A Proof of Theorem 2

To prove Theorem 2, we observe the behavior of the algorithm on the i-th layer. Let ¢ : {£1}"/2 —
{£1}"/2 be some mapping such that (@) = (& @1,...,&n, j2 - Ty 2) for u, ..., &y o € {£1}
We also define ¢; : {41}"/2 — {£1}"¢/2 such that:

pi(z) = (121, Vn, j2%n,/2)

sign(c;—1;) ¢i—1; #0

h =
where v; {_1 T 15 =0

We can ignore examples that appear with probability zero. For this, we define the support of D by
X' ={z' € X : Pgy)~p[x=2'] >0}

We have the following important result, which we prove in the sequel:

Lemma 2. Assume we initialize wl(o) such that "wl(o)H < ﬁ. Fix § > 0. Assume we sample
S ~ D, with |S]| > %log(sg"). Assume that k > 10g71(%)log(ggi ), and that < 5t Let

U : X — [—1,1]™/2 such that for every x € X' we have ¥(x) = 1) o L(it1)..a(x) for some 3 as
defined above. Assume we perform the following updates:

0
~ Ly (s)(P(By,o) )
6Wt(i)1 ( ) Wt—17VO

Wt(i) « Wt(i')l _

Then with probability at least 1 — 6, for t > \/gZZA we have: Bth’Vo(i) () = p; o o p(x) for
everyx € U(X').

Given this result, we can prove the main theorem:

Proof. of Theorem 2. Fix §' = %. We show that for every ¢ € [d], w.p atleast 1 — (d — i+ 1)d’, after
the i-th step of the algorithm we have N;_1(x) = p; o ;. 4(x) for every x € X’. By induction on
IR

e For i = d, we get the required using Lemma 2 with ¢, ¥ = «d.

e Assume the above holds for 7, and we show it for 7 — 1. By the assumption, w.p at least
1—(d—1i+1)d wehave N;_1(x) = ¢; o I';._4(x) for every x € X’. Observe that:

OLg

0Ly, (s
ow D

(P(B ) Oj\[ifl)) - awt(iil)

Wf:l)vVo(i*l (P(BWt(i—l),‘/o(i—l)))

So using Lemma 2 with ¢ = ¢;, ¥ = N,;_; we get that w.p at least 1 — §’ we have
By -1 y6-1 (x) = @;_10T;_10¢;(x) forevery x € X’. In this case, since ;0p; = id,
T 270

we get that for every « € X”:
Ni—a(x) = BW;—1>7%<1:—1) oN;_1(x)
= (pic1oli10@i)o(pioly q)(x) =pi—10l; 1. a(x)

and using the union bound gives the required.

Notice that 1 = id: by definition of D®) = T';_4(D), for (z,y) ~ D) we have z = I';__4(x)
and also y = T'y_4(x) for (z,y) ~ D. Therefore, we have ¢ 1 = E(zy)~D® [xy] = 1, and there-
fore ;(z) = sign(co,1)z = z. Now, choosing ¢ = 1, the above result shows that with probability at
least 1 — 4, the algorithm returns Ny such that Np(z) = @1 0Ty 0+ o T'y(x) = he(z) for every
re X O

In the rest of this section we prove Lemma 2. Fix some i € [d] and let j € [n;/2]. With slight abuse

of notation, we denote by w(®) the value of the weight w("7) at iteration ¢, and denote v := v(%7)
and g; := gyv) - Recall that we defined ¢(x) = (&1 - 21, .., &n, - Tp,) for &1 ... &y, € {£1}. Let
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v 1= 7;_1,;, and let § such that ¥(z1, 22) = v(&j-1 - 21, &25 - x2). For every p € {£1}?, denote
D = (£25-1p1,&2;p2), so we have y(p) = 7(p). Now, we care only about patterns p that have
positive probability to appear as input to the gate (i — 1, j). So, we define our pattern support by:

P ={pe {1}’ : Puyw(b) [(x2j-1,22;) = p| > 0}

Finally, if the gate ;1 ; has no influence on the target function (i.e., if Z;_; ; = 0), we can choose
it arbitrarily without affecting the output of the circuit. So, w.l.o.g. we assume in this case that
~ = 1. We start by observing the behavior of the gradient with respect to some pattern p € P:

Lemma 3. Fix some p € P. For every |l € [k] such that <wl(t),p> > 0and g:(p) € (—1,1), the
following holds:

-~ 6L\1;(D) €
—7(p)uw;( p) > —A
! awl(t) i
Proof. Observe the following:
(P(Bwo,v))
dw" ’
o 2 Wl
= Bz y)~v (D) E/(P(BW(“,V“))(:L')) PO Z gwu.ﬂ),v(i,m(xzjulwzjl)
6wl g j'=1
o 2 Wl
+ E(ey)~w) | RA(P(Bw o vo)(T)) - PO Z Gup(ii") ity (T2 —1, T2j7)
1=

2 0
=_E ) — . 4
" v (D) l(/\ y)awl(t)gt(l‘% 1,%25)

= nz]E\II(D) |:<)\ - y)vll{gt<$2jfl,$2j> S (—17 1)} . 1{(wl(t)7 ($2j,1,$2j)> > 0} ) (.Z‘gj,l,xgj)]

We use the fact that ' (P(Bw ) v )(®)) = —y, unless P(By ) v )(x) € {£1}, in which case
gt(l‘gj_l,mgj) c {:l:l}, SO ﬁgt($2j_1,1‘2j) = 0. Similarly, unless ﬁgt(l‘gj_hl‘gj) = 0,
L l

we get that Ry (P(Byy) v )(x)) = A. Fix some p € {£1}? such that (wl(t) p) > 0. Note that
for every p # p’ € {£1}? we have either (p,p’) = 0, or p = —p’ in which case (wl(t),p’> < 0.
Therefore, we get the following:

OLyp
(—55p)

ow

l

= %E\I/(D) [()\ —y)ul{gi(xej_1,2z2;) € (—1,1)} - 1{<wl(t), (@aj—1,225)) > 0} - ((w2j—1,225), D)

= %E\IJ(D) [()\ —y)ul{g:(x2j_1,225) € (—1,1)} - 1{(x2j—1,22;) = p} ||p‘|2}

Denote g := P (5 ) wp) [(¥2j-1,T25) = ply(T2j-1,725) = 7(p)]. Using property 2, we have:
]P(a:,y)NDm [(r2j—1,T25) = P,y = y']

=P )~po [(2j-1,225) = P,y = Z/ﬂ(%jfhffzj) =(p)]

=Py yyopi) [(T2j-1,225) = D,y = ¥ [V(@25-1, T25) = V(D) P e,y op) [V(T2j-1, 25) = Y(P)]
= @pP(zy)~op) [V(T25-1,22;) = 7(P),y = V]

= 4Pz )opi-v [25 = V(D) y = V]
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And therefore:

]E(:c,y)ND(i) W1{(z2j-1,225) = P}] = Z Z//IP(ac,y)Npm [(r2j—1,T2j) = P,y = Y]
y'e{£1}

=dp Z Y'Pzyypti-v [25 = 7(P),y = V]
y'e{x1}

= qpE(z y)~pi-0 [y1{z; = 7(p)}]
Assuming g:(p) € (—1,1), using the above we get:

an; D 41}[
{ ét)) P) = —E@y~um) [(A = y)1{(2;-1, 22;) = p}]
ow, g
41)[
= EE(Z,@,)NDM [(A = 9)1{(&2j-122j-1,&2;%25) = P}]
4u; .
= —Eypn (A = y)1{(225-1, 225) = P}]
(3

dviqp _
= —PE (e [ = 9)1{z = T(P))]

Now, we have the following cases:

e IfZ; ; ; = 0, then by property 1 z; and y are independent, so:

OLy(p dvgp -
(D) py = SR e (- )1z = 7(0)
awl T
dvqp -
= nipE(z,y)wD(i*U [(A = 9)]P 2 yy~pi-n [25 = F(p)]
41}[
= ni()‘ - E(z,y)N'D(i*U [y])P(m,y)wD(i) [(szjfl, x2j) = f’]

Since we assume 7(p) = 1,; = —1, and using property 3 and the fact that p € P, we get

that:
_ OLy(p) OLy(p)
=Y (P)owvi(—5"P) = v D)
! Bwl(t) wl(t)
4 Ae
= ;(/\ —E[Y)Pe po [(T2i-1,725) = p| > —

: _ A
Using the fact that A = E [y] + .

e Otherwise, observe that:

OLg(p dvigp -
< ((t)) )= — B pe-n [(A—y)1l{z =F(p)}]
awl n;
dvigp - 1 _
= n.B ()\P(Zyy)N'D(il) [zj = fy(p)] — E(z,y)ND(ifl) yi(zj "Y(p) + 1):|>
2u1qp - -
= n,p (2AP(z )~ 27 = F(P)] = A(P)ci-1,5 — E(zyynpi-n [4])

And therefore we get:

~3(p)u sign(ci_l,j><8;q“$> )= 2 (s |+ sign(er15)AP)(E [y] — 20 [ = (p)
'wl 2
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Now, if sign(c;—1,;)7(p) = 1, using property 1, since Z;_; ; # 0 we get:
_ ) OLy(p a5 €
—7(p)u Slgn(%—1,j)<#ap> > L (lei | +E[y] —2)) > —A
ow, g L
Otherwise, we have sign(c;—1,;)7(p) = —1, and then:

8L\1,(D) qﬁ 2¢

=Y (p)vursign(ci-1,5)(
where we use property 3 and the fact that p € P.

O

We introduce the following notation: for a sample S C X’ x Y, and some function f : X’ — X",

denote by f(S) the sample f(S) := {(f(x),¥)}(a,y)cs- Using standard concentration of measure
arguments, we get that the gradient on the sample approximates the gradient on the distribution:

Lemma 4. Fix § > 0. Assume we sample S ~ D, with |S| > % log %. Then, with probability at
least 1 — 6, for every p € {£1}? such that (wl(t), p) > 0 it holds that:

8Lq,(5)
PWCR

A
8wl(t)

p)| < —
47’Li

,P) — {

Proof. Fix some p € {£1}? with (wl(t),p) > 0. Similar to what we previously showed, we get
that:

8L‘1/(S)
w®

( p)

2
= o E@n~us) [()‘ — y)uil{gi(wa; -1, w25) € (~1,1)} - 1w, (w21, 225)) = 0} - (w21, 22,), )

2
= E@y~us) [()‘ — y)ul{gi(w2j_1,225) € (=1,1)} - 1{(2)_1,22;) = p} |pII”

?

4
= —E@y~ues) (A = y)ul{g(zj—1,225) € (=1, 1)} H(wzj-1, 225) = P}
(A

Denote f(x,y) = (A — y)vil{ge(x2j—1,22;) € (—1,1)} - 1{(x2;_1,22;) = p}, and notice that
since A < 1, we have f(x,y) € [—2,2]. Now, from Hoeffding’s inequality we get that:
1
Ps [Eacs) /(@] - Eueo) ()] 2 7] < 2exp (5l

So, for S| > £ log § we get that with probability at least 1 — 3 we have:

OLy(p) OLy(s) 4 4
( ,p) — P = — [Bys) [f(@,9)] = Evp) [f (@ 9)]] < —7
awl(t) awl(t) N [Eu(s) (D) | n
Taking 7 = 15 A and using the union bound over all p € {+1}? completes the proof. O

Using the two previous lemmas, we can estimate the behavior of the gradient on the sample, with
respect to a given pattern p:

Lemma 5. Fix 6 > 0. Assume we sample S ~ D, with |S| > % log §. Then, with probability at

least 1 — 6, for every p € P, and for every | € k] such that (wl(t),p> > 0and gi(p) € (—1,1), the
following holds:

~ €
=7 (p)uv;( ,p) >
! 8'wl(t)

A

2717;
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Proof. Using Lemma 3 and Lemma 4, with probability at least 1 — J:

_ 0Ly s) - 0Ly (p) 0Ly (s) 0Ly (p)
—F(P)uvi(—=-.p) = —F(P)vw; | ( ,p) +( ,p) —( ,D)
’ awl(t) ! 8'wl(t) 8wl(t) awl(t)
~ 0Ly (p) OLy(s) OLy(p)
> =y (P)uvi(—5-p) — [ ;) — ( ;D)
’ 8wl(t) 8wl(t) Bwl(t)
€ € 3e
—A — A > A
- n; dn; T 4n,;

O

We want to show that if the value of g; gets “stuck”, then it recovered the value of the gate, multiplied
by the correlation ¢;_1 ;. We do this by observing the dynamics of (wl(t), p). In most cases, its
value moves in the right direction, except for a small set that oscillates around zero. This set is the

following:

~ 8 ~
Ay = {(l,p) cpEPAF(P)vv; <OA <wl(t),p> < n—n ANFH(=p)ur; <0V —pe€ P)}
We have the following simple observation:

Lemma 6. With the assumptions of Lemma 5, with probability at least 1 — 0, for every t we have:
Ay € Ay

Proof. Fix some (I,p) € A;, and we need to show that (wl(tﬂ),p} < 8 qf (wl(t) p) = 0 then*

<wl(t+1)7p> = (wl(t),p> < i—’z and we are done. If (wl(t),p> > 0 then, since p € P we have from

Lemma 5, w.p at least 1 — §:

OLy(s ~ €
(P < APy A <0
w, 7
Where we use the fact that 7(p)v;v; < 0. Therefore, we get:
0L 8
t+1 t (S t n
(w; ™, p) = (w]",p) = 5 2.p) < (w”,p) < -
w, i
Otherwise, we have ('wl(t),p> < 0, so:
@) e OLlws) 0] 8n _ 8
<wl ap> - <wl 7p> 77< a (t) 9 >§< l »p>+ n; S n;

O
Now, we want to show that all (wl(t),p) with (I,p) ¢ A; and p € P move in the direction of
v(p) - vj:
Lemma 7. With the assumptions of Lemma 5, with probability at least 1 — 0, for every l,t and p € P
such that (wl(t),p> > 0and (I,p) ¢ Ay, it holds that:

(ol p)) = ot} ™. p))) -A(p)ui; 2 0

Proof. Assume the result of Lemma 5 holds (this happens with probability at least 1 —9). We cannot

have ('wl(t_l) ,p) = 0, since otherwise we would have <'wl(t) ,p) = 0, contradicting the assumption.

If <'wl(t_1),p> > 0, since we require <'wl(t),p> > 0 we get that:

o((w”,p)) — o((w ™. p)) = (w" —w™, p) = —n¢

and the required follows from Lemma 5. Otherwise, we have (wl(t_l)7 p) < 0. We observe the

following cases:

—7:P)
awl(t 1)

“We take the sub-gradient zero at zero.
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o If5(p)y v; > 0 then we are done, since:
(o(tw”,p)) = o(wf™,p)) - F@)uw; = o((w", p)) - F(p)ur; = 0

o Otherwise, we have ¥ (p)v;v; < 0. We also have:

_ oL - 8n _ 8
O 1y = (oD py _ pZEEES)  e-D) 8n _ 8y
(w ", p) = (w7, p) =1 PO ) < {wop) <

Since we assume (I, p) ¢ A;, we must have —p € P and ¥(—p)v;v; > 0. Therefore, from
Lemma 5 we get:

8L\p(s) €

_ _~(— . A
awl(t) ’ p> < 7( p)’UlV] 2712

(

And hence:

D

A<O

— ~ €
0 < (w”,p) = (w""", p) + P} < (P

0

and we reach a contradiction.

From the above, we get the following:

Corollary 1. With the assumptions of Lemma 5, with probability at least 1 — 0, for every I,t and
p € P such that (wl(t),p> > 0and (I, p) ¢ Ay, the following holds:

(ot} p)) ~ o(w”, ) - F(P)oiv; 2 0

Proof. Notice that for every t' < ¢ we have (I,p) ¢ Ay C A;. Therefore, using the previous
lemma:

(ot p)) = o)) A, = Y- (oltw.p) = ol p)) - F(R)oi; > 0

1<t/ <t

O

Finally, we need to show that there are some “good” neurons, that are moving strictly away from
Zero:

Lemma 8. Fix § > 0. Assume we sample S ~ D, with |S| > %log 8. Assume that k >
10g71(§) log(%). Then with probability at least 1 — 20, for every p € P, there exists | € [k] such

that for every t with g;—1(p) € (—1,1), we have:

A

o((w”, p)) - F(p)ov; = nt

€

2’1’Li
Proof. Assume the result of Lemma 5 holds (happens with probability at least 1 — §). Fix some
p € P. Forl € [k], with probability 1 we have both v; = 5(p)v; and <wl(o) p) > 0. Therefore,
the probability that there exists [ € [k] such that the above holds is 1 — (%)k >1- % Using the
union bound, w.p at least 1 — §, there exists such [ € [k] for every p € {£1}2. In such case, we

have <wl(t),p> > ntfmA, by induction:

e For ¢t = 0 this is true since (wl(o),p> > 0.
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e If the above holds for ¢t — 1, then (wl(tfl),p> > 0, and therefore, using v; = ¥(p)v; and
Lemma 5:

0Ly (p) _ €
< 8’wl(t) ap> ’y(p)UlVJ on;

A

And we get:
3wl(t)

(w,p) = (w"™V p) —n( ,D)

— ~ €
> (w ™V p) + 1 (p)uiv; 5 A
€ €
>t —1)=—A A
> n( )2ni g

Using the above results, we can analyze the behavior of g:(p):

Lemma9. Assume we initialize 'wl(o) such that

‘wl(O)H < le' Fix 6 > 0. Assume we sample S ~ D,

with | S| > % log 8. Then with probability at least 1 — 20, for every p € P, for t > \/g;bzA we

have:

9:(p) = 7(P)v;

Proof. Using Lemma 8, w.p at least 1 — 24, for every such p there exists [,, € [k] such that for every
t with g;1(p) € (—1,1);

A

(t) X €
v ((wy, ) - A(p)vs = i -
Assume this holds, and fix some p € P. Let ¢, such that g;—1(p) € (—1,1). Denote the set of

indexes J = {l : ('wl(t),p> > 0}. We have the following:
9:(p) = Y uo((w]"”p))

leJ
=uo(wl.p)+ Y we(w”p)+ Y. wo((w”,p)
leJ\{lp},(,p)¢As leJ\{lp},(I,p)EA:
From Corollary 1 we have:
~ 1
Ay Y ol p) = —ko((w”,p) = —

leJ\{ip},(Lp)¢ A

By definition of A; and by our assumption on 7 we have:

~ 8 1
e Y wolw ) k>
leJ\{lp},(l,p)EA:
Therefore, we get:
€ 1
Y(p)v; - >nt A— =
F(P)v; - g:(p) > 1 oW A
This shows that for ¢ > —3%_ we get the required. O

V2neA

Proof. of Lemma 2. Using the result of Lemma 9, with union bound over all choices of j € [n;/2].
The required follows by the definition of ¥(z2;_1,z2;) = Vi—1,;(&2j-1T2;—1, &25T2;5)-
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B Proofs of Section 3.2

Proof. of Lemma 1. Property 1 is immediate from assumption 1. For property 2, fix some ¢ €
[d],j € [ni/2],p € {£1}?,y € {&1}, such that:
Pz ay~pin [Vi-1,5(¥2j-1,225) = vi—1,;(P)] > 0
Assume w.l.o.g. that j = 1. Denote by W the set of all possible choices for x3, ..., z,,, such that
when (21, z2) = p, the resulting label is y’. Formally:
W= {(xi’n v 71'77.1') : Pi...d(plap%x& s 7xni) = yl}
Then we get:
Pp (w1, 22) = P,y = ', vi1,5(21, 22) = Yi-1,;(P)]
=Ppw [($1»$2) p, (953, cee »xni) S VV,%‘—Lj(xhxz) = %71,;'(1’)]
[( ) =P, %i-1,5(T1,22) = vie1,5(P)] - Ppo [(23, .., 2n,) € W]
=Ppo [(z1,22) = plvi-1,j(x1,22) = vi—1,;(P)] - Ppoy [vi-1,5(x1,22) = Yie1,5(P), (3, ..., 20,) € W]
[( ) = plyi-1j(@1,22) = %i-1,;(P)] - P [y = ¥/, Yi-1,5 (21, 22) = 7i-1,;(P)]

=Ppw (1,22

=Ppw [(T1, 72
And dividing by Pp) [yi—1,;(21, 22) = v:—1,;(p)] gives the required.
For property 3, we observe two cases. If ¢; ; > 0 then:
A<c;—Efy =E[zjy—y] =E[y(z; —1)]
=2Pz;=—-1Ay=—-1]-2P[z; = -1Ay=1]
<2P[z;=—-1Ay=—-1] <2P[z; = —1]
Otherwise, if ¢; ; < 0 we have:
A< —¢,;—Ely =E[-z;y —y] = —E[y(z; + 1)]
=2P[z;=1Ay=—-1-2P[z; =1 Ay=1]
<2P[z;=1Ay=—-1] <2P[z; = 1]

(%, 1-— %), and since every bit in every layer is independent, we get

So, inany case P [z; = 1] €
property 3 holds with € = ATQ. O

C Proofs of Section 3.3

C.1 Parity Circuits

We observe the k-parity problem, where the target function is f(z) = [[,<; ; some subset I C []

of size |I| = k. A simple construction shows that f can be implemented by a tree structured circuit
as defined previously. We define the gates of the first layer by:

2129 T2j-1,T2j € I

21 Toj—1 € 1, T2j §é I
—1.4i\(21,%292) =
Vd 7]( ’ ) 29 Taj € I,Izj_l ¢ I
1 o.w

And for all other layers ¢ < d — 1, we define: «; (21, 21) = z122. Then we get the following:
Lemma 10. Let C be a Boolean circuit as defined above. Then: hc(x) = [[;c; v; = f(@).

Now, let Dy be some product distribution over X, and denote p; := Pp,, [xj = 1]. Let D be the
distribution of (x, f(x)) where & ~ Dx. Then for the circuit defined above we get the following:

Lemma 11. Fix some & € (0, ). For every product distribution D withp; € (£, —&)U(3+¢,1-¢)
forall j, if T; ; # 0 then |c; ;| — |[E [y]| > (26)* and P(z yyr .,y o) [z = 1] € (§,1 =€)
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The above lemma shows that every non-degenerate product distribution that is far enough from the
uniform distribution, satisfies assumption 1 with A = (2£)*. Using the fact that at each layer,
the output of each gate is an independent random variable (since the input distribution is a product
distribution), we get that property 3 is satisfied with ¢ = £2. This gives us the following result:

Corollary 2. Let D be a product distribution with p; € (§,5 — &) U (5 + &,1 = &) for every j,
with the target function being a (log n)-parity (i.e., k = logn). Then, when running algorithm 1 as
described in Theorem 2, with probability at least 1 — § the algorithm returns the true target function
he, with run-time and sample complexity polynomial in n.

Proof. of Lemma 10.

For every gate (4, j), let J; ; be the subset of leaves in the binary tree whose root is the node (¢, j).
Namely, J; ; := {(j — 1)2¢7% + 1,...,5297"}. Then we show inductively that for an input = €
{£1}", the (7, j) gate outputs: J[;c;q 5, - @1

e Fori = d — 1, this is immediate from the definition of the gate v4_1 ;.

e Assume the above is true for some ¢ and we will show this for 7 — 1. By definition of the
circuit, the output of the (i — 1, ) gate is a product of the output of its inputs from the
previous layers, the gates (7,25 — 1), (4,27). By the inductive assumption, we get that the
output of the (i — 1, j) gate is therefore:

Hxl~ Hxl: H xl:Hxl

l€J;,25—1N1 leJ; 2,01 le(Ji,j2—1UJ;,25)NI leJi—1,;
From the above, the output of the target circuit is [ [, ;  ~; 21 = [[;c; 71, as required. O

Proof. of Lemma 11.
By definition we have:
¢ij = E@y)nn [Liit1)..a(®) 9] = E@y)~p [Ciit1)...a(®)y] = E@yon [Dir1)...a(@)jzr - 2]

Since we require Z; ; # 0, then we cannot have I'(; 1), 4(); = 1. So, from what we showed
previously, it follows that I'(; 1), q(x); = Hj,el, xj for some () # I’ C I. Therefore, we get that:

cij=Ep | I | = II Eolesl= [T @py-1)

JrelNI’ JIEIND J e’

Furthermore, we have that:

Ep [y] =Ep H T | = H Ep [z)] = H(2pj/ —-1)

J'el Jrel j'el

And using the assumption on p; we get:

leijl = Eplll = ] 12— 10— ] 120 — 1]
J'e[k\I’ J'€[k]
= II 2ey—1) (1= I 120, — 1l
i €T Jer
> T 2o -] (1-a-29")
J'ERNT’
> 2" 11— (1-2¢)) > (20)"
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Now, for the second result, we have:
Plzgyor, o) 125 = 1] = E@y)yop [H{T(i11)..a(®); = 1}]
1
= E(w,y)ND 5( H IEj/ + 1)

j/eI/

1 1
5 1 Eeyenlos]+5
j/e]/

And so we get:

1 1
Pizyyore o) 12 = 1] = 2‘ =5 I Eey~p ;]
j/e[/

1 o1
<za-29l<s—¢

C.2 AND/OR Circuits

We limit ourselves to circuits where each gate is chosen from the set {A, V, =A, =V }. For every such
circuit, we define a generative distribution as follows: we start by sampling a label for the example.
Then iteratively, for every gate, we sample uniformly at random a pattern from all the pattern that
give the correct output. For example, if the label is 1 and the topmost gate is OR, we sample a
pattern uniformly from {(1,1), (1, —1),(—1,1)}. The sampled pattern determines what should be
the output of the second topmost layer. For every gate in this layer, we sample again a pattern that
will result in the correct output. We continue in this fashion until reaching the bottom-most layer,
which defines the observed example. Formally, for a given gate I € {A, V, =A, =V}, we denote the
following sets of patterns:

Sp={v e {£1}* : D(v,v2) =1}, Sf = {£1}*\ Sr
We recursively define D), ..., D@ where D is a distribution over {£1}2" x {+1}:

e DO isadistribution on {(1,1), (—1,—1)} s.t. Ppo) [(1,1)] = Ppeo [(—1, —1)] = L.

e To sample (z,y) ~ D@, sample (z,y) ~ DY, Then, for all j € [2°71],if 2; = 1
sample ’; ~ U(S,, ;), and otherwise sample &, ~ U(S5, ). Setx = [@,...,Th ] €
{#1}?', and return (z, 7).

Then we have the following results:

Lemma 12. For every i € [d] and every j € [2'], denote ¢; j = E (4, .pw) [x;y]. Then we have:

2\ ¢
lci | —E[y] > (3) — plos(2/3)
Lemma 13. For every i € [d] we have Fi('D(i)) _ pli-1).

Notice that from Lemma 12, the distribution D@ satisfies property 1 with A = n'°2(2/3) (note
that since we restrict the gates to AND/OR/NOT, all gates have influence). By its construction, the
distribution also satisfies property 2, and it satisfies property 3 with € = (%)d = % Therefore, we
can apply Theorem 2 on the distribution D(4), and get that algorithm 1 learns the circuit C' exactly
in polynomial time. This leads to the following corollary:

Corollary 3. With the assumptions and notations of Theorem 2, for every circuit C with gates in
{N,V, =N, =V}, there exists a distribution D such that when running algorithm 1 on a sample from
D, the algorithm returns he with probability 1 — §, in polynomial run-time and sample complexity.
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Proof. of Lemma 12 For every i € [d] and j € [2], denote the following:
pj:j = P(w,y)NDu) [37]‘ =1y =1], pij = P(m,y)N’D(i) [l’j =1y =—1]
Denote D(?)|, the distribution D(*) conditioned on some fixed value z sampled from D¢~1). We

prove by induction on i that [p;"; — p; ;| = (%)1

e For i = 0 we have ij = landp; ;=050 the required holds.

e Assume the claim is true for ¢ — 1, and notice that we have for every z ¢ {il}T E

Py~ (25 = 1|y = 1] =Py opo, (25 = Lzr2 = 1] - P yyape- (215721 = 1y = 1]
+Pagynpi), [25 = Lz = =1] - Pre yyape-n [215/21 = —1ly = 1]
Z;al,[j/z] + %(1 _p;:l,(j/ﬂ) if Yie1,rij21 = A

_ i,pz 1,[5/2] " if Yie1,rij2) =V
G2 Ti/21 + (=1 je) W Yiergise = 0N
5(1 pl 1 D/g]) if Yic1,521 = "V

05ty — 5 A e = A
i ] (3/2} if Yie1,1ij2 =V
1= 2p 1 A vien e = A
530" 1,75/2] if Yie1,i/21 = 7V

Similarly, we get that:

[

3pz L1 — 3 W viev e = A
3p L15/2] if Vi—1,rj21 =V
P(ayy~pi [2j = 1y = —1] = { 775" ,

o ’ 1- 3p1 Lrjge) W v = oA

—3p Lij21 W vienpe =2V

Therefore, we get:

_ 2\"
|pi,] pm| ‘pz 1,[§/2] pi—l,[j/2]| = (3>

From this, we get:
E (@.5)~p0 [Z9]] = |E@ ) ~pe [(21{z; = 1} — 1)y]|

= [2E g y)~p [1{z; = 1}y] — E [3]|
|2(PDU) [xy =ly= 1] Ppm ['T’J =1,y =-1])|

2y
= |p; *Pi,j’ = (3>

9\ 4
B (,)~po [259]| = [E(@ o [1]] > (3>

And hence:

O
Proof. of Lemma 13 Fix some 2’ € {+1}"/2 and ¢ € {41}. Then we have:
Play)mr o) (@) = (2,4)] = P y)npo [(Fi(2),y) = (2, 4)]
=Py (VI Yio1,j(25-1,22;) = 25 and y = ¢/
= ]P)(z,y)ND(i*1> [(Z,y) = (zlvyl)}
By the definitions of D(¥) and D~ 1), O
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