern p 2 {±1}2, and assume that the output of the (i, j)-th gate on the
pattern p is 1. Since we assume the output of the gate is correlated with the label, the loss function
draws the output of the neural-gate on the pattern p toward the correlation of the gate. In the case
where the output of the gate on p is�1, the output of the neural-gate is drawn to the opposite sign of
the correlation. All in all, the optimization separates the patterns that evaluate to 1 from the patterns
that evaluate to �1. In other words, the neural-gate learns to implement the target gate. This way,
we can show that the network recovers all the influencing gates, so at the end of the optimization
process the network implements the circuit.

Observe that when there is no correlation, the above argument fails immediately. Without corre-
lation, the output of the neural-gate is drawn towards a constant value for all the input patterns,
regardless of the value of the gate. If the gate is not influencing the target function (i.e. Ii,j = 0),
then this clearly doesn’t affect the overall behavior. However, if there exists some influencing gate
with no correlation to the label, then the output of the neural-gate will be constant on all its input
patterns. Hence, the algorithm will fail to recover the target function. This shows that LCA is in fact
critical for the success of the algorithm.

3.3 Distributions that Satisfy LCA

We showed that algorithm 1 can learn tree-structured Boolean circuits in polynomial run-time and
sample complexity. These results require some non-trivial distributional assumptions. We now
analyze specific families of distributions, and show that they satisfy the above assumptions. First,
we study the problem of learning a parity function on log n bits of the input, when the underlying
distribution is a product distribution (as discussed in section 2). In the (log n)-parity problem,
we show that in fact any product distributions far enough from the uniform distribution satisfies
assumption 1, hence algorithm 1 learns such distributions:
Theorem 3. Fix some constant ⇠ 2 (0, 1/4). Let D be a product distribution with PD [xj = 1] 2
(⇠, 1

2

�⇠)[( 1
2

+⇠, 1�⇠) for every j, with the target function being a (log n)-parity (i.e., k = log n).
Then, when running algorithm 1 as described in Theorem 2, with probability at least 1 � � the
algorithm returns a circuit that implements the true target function fI , with run-time and sample
complexity polynomial in n.

Next, we study distributions given by a generative model. We show that for every circuit with gates
AND/OR/NOT, there exists a distribution that satisfies properties 1-3, so algorithm 1 can learn any
such circuit exactly. For every AND/OR circuit, we define a generative distribution as follows: we
start by sampling a label for the example. Then iteratively, for every gate, we sample uniformly
at random a pattern from all the patterns that give the correct output. For example, if the label is
1 and the topmost gate is OR, we sample a pattern uniformly from {(1, 1), (1,�1), (�1, 1)}. The
sampled pattern determines what should be the output of the second topmost layer. For every gate
in this layer, we sample again a pattern that will result in the correct output. We continue in this
fashion until reaching the bottom-most layer, which defines the observed example. We show that
such a distribution satisfies properties 1-3, and so algorithm 1 exactly recovers the circuit:
Theorem 4. With the assumptions and notations of Theorem 2, for every circuit C with gates in
{^,_,¬^,¬_}, there exists a distribution D such that when running algorithm 1 on a sample from
D, the algorithm returns hC with probability 1� �, in polynomial run-time and sample complexity.

Note that the fact that for every circuit there exists a distribution that can be approximated by the
algorithm is trivial: simply take a distribution that is concentrated on a single positive example, and
approximating the target function on such distribution is achieved by a classifier that always returns
a positive prediction. However, showing that there exists a distribution on which algorithm 1 exactly
recovers the circuit, is certainly non-trivial.
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4 Related Work

In recent years, the success of neural-networks has inspired an ongoing theoretical research, trying
to explain empirical observations about their behavior. Some theoretical works show failure cases of
neural-networks. Other works give different guarantees on various learning algorithms for neural-
networks. In this section, we cover the main works that are relevant to our paper. Learning neural-
networks with gradient-descent. Recently, a large number of papers have provided positive results
on learning neural-networks with gradient-descent. Generally speaking, most of these works show
that over-parametrized neural-networks, deep or shallow, achieve performance that is competitive
with kernel methods (or kernel-SVM). Daniely [14] shows that SGD learns the conjugate kernel
associated with the architecture of the network, for a wide enough neural-network. The work of
Brutzkus & Globerson [13] shows that SGD learns a neural-network with good generalization, when
the target function is linear. A growing number of works show that for a specific kernel induced
by the network activation, called the Neural Tangent Kernel (NTK), gradient-descent learns over-
parametrized networks, for target functions with small norm in the reproducing kernel Hilbert space
(see the works of [19, 35, 30, 2, 3, 31, 5, 15, 27, 24]). While these results show that learning
neural-networks with gradient-descent is not hopeless, they are in some sense disappointing — in
practice, neural-networks achieve performance that are far better than kernel methods, a fact that is
not explained by these works. A few results do discuss success cases of gradient-descent that go
beyond the kernel-based analysis [11, 12, 1, 36]. However, these works still focus on very simple
cases, such as learning a single neuron, or learning shallow neural-networks in restricted settings.
We deal with learning deep functions, going beyond the reduction to linear models.

Gradient-based optimization algorithms. Deep networks are optimized using an access to the
objective function (population loss) through a stochastic gradient oracle. The common algorithms
that are used in practice are variants of end-to-end stochastic gradient descent, where gradients are
calculated by backpropagation. However, the focus of this paper is not on a specific algorithm but
on the question of what can be done with an access to a stochastic gradient oracle. In particular,
for simplicity of the analysis (as was also done in [4, 28]), we analyze the behavior of layerwise
optimization — optimizing one layer at a time. Recent works [6, 7] have shown that layerwise
training achieves performance that is competitive with the standard end-to-end approach, scaling up
to the ImageNet dataset.

Learning Boolean Circuits. The problem of learning Boolean circuits has been studied in the
classical literature of theoretical machine learning. The work of Kearns et al. [22] gives various
positive and negative results on the learnability of Boolean Formulas, including Boolean circuits.
The work of Linial et al. [25] introduces an algorithm that learns a constant-depth circuit in quasi-
polynomial time. Another work by Kalai [21] discusses various properties of learning Boolean
formulas and Boolean circuits. The problem of learning tree-structured Boolean circuits, also known
as read-once formulas, has also been studies in the PAC learning literature [32]. Our work differs
from the above in various aspects. Our main focus is learning deep neural-networks with gradient
descent, where the target function is implemented by a Boolean circuit, and we do not aim to study
the learnability of Boolean circuits in general. Furthermore, we consider Boolean circuits where
a gate can take any Boolean function, and not only AND/OR/NOT, as is often considered in the
literature of Boolean circuits. On the other hand, we restrict ourselves to the problem of learning
circuits with a fixed structure of full binary trees.

Learning and Smoothed Analysis We note that another popular approach for overcoming worst-
case hardness results is through the technique of smoothed analysis [34]. This setting was used
to show learnability of DNFs and decision trees, in a notable work by Kalai et al. [20]. While
their results are similar in spirit to ours, there are some crucial differences. First, their results apply
only to product distributions, while our results apply to a larger family of distributions. We are
unaware of any immediate extension of the smoothed analysis setting beyond the case of product
distributions. Second, the results of [20] apply to DNFs and decision trees, while we focus on
learning tree-structured Boolean circuits.
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Broader Impact

The revolution of Deep Learning has allowed unprecedented progress in almost any field of Arti-
ficial Intelligence. However, this progress is mainly guided by empirical experiments, where im-
provements are typically achieved by trial-and-error. This is due to the fact that current learning
theory is not applicable to practical settings: negative theoretical results take a worst-case analysis,
which is irrelevant to practical problems, while positive results analyze very simplistic cases.

The goal of this paper is to identify what are the correct distributional assumptions that are required
for constructing theoretical results that are relevant to natural problems. We suggested the local
correlation assumption (LCA), an assumption that is likely to hold on natural data, and allows us
to prove some non-trivial theoretical results. We showed that on the task of learning tree-structured
Boolean circuits, the existence of local correlations between the gates and the target label allows
layerwise gradient-descent to learn the target circuit. We believe this work can help the research
community to come up with a theory of deep networks that is applicable in practice, and encourage
theory-guided progress in solving real-world problems.
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