
A Proof of Theorem 2

To prove Theorem 2, we observe the behavior of the algorithm on the i-th layer. Let  : {±1}ni/2 !
{±1}ni/2 be some mapping such that  (x) = (⇠

1

·x
1

, . . . , ⇠ni/2 ·xni/2) for ⇠
1

, . . . , ⇠ni/2 2 {±1}.
We also define 'i : {±1}ni/2 ! {±1}ni/2 such that:

'i(z) = (⌫
1

z
1

, . . . , ⌫ni/2zni/2)

where ⌫j :=
⇢
sign(ci�1,j) ci�1,j 6= 0

�1 Ii�1,j = 0

We can ignore examples that appear with probability zero. For this, we define the support of D by
X 0

= {x0 2 X : P
(x,y)⇠D [x = x

0
] > 0}.

We have the following important result, which we prove in the sequel:

Lemma 2. Assume we initialize w

(0)

l such that
���w(0)

l

���  1

4k . Fix � > 0. Assume we sample

S ⇠ D, with |S| > 2

11

✏2�2 log(
8ni
� ). Assume that k � log

�1

(

4

3

) log(

8ni
� ), and that ⌘  ni

32k . Let
 : X ! [�1, 1]ni/2 such that for every x 2 X 0 we have  (x) =  � �

(i+1)...d(x) for some  as
defined above. Assume we perform the following updates:

W

(i)
t  W

(i)
t�1

� ⌘ @

@W (i)
t�1

L
 (S)

(P (B
W

(i)
t�1,V

(i)
0

))

Then with probability at least 1 � �, for t > 6nip
2⌘✏�

we have: B
W

(i)
t ,V

(i)
0

(x) = 'i � �i �  (x) for
every x 2  (X 0

).

Given this result, we can prove the main theorem:

Proof. of Theorem 2. Fix �0 = �
d . We show that for every i 2 [d], w.p at least 1� (d� i+1)�0, after

the i-th step of the algorithm we have Ni�1

(x) = 'i � �i...d(x) for every x 2 X 0. By induction on
i:

• For i = d, we get the required using Lemma 2 with  , = id.

• Assume the above holds for i, and we show it for i � 1. By the assumption, w.p at least
1� (d� i+ 1)�0 we have Ni�1

(x) = 'i � �i...d(x) for every x 2 X 0. Observe that:

@LS

@W (i�1)

t

(P (B
W

(i�1)
t�1 ,V

(i�1)
0

�Ni�1

)) =

@LNi�1(S)

@W (i�1)

t

(P (B
W

(i�1)
t ,V

(i�1)
0

))

So using Lemma 2 with  = 'i,  = Ni�1

we get that w.p at least 1 � �0 we have
B

W

(i�1)
T ,V

(i�1)
0

(x) = 'i�1

��i�1

�'i(x) for every x 2 X 0. In this case, since 'i�'i = id,
we get that for every x 2 X 0:

Ni�2

(x) = B
W

(i�1)
T ,V

(i�1)
0

�Ni�1

(x)

= ('i�1

� �i�1

� 'i) � ('i � �i...d)(x) = 'i�1

� �
(i�1)...d(x)

and using the union bound gives the required.

Notice that '
1

= id: by definition of D(0)

= �

1...d(D), for (z, y) ⇠ D(0) we have z = �

1...d(x)

and also y = �

1...d(x) for (x, y) ⇠ D. Therefore, we have c
0,1 = E

(x,y)⇠D(0) [xy] = 1, and there-
fore 'i(z) = sign(c

0,1)z = z. Now, choosing i = 1, the above result shows that with probability at
least 1 � �, the algorithm returns N

0

such that N
0

(x) = '
1

� �
1

� · · · � �d(x) = hC(x) for every
x 2 X 0.

In the rest of this section we prove Lemma 2. Fix some i 2 [d] and let j 2 [ni/2]. With slight abuse
of notation, we denote by w

(t) the value of the weight w(i,j) at iteration t, and denote v := v

(i,j)

and gt := g
w

(t),v . Recall that we defined  (x) = (⇠
1

· x
1

, . . . , ⇠ni · xni) for ⇠
1

. . . ⇠ni 2 {±1}. Let

11



� := �i�1,j , and let e� such that e�(x
1

, x
2

) = �(⇠
2j�1

· x
1

, ⇠
2j · x2

). For every p 2 {±1}2, denote
e
p := (⇠

2j�1

p
1

, ⇠
2jp2), so we have �(ep) = e�(p). Now, we care only about patterns p that have

positive probability to appear as input to the gate (i� 1, j). So, we define our pattern support by:

P = {p 2 {±1}2 : P
(x,y)⇠ (D)

[(x
2j�1

, x
2j) = p] > 0}

Finally, if the gate �i�1,j has no influence on the target function (i.e., if Ii�1,j = 0), we can choose
it arbitrarily without affecting the output of the circuit. So, w.l.o.g. we assume in this case that
e� ⌘ 1. We start by observing the behavior of the gradient with respect to some pattern p 2 P:

Lemma 3. Fix some p 2 P . For every l 2 [k] such that hw(t)
l ,pi > 0 and gt(p) 2 (�1, 1), the

following holds:

�e�(p)vl⌫jh
@L

 (D)

@w(t)
l

,pi > ✏

ni
�

Proof. Observe the following:

@L
 (D)

@w(t)
l

(P (B
W

(i),V (i)))

= E
(x,y)⇠ (D)

2

4`0(P (B
W

(i),V (i))(x)) · @

@w(t)
l

2

ni

ni/2X

j0=1

g
w

(i,j0),v(i,j0)(x
2j0�1

, x
2j0)

3

5

+ E
(x,y)⇠ (D)

2

4R0
�(P (B

W

(i),V (i))(x)) · @

@w(t)
l

2

ni

ni/2X

j0=1

g
w

(i,j0),v(i,j0)(x
2j0�1

, x
2j0)

3

5

=

2

ni
E
 (D)

"
(�� y)

@

@w(t)
l

gt(x2j�1

, x
2j)

#

=

2

ni
E
 (D)

h
(�� y)vl1{gt(x2j�1

, x
2j) 2 (�1, 1)} · 1{hw(t)

l , (x
2j�1

, x
2j)i > 0} · (x

2j�1

, x
2j)

i

We use the fact that `0(P (B
W

(i),V (i))(x)) = �y, unless P (B
W

(i),V (i))(x) 2 {±1}, in which case
gt(x2j�1

, x
2j) 2 {±1}, so @

@w
(t)
l

gt(x2j�1

, x
2j) = 0. Similarly, unless @

@w
(t)
l

gt(x2j�1

, x
2j) = 0,

we get that R0
�(P (B

W

(i),V (i))(x)) = �. Fix some p 2 {±1}2 such that hw(t)
l ,pi > 0. Note that

for every p 6= p

0 2 {±1}2 we have either hp,p0i = 0, or p = �p0 in which case hw(t)
l ,p0i < 0.

Therefore, we get the following:

h@L (D)

@w(t)
l

,pi

=

2

ni
E
 (D)

h
(�� y)vl1{gt(x2j�1

, x
2j) 2 (�1, 1)} · 1{hw(t)

l , (x
2j�1

, x
2j)i � 0} · h(x

2j�1

, x
2j),pi

i

=

2

ni
E
 (D)

h
(�� y)vl1{gt(x2j�1

, x
2j) 2 (�1, 1)} · 1{(x

2j�1

, x
2j) = p} kpk2

i

Denote q
p

:= P
(x,y)⇠D(i) [(x

2j�1

, x
2j) = p|�(x

2j�1

, x
2j) = �(p)]. Using property 2, we have:

P
(x,y)⇠D(i) [(x

2j�1

, x
2j) = p, y = y0]

= P
(x,y)⇠D(i) [(x

2j�1

, x
2j) = p, y = y0, �(x

2j�1

, x
2j) = �(p)]

= P
(x,y)⇠D(i) [(x

2j�1

, x
2j) = p, y = y0|�(x

2j�1

, x
2j) = �(p)]P

(x,y)⇠D(i) [�(x
2j�1

, x
2j) = �(p)]

= q
p

P
(x,y)⇠D(i) [�(x

2j�1

, x
2j) = �(p), y = y0]

= q
p

P
(z,y)⇠D(i�1) [zj = �(p), y = y0]
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And therefore:
E
(x,y)⇠D(i) [y1{(x

2j�1

, x
2j) = p}] =

X

y02{±1}

y0P
(x,y)⇠D(i) [(x

2j�1

, x
2j) = p, y = y0]

= q
p

X

y02{±1}

y0P
(z,y)⇠D(i�1) [zj = �(p), y = y0]

= q
p

E
(z,y)⇠D(i�1) [y1{zj = �(p)}]

Assuming gt(p) 2 (�1, 1), using the above we get:

h@L (D)

@w(t)
l

,pi = 4vl
ni

E
(x,y)⇠ (D)

[(�� y)1{(x
2j�1

, x
2j) = p}]

=

4vl
ni

E
(x,y)⇠D(i) [(�� y)1{(⇠

2j�1

x
2j�1

, ⇠
2jx2j) = p}]

=

4vl
ni

E
(x,y)⇠D(i) [(�� y)1{(x

2j�1

, x
2j) = e

p}]

=

4vlqep
ni

E
(z,y)⇠D(i�1) [(�� y)1{zj = e�(p)}]

Now, we have the following cases:

• If Ii�1,j = 0, then by property 1 zj and y are independent, so:

h@L (D)

@w(t)
l

,pi = 4vlqep
ni

E
(z,y)⇠D(i�1) [(�� y)1{zj = e�(p)}]

=

4vlqep
ni

E
(z,y)⇠D(i�1) [(�� y)]P

(z,y)⇠D(i�1) [zj = e�(p)]

=

4vl
ni

(�� E
(z,y)⇠D(i�1) [y])P

(x,y)⇠D(i) [(x
2j�1

, x
2j) = e

p]

Since we assume e�(p) = 1, ⌫j = �1, and using property 3 and the fact that p 2 P , we get
that:

�e�(p)vl⌫jh
@L

 (D)

@w(t)
l

,pi = vlh
@L

 (D)

@w(t)
l

,pi

=

4

ni
(�� E [y])P

(x,y)⇠D(i) [(x
2j�1

, x
2j) = e

p] >
�✏

ni

Using the fact that � = E [y] + �

4

.

• Otherwise, observe that:

h@L (D)

@w(t)
l

,pi = 4vlqep
ni

E
(z,y)⇠D(i�1) [(�� y)1{zj = e�(p)}]

=

4vlqep
ni

✓
�P

(z,y)⇠D(i�1) [zj = e�(p)]� E
(z,y)⇠D(i�1)


y
1

2

(zj · e�(p) + 1)

�◆

=

2vlqep
ni

�
2�P

(z,y)⇠D(i�1) [zj = e�(p)]� e�(p)ci�1,j � E
(z,y)⇠D(i�1) [y]

�

And therefore we get:

�e�(p)vl sign(ci�1,j)h
@L

 (D)

@w(t)
l

,pi = 2qep
ni

(|ci�1,j |+ sign(ci�1,j)e�(p)(E [y]� 2�P [zj = e�(p)]))

13



Now, if sign(ci�1,j)e�(p) = 1, using property 1, since Ii�1,j 6= 0 we get:

�e�(p)vl sign(ci�1,j)h
@L

 (D)

@w(t)
l

,pi � qep
ni

(|ci�1,j |+ E [y]� 2�) >
✏

ni
�

Otherwise, we have sign(ci�1,j)e�(p) = �1, and then:

�e�(p)vl sign(ci�1,j)h
@L

 (D)

@w(t)
l

,pi � qep
ni

(|ci�1,j |� E [y]) >
2✏

ni
�

where we use property 3 and the fact that p 2 P .

We introduce the following notation: for a sample S ✓ X 0 ⇥ Y , and some function f : X 0 ! X 0,
denote by f(S) the sample f(S) := {(f(x), y)}

(x,y)2S . Using standard concentration of measure
arguments, we get that the gradient on the sample approximates the gradient on the distribution:

Lemma 4. Fix � > 0. Assume we sample S ⇠ D, with |S| > 2

11

✏2�2 log
8

� . Then, with probability at
least 1� �, for every p 2 {±1}2 such that hw(t)

l ,pi > 0 it holds that:
�����h
@L

 (D)

@w(t)
l

,pi � h@L (S)

@w(t)
l

,pi
����� 

✏

4ni
�

Proof. Fix some p 2 {±1}2 with hw(t)
l ,pi > 0. Similar to what we previously showed, we get

that:

h@L (S)

@w(t)
l

,pi

=

2

ni
E
(x,y)⇠ (S)

h
(�� y)vl1{gt(x2j�1

, x
2j) 2 (�1, 1)} · 1{hw(t)

l , (x
2j�1

, x
2j)i � 0} · h(x

2j�1

, x
2j),pi

i

=

2

ni
E
(x,y)⇠ (S)

h
(�� y)vl1{gt(x2j�1

, x
2j) 2 (�1, 1)} · 1{(x

2j�1

, x
2j) = p} kpk2

i

=

4

ni
E
(x,y)⇠ (S)

[(�� y)vl1{gt(x2j�1

, x
2j) 2 (�1, 1)} · 1{(x

2j�1

, x
2j) = p}]

Denote f(x, y) = (� � y)vl1{gt(x2j�1

, x
2j) 2 (�1, 1)} · 1{(x

2j�1

, x
2j) = p}, and notice that

since �  1, we have f(x, y) 2 [�2, 2]. Now, from Hoeffding’s inequality we get that:

PS

⇥��E
 (S)

[f(x, y)]� E
 (D)

[f(x, y)]
�� � ⌧⇤  2 exp

✓
�1

8

|S|⌧2
◆

So, for |S| > 8

⌧2 log
8

� we get that with probability at least 1� �
4

we have:
�����h
@L

 (D)

@w(t)
l

,pi � h@L (S)

@w(t)
l

,pi
����� =

4

ni

��E
 (S)

[f(x, y)]� E
 (D)

[f(x, y)]
�� < 4

ni
⌧

Taking ⌧ =

✏
16

� and using the union bound over all p 2 {±1}2 completes the proof.

Using the two previous lemmas, we can estimate the behavior of the gradient on the sample, with
respect to a given pattern p:

Lemma 5. Fix � > 0. Assume we sample S ⇠ D, with |S| > 2

11

✏2�2 log
8

� . Then, with probability at
least 1� �, for every p 2 P , and for every l 2 [k] such that hw(t)

l ,pi > 0 and gt(p) 2 (�1, 1), the
following holds:

�e�(p)vl⌫jh
@L

 (S)

@w(t)
l

,pi > ✏

2ni
�

14



Proof. Using Lemma 3 and Lemma 4, with probability at least 1� �:

�e�(p)vl⌫jh
@L

 (S)

@w(t)
l

,pi = �e�(p)vl⌫j
 
h@L (D)

@w(t)
l

,pi+ h@L (S)

@w(t)
l

,pi � h@L (D)

@w(t)
l

,pi
!

� �e�(p)vl⌫jh
@L

 (D)

@w(t)
l

,pi �
�����h
@L

 (S)

@w(t)
l

,pi � h@L (D)

@w(t)
l

,pi
�����

>
✏

ni
�� ✏

4ni
� � 3✏

4ni
�

We want to show that if the value of gt gets “stuck”, then it recovered the value of the gate, multiplied
by the correlation ci�1,j . We do this by observing the dynamics of hw(t)

l ,pi. In most cases, its
value moves in the right direction, except for a small set that oscillates around zero. This set is the
following:

At =

⇢
(l,p) : p 2 P ^ e�(p)vl⌫j < 0 ^ hw(t)

l ,pi  8⌘

ni
^ (e�(�p)vl⌫j < 0 _ �p 2 P)

�

We have the following simple observation:
Lemma 6. With the assumptions of Lemma 5, with probability at least 1 � �, for every t we have:
At ✓ At+1

.

Proof. Fix some (l,p) 2 At, and we need to show that hw(t+1)

l ,pi  8⌘
ni

. If hw(t)
l ,pi = 0 then4

hw(t+1)

l ,pi = hw(t)
l ,pi  8⌘

ni
and we are done. If hw(t)

l ,pi > 0 then, since p 2 P we have from
Lemma 5, w.p at least 1� �:

�h@L (S)

@w(t)
l

,pi < e�(p)vl⌫j ✏

2ni
� < 0

Where we use the fact that e�(p)vl⌫j < 0. Therefore, we get:

hw(t+1)

l ,pi = hw(t)
l ,pi � ⌘h@L (S)

@w(t)
l

,pi  hw(t)
l ,pi  8⌘

ni

Otherwise, we have hw(t)
l ,pi < 0, so:

hw(t+1)

l ,pi = hw(t)
l ,pi � ⌘h@L (S)

@w(t)
l

,pi  hw(t)
l ,pi+ 8⌘

ni
 8⌘

ni

Now, we want to show that all hw(t)
l ,pi with (l,p) /2 At and p 2 P move in the direction of

e�(p) · ⌫j :
Lemma 7. With the assumptions of Lemma 5, with probability at least 1��, for every l,t and p 2 P
such that hw(t)

l ,pi > 0 and (l,p) /2 At, it holds that:
⇣
�(hw(t)

l ,pi)� �(hw(t�1)

l ,pi)
⌘
· e�(p)vl⌫j � 0

Proof. Assume the result of Lemma 5 holds (this happens with probability at least 1��). We cannot
have hw(t�1)

l ,pi = 0, since otherwise we would have hw(t)
l ,pi = 0, contradicting the assumption.

If hw(t�1)

l ,pi > 0, since we require hw(t)
l ,pi > 0 we get that:

�(hw(t)
l ,pi)� �(hw(t�1)

l ,pi) = hw(t)
l �w

(t�1)

l ,pi = �⌘h @L (S)

@w(t�1)

l

,pi

and the required follows from Lemma 5. Otherwise, we have hw(t�1)

l ,pi < 0. We observe the
following cases:

4We take the sub-gradient zero at zero.
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• If e�(p)vl⌫j � 0 then we are done, since:
⇣
�(hw(t)

l ,pi)� �(hw(t�1)

l ,pi)
⌘
· e�(p)vl⌫j = �(hw(t)

l ,pi) · e�(p)vl⌫j � 0

• Otherwise, we have e�(p)vl⌫j < 0. We also have:

hw(t)
l ,pi = hw(t�1)

l ,pi � ⌘h@L (S)

@w(t)
l

,pi  hw(t�1)

l ,pi+ 8⌘

ni
 8⌘

ni

Since we assume (l,p) /2 At, we must have �p 2 P and e�(�p)vl⌫j � 0. Therefore, from
Lemma 5 we get:

h@L (S)

@w(t)
l

,�pi < �e�(�p)vl⌫j ✏

2ni
�

And hence:

0 < hw(t)
l ,pi = hw(t�1)

l ,pi+ ⌘h @L (S)

@w(t�1)

l

,�pi  �⌘e�(�p)vl⌫j ✏

2ni
� < 0

and we reach a contradiction.

From the above, we get the following:
Corollary 1. With the assumptions of Lemma 5, with probability at least 1 � �, for every l,t and
p 2 P such that hw(t)

l ,pi > 0 and (l,p) /2 At, the following holds:
⇣
�(hw(t)

l ,pi)� �(hw(0)

l ,pi)
⌘
· e�(p)vl⌫j � 0

Proof. Notice that for every t0  t we have (l,p) /2 At0 ✓ At. Therefore, using the previous
lemma:
⇣
�(hw(t)

l ,pi)� �(hw(0)

l ,pi)
⌘
· e�(p)vl⌫j =

X

1t0t

⇣
�(hw(t)

l ,pi)� �(hw(t0)
l ,pi)

⌘
· e�(p)vl⌫j � 0

Finally, we need to show that there are some “good” neurons, that are moving strictly away from
zero:
Lemma 8. Fix � > 0. Assume we sample S ⇠ D, with |S| > 2

11

✏2�2 log
8

� . Assume that k �
log

�1

(

4

3

) log(

4

� ). Then with probability at least 1 � 2�, for every p 2 P , there exists l 2 [k] such
that for every t with gt�1

(p) 2 (�1, 1), we have:

�(hw(t)
l ,pi) · e�(p)vl⌫j � ⌘t ✏

2ni
�

Proof. Assume the result of Lemma 5 holds (happens with probability at least 1 � �). Fix some
p 2 P . For l 2 [k], with probability 1

4

we have both vl = e�(p)⌫j and hw(0)

l ,pi > 0. Therefore,
the probability that there exists l 2 [k] such that the above holds is 1 � (

3

4

)

k � 1 � �
4

. Using the
union bound, w.p at least 1 � �, there exists such l 2 [k] for every p 2 {±1}2. In such case, we
have hw(t)

l ,pi � ⌘t ✏
2ni
�, by induction:

• For t = 0 this is true since hw(0)

l ,pi > 0.
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• If the above holds for t � 1, then hw(t�1)

l ,pi > 0, and therefore, using vl = e�(p)⌫j and
Lemma 5:

�h@L (D)

@w(t)
l

,pi > e�(p)vl⌫j ✏

2ni
�

And we get:

hw(t)
l ,pi = hw(t�1)

l ,pi � ⌘h@L (D)

@w(t)
l

,pi

> hw(t�1)

l ,pi+ ⌘e�(p)vl⌫j
✏

2ni
�

� ⌘(t� 1)

✏

2ni
�+ ⌘

✏

2ni
�

Using the above results, we can analyze the behavior of gt(p):

Lemma 9. Assume we initialize w(0)

l such that
���w(0)

l

���  1

4k . Fix � > 0. Assume we sample S ⇠ D,

with |S| > 2

11

✏2�2 log
8

� . Then with probability at least 1 � 2�, for every p 2 P , for t > 6nip
2⌘✏�

we
have:

gt(p) = e�(p)⌫j

Proof. Using Lemma 8, w.p at least 1�2�, for every such p there exists l
p

2 [k] such that for every
t with gt�1

(p) 2 (�1, 1):
vlp�(hw(t)

lp
,pi) · e�(p)⌫j � ⌘t ✏

2ni
�

Assume this holds, and fix some p 2 P . Let t, such that gt�1

(p) 2 (�1, 1). Denote the set of
indexes J = {l : hw(t)

l ,pi > 0}. We have the following:

gt(p) =
X

l2J

vl�(hw(t)
l ,pi)

= vlp�(hw(t)
lp

,pi) +
X

l2J\{lp},(l,p)/2At

vl�(hw(t)
l ,pi) +

X

l2J\{lp},(l,p)2At

vl�(hw(t)
l ,pi)

From Corollary 1 we have:

e�(p)⌫j ·
X

l2J\{lp},(l,p)/2At

vl�(hw(t)
l ,pi) � �k�(hw(0)

l ,pi) � �1

4

By definition of At and by our assumption on ⌘ we have:

e�(p)⌫j ·
X

l2J\{lp},(l,p)2At

vl�(hw(t)
l ,pi) � �k 8⌘

ni
� �1

4

Therefore, we get:

e�(p)⌫j · gt(p) � ⌘t ✏

2

p
2ni

�� 1

2

This shows that for t > 6nip
2⌘✏�

we get the required.

Proof. of Lemma 2. Using the result of Lemma 9, with union bound over all choices of j 2 [ni/2].
The required follows by the definition of e�(x

2j�1

, x
2j) = �i�1,j(⇠2j�1

x
2j�1

, ⇠
2jx2j).
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B Proofs of Section 3.2

Proof. of Lemma 1. Property 1 is immediate from assumption 1. For property 2, fix some i 2
[d], j 2 [ni/2],p 2 {±1}2, y0 2 {±1}, such that:

P
(x,y)⇠D(i) [�i�1,j(x2j�1

, x
2j) = �i�1,j(p)] > 0

Assume w.l.o.g. that j = 1. Denote by W the set of all possible choices for x
3

, . . . , xni , such that
when (x

1

, x
2

) = p, the resulting label is y0. Formally:

W := {(x
3

, . . . , xni) : �i...d(p1, p2, x3

, . . . , xni) = y0}
Then we get:

PD(i) [(x
1

, x
2

) = p, y = y0, �i�1,j(x1

, x
2

) = �i�1,j(p)]

= PD(i) [(x
1

, x
2

) = p, (x
3

, . . . , xni) 2W, �i�1,j(x1

, x
2

) = �i�1,j(p)]

= PD(i) [(x
1

, x
2

) = p, �i�1,j(x1

, x
2

) = �i�1,j(p)] · PD(i) [(x
3

, . . . , xni) 2W ]

= PD(i) [(x
1

, x
2

) = p|�i�1,j(x1

, x
2

) = �i�1,j(p)] · PD(i) [�i�1,j(x1

, x
2

) = �i�1,j(p), (x3

, . . . , xni) 2W ]

= PD(i) [(x
1

, x
2

) = p|�i�1,j(x1

, x
2

) = �i�1,j(p)] · PD(i) [y = y0, �i�1,j(x1

, x
2

) = �i�1,j(p)]

And dividing by PD(i) [�i�1,j(x1

, x
2

) = �i�1,j(p)] gives the required.

For property 3, we observe two cases. If ci,j � 0 then:

�  ci,j � E [y] = E [xjy � y] = E [y(xj � 1)]

= 2P [xj = �1 ^ y = �1]� 2P [xj = �1 ^ y = 1]

 2P [xj = �1 ^ y = �1]  2P [xj = �1]
Otherwise, if ci,j < 0 we have:

�  �ci,j � E [y] = E [�xjy � y] = �E [y(xj + 1)]

= 2P [xj = 1 ^ y = �1]� 2P [xj = 1 ^ y = 1]

 2P [xj = 1 ^ y = �1]  2P [xj = 1]

So, in any case P [xj = 1] 2 (

�

2

, 1 � �

2

), and since every bit in every layer is independent, we get
property 3 holds with ✏ = �

2

4

.

C Proofs of Section 3.3

C.1 Parity Circuits

We observe the k-parity problem, where the target function is f(x) =
Q

j2I xj some subset I ✓ [n]
of size |I| = k. A simple construction shows that f can be implemented by a tree structured circuit
as defined previously. We define the gates of the first layer by:

�d�1,j(z1, z2) =

8
>><

>>:

z
1

z
2

x
2j�1

, x
2j 2 I

z
1

x
2j�1

2 I, x
2j /2 I

z
2

x
2j 2 I, x

2j�1

/2 I
1 o.w

And for all other layers i < d� 1, we define: �i,j(z1, z1) = z
1

z
2

. Then we get the following:
Lemma 10. Let C be a Boolean circuit as defined above. Then: hC(x) =

Q
j2I xj = f(x).

Now, let DX be some product distribution over X , and denote pj := PDX [xj = 1]. Let D be the
distribution of (x, f(x)) where x ⇠ DX . Then for the circuit defined above we get the following:
Lemma 11. Fix some ⇠ 2 (0, 1

4

). For every product distribution D with pj 2 (⇠, 1

2

�⇠)[( 1
2

+⇠, 1�⇠)
for all j, if Ii,j 6= 0 then |ci,j |� |E [y]| � (2⇠)k and P

(z,y)⇠�(i+1)...d(D)

[zj = 1] 2 (⇠, 1� ⇠).
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The above lemma shows that every non-degenerate product distribution that is far enough from the
uniform distribution, satisfies assumption 1 with � = (2⇠)k. Using the fact that at each layer,
the output of each gate is an independent random variable (since the input distribution is a product
distribution), we get that property 3 is satisfied with ✏ = ⇠2. This gives us the following result:
Corollary 2. Let D be a product distribution with pj 2 (⇠, 1

2

� ⇠) [ (

1

2

+ ⇠, 1 � ⇠) for every j,
with the target function being a (log n)-parity (i.e., k = log n). Then, when running algorithm 1 as
described in Theorem 2, with probability at least 1� � the algorithm returns the true target function
hC , with run-time and sample complexity polynomial in n.

Proof. of Lemma 10.

For every gate (i, j), let Ji,j be the subset of leaves in the binary tree whose root is the node (i, j).
Namely, Ji,j := {(j � 1)2

d�i
+ 1, . . . , j2d�i}. Then we show inductively that for an input x 2

{±1}n, the (i, j) gate outputs:
Q

l2I\Ji,j
xl:

• For i = d� 1, this is immediate from the definition of the gate �d�1,j .

• Assume the above is true for some i and we will show this for i � 1. By definition of the
circuit, the output of the (i � 1, j) gate is a product of the output of its inputs from the
previous layers, the gates (i, 2j � 1), (i, 2j). By the inductive assumption, we get that the
output of the (i� 1, j) gate is therefore:

0

@
Y

l2Ji,2j�1\I

xl

1

A ·
0

@
Y

l2Ji,2j\I

xl

1

A
=

Y

l2(Ji,j2�1[Ji,2j)\I

xl =

Y

l2Ji�1,j

xl

From the above, the output of the target circuit is
Q

l2J0,1\I xl =
Q

l2I xl, as required.

Proof. of Lemma 11.

By definition we have:

ci,j = E
(x,y)⇠D

⇥
�

(i+1)...d(x)jy
⇤
= E

(x,y)⇠D
⇥
�

(i+1)...d(x)jy
⇤
= E

(x,y)⇠D
⇥
�

(i+1)...d(x)jx1

· · ·xk

⇤

Since we require Ii,j 6= 0, then we cannot have �
(i+1)...d(x)j ⌘ 1. So, from what we showed

previously, it follows that �
(i+1)...d(x)j =

Q
j02I0 xj0 for some ; 6= I 0 ✓ I . Therefore, we get that:

ci,j = ED

2

4
Y

j02I\I0

xj0

3

5
=

Y

j02I\I0

ED [xj0 ] =

Y

j02I\I0

(2pj0 � 1)

Furthermore, we have that:

ED [y] = ED

2

4
Y

j02I

xj0

3

5
=

Y

j02I

ED [xj0 ] =

Y

j02I

(2pj0 � 1)

And using the assumption on pj we get:

|ci,j |� |ED [y]| =
Y

j02[k]\I0

|2pj0 � 1|�
Y

j02[k]

|2pj0 � 1|

=

0

@
Y

j02[k]\I0

|2pj0 � 1|
1

A

0

@
1�

Y

j02I0

|2pj0 � 1|
1

A

�
0

@
Y

j02[k]\I0

|2pj0 � 1|
1

A
⇣
1� (1� 2⇠)|I0|⌘

� (2⇠)k�|I0|
(1� (1� 2⇠)) � (2⇠)k

19



Now, for the second result, we have:

P
(z,y)⇠�i...d(D)

[zj = 1] = E
(x,y)⇠D

⇥
1{�

(i+1)...d(x)j = 1}⇤

= E
(x,y)⇠D

2

41
2

(

Y

j02I0

xj0 + 1)

3

5

=

1

2

Y

j02I0

E
(x,y)⇠D [xj0 ] +

1

2

And so we get:
����P(z,y)⇠�i...d(D)

[zj = 1]� 1

2

���� =
1

2

Y

j02I0

��E
(x,y)⇠D [xj0 ]

��

<
1

2

(1� 2⇠)|I0|  1

2

� ⇠

C.2 AND/OR Circuits

We limit ourselves to circuits where each gate is chosen from the set {^,_,¬^,¬_}. For every such
circuit, we define a generative distribution as follows: we start by sampling a label for the example.
Then iteratively, for every gate, we sample uniformly at random a pattern from all the pattern that
give the correct output. For example, if the label is 1 and the topmost gate is OR, we sample a
pattern uniformly from {(1, 1), (1,�1), (�1, 1)}. The sampled pattern determines what should be
the output of the second topmost layer. For every gate in this layer, we sample again a pattern that
will result in the correct output. We continue in this fashion until reaching the bottom-most layer,
which defines the observed example. Formally, for a given gate � 2 {^,_,¬^,¬_}, we denote the
following sets of patterns:

S
�

= {v 2 {±1}2 : �(v
1

, v
2

) = 1}, Sc
�

= {±1}2 \ S
�

We recursively define D(0), . . . ,D(d), where D(i) is a distribution over {±1}2i ⇥ {±1}:

• D(0) is a distribution on {(1, 1), (�1,�1)} s.t. PD(0) [(1, 1)] = PD(0) [(�1,�1)] = 1

2

.

• To sample (x, y) ⇠ D(i), sample (z, y) ⇠ D(i�1). Then, for all j 2 [2

i�1

], if zj = 1

sample x

0
j ⇠ U(S�i,j ), and otherwise sample x

0
j ⇠ U(Sc

�i,j
). Set x = [x

0
1

, . . . ,x0
2

i�1 ] 2
{±1}2i , and return (x, y).

Then we have the following results:
Lemma 12. For every i 2 [d] and every j 2 [2

i
], denote ci,j = E

(x,y)⇠D(i) [xjy]. Then we have:

|ci,j |� E [y] >

✓
2

3

◆d

= nlog(2/3)

Lemma 13. For every i 2 [d] we have �i(D(i)
) = D(i�1).

Notice that from Lemma 12, the distribution D(d) satisfies property 1 with � = nlog(2/3) (note
that since we restrict the gates to AND/OR/NOT, all gates have influence). By its construction, the
distribution also satisfies property 2, and it satisfies property 3 with ✏ =

�
1

4

�d
=

1

n2 . Therefore, we
can apply Theorem 2 on the distribution D(d), and get that algorithm 1 learns the circuit C exactly
in polynomial time. This leads to the following corollary:
Corollary 3. With the assumptions and notations of Theorem 2, for every circuit C with gates in
{^,_,¬^,¬_}, there exists a distribution D such that when running algorithm 1 on a sample from
D, the algorithm returns hC with probability 1� �, in polynomial run-time and sample complexity.
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Proof. of Lemma 12 For every i 2 [d] and j 2 [2

i
], denote the following:

p+i,j = P
(x,y)⇠D(i) [xj = 1|y = 1] , p�i,j = P

(x,y)⇠D(i) [xj = 1|y = �1]
Denote D(i)|

z

the distribution D(i) conditioned on some fixed value z sampled from D(i�1). We
prove by induction on i that |p+i,j � p�i,j | =

�
2

3

�i:

• For i = 0 we have p+i,j = 1 and p�i,j = 0, so the required holds.

• Assume the claim is true for i� 1, and notice that we have for every z 2 {±1}2i�1

:
P
(x,y)⇠D(i) [xj = 1|y = 1] = P

(x,y)⇠D(i)|z
⇥
xj = 1|zdj/2e = 1

⇤ · P
(z,y)⇠D(i�1)

⇥
zdj/2e = 1|y = 1

⇤

+ P
(x,y)⇠D(i)|z

⇥
xj = 1|zdj/2e = �1

⇤ · P
(z,y)⇠D(i�1)

⇥
zdj/2e = �1|y = 1

⇤

=

8
>>><

>>>:

p+i�1,dj/2e +
1

3

(1� p+i�1,dj/2e) if �i�1,dj/2e = ^
2

3

p+i�1,dj/2e if �i�1,dj/2e = _
1

3

p+i�1,dj/2e + (1� p+i�1,dj/2e) if �i�1,dj/2e = ¬^
2

3

(1� p+i�1,dj/2e) if �i�1,dj/2e = ¬_

=

8
>>><

>>>:

2

3

p+i�1,dj/2e � 1

3

if �i�1,dj/2e = ^
2

3

p+i�1,dj/2e if �i�1,dj/2e = _
1� 2

3

p+i�1,dj/2e if �i�1,dj/2e = ¬^
2

3

� 2

3

p+i�1,dj/2e if �i�1,dj/2e = ¬_

Similarly, we get that:

P
(x,y)⇠D(i) [xj = 1|y = �1] =

8
>>><

>>>:

2

3

p�i�1,dj/2e � 1

3

if �i�1,dj/2e = ^
2

3

p�i�1,dj/2e if �i�1,dj/2e = _
1� 2

3

p�i�1,dj/2e if �i�1,dj/2e = ¬^
2

3

� 2

3

p�i�1,dj/2e if �i�1,dj/2e = ¬_
Therefore, we get:

|p+i,j � p�i,j | =
2

3

|p+i�1,dj/2e � p�i�1,dj/2e| =
✓
2

3

◆i

From this, we get:��E
(x,y)⇠D(i) [xjy]

��
=

��E
(x,y)⇠D(i) [(21{xj = 1}� 1)y]

��

=

��
2E

(x,y)⇠D(i) [1{xj = 1}y]� E [y]
��

= |2 (PD(i) [xj = 1, y = 1]� PD(i) [xj = 1, y = �1])|
=

��
2

�
p+i,jP [y = 1]� p�i,jP [y = �1]���

=

��p+i,j � p�i,j
��
=

✓
2

3

◆d

And hence:
��E

(x,y)⇠D(i) [xjy]
��� ��E

(x,y)⇠D(i) [y]
�� �

✓
2

3

◆d

Proof. of Lemma 13 Fix some z

0 2 {±1}ni/2 and y0 2 {±1}. Then we have:
P
(x,y)⇠�i(D(i)

)

[(x, y) = (z

0, y0)] = P
(x,y)⇠D(i) [(�i(x), y) = (z

0, y0)]

= P
(x,y)⇠D(i)

⇥8j �i�1,j(x2j�1

, x
2j) = z0j and y = y0

⇤

= P
(z,y)⇠D(i�1) [(z, y) = (z

0, y0)]

By the definitions of D(i) and D(i�1).
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