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R1, R2: Realism of the causal graph. In our model, the outcome Yt is determined not only by At, but also by the2

unobserved moderating variable Z and possibly exogenous variables. Z may capture, for example, the disease state3

of a subject and introduce correlations between outcomes Ys and Yt for s < t. It is a common working assumption4

that previous actions and outcomes, As, Ys for s < t, do not have direct causal effect on Yt when Yt represents the5

symptoms of chronic conditions where drugs do not affect the underlying disease state; given sufficient time between6

treatments, symptoms return to a baseline level until another treatment is started. In addition to rheumatoid arthritis [1],7

which is used as motivation in the manuscript, examples include depression [2] and Parkinson’s disease [3].8

R2: Usefulness of causal framework. The causal framework is necessary for distinguishing the observational9

outcome Yt from the potential outcome Y (a). Only under certain assumptions can Y (a) be estimated from Yt.10

Sufficient conditions for this are given in Section 4. The distinction is particularly important in the case where Y (a) is11

not fully identifiable from observational data due to unobserved confounding, as discussed in Section 4.2.12

R2: Observed and counterfactual outcomes. The relationship between counterfactual outcomes Y (a) and observed13

outcomes Yt is established in Theorem 1. The LHS of (4), ρ(hs), is a function of counterfactual outcomes, as defined14

in (2), and the RHS is a function of observed outcomes Yt. As remarked after Theorem 1, under our assumptions, a15

model of p(Yt | Ht = h,At = a) is sufficient for estimating the distribution of Y (a). To solve our policy optimization16

problem (1), it is not necessary to impute all counterfactuals. For example, in the binary case given by R2, if an action17

a = 0 has been tried, and Y (0) observed, only the probability that Y (1) > Y (0) is required to solve the problem.18

R2: Relation to model-free RL. R2 is correct that the model-free method NDP compares similarly to the other19

methods in the antibiotics experiment. However, we show in Figure 1b that the qualitative behavior of NDP as a function20

of dataset size is very different from that of CDP and CG. Additionally, as shown in Appendix A.7 (Thm A7), NDP is21

suboptimal in the general case. We hope that these contributions are recognized. By a “transparent” tradeoff, we refer to22

the meaning of the parameters δ (CDP, CG) and λ (NDP). δ is directly interpretable as a probability threshold at which23

we are satisfied with the best-so-far treatment (as used in the antibiotics experiment). The value of λ does not have an24

immediate interpretation as a level of certainty of near-optimality—the tradeoff for a fixed λ varies across datasets.25

R3, R4: Comparison with experts and the emulated expert. R3 is correct that it is feasible in practice to include26

more information in the policy so that it compares more favorably to experts in the first step. Similarly, the accuracy of27

the emulated doctor, remarked upon by R4, could be improved by using more information to emulate the doctor policy.28

In our experiment, we intentionally kept the patient representation small because the number of samples was fairly29

limited. The emulated expert in our study attempts to approximate the expert’s policy with the same information given30

to the other algorithms. As such, it serves as an imitation learning baseline to complement the policy optimization31

approaches developed in this work. We will clarify this choice in the paper. We note, however, that our algorithm is32

trying to achieve a different goal than the expert. While experts may attempt to prescribe the best action on the first try,33

we try to minimize the expected number of tested treatments. In that sense, the expert can be thought of as a greedy34

agent, which our paper argues is not always optimal, if we’re trying to minimize needless trial and error on patients.35

R4: Impact of this work. We certainly agree that our method is not suitable for all applications. However, there is a36

large class of medical conditions and treatments which fall exactly under the specifications of our model. In fact, our37

motivation for this work is the result of working with active clinicians treating rheumatoid arthritis. The application38

of our method for this purpose is an ongoing project which will be aimed at the clinical research community, but we39

appreciate the reviewer’s feedback which highlighted that the use cases of our method are not readily apparent from40

reading the paper. We will add a description of the RA problem to the paper to make it more concrete and demonstrate41

a motivating use case, along with a discussion of other uses such as in treating psychiatric disorders. Finally, we believe42

that the problem has applications also outside of medicine, such as for general recommendation systems.43

R4: Short-term response. It is true that short-term response is critical for some applications and should not be44

discounted; this is a potential challenge also for reinforcement learning which optimizes long-term return, possibly45

sacrificing immediate rewards. Our goal is to find a near-optimal treatment in as few steps as possible which is an46

important consideration in other applications [2]. If an optimal treatment can be reliably identified in a single step,47

the algorithm is incentivized to do so. Short-term success is sacrificed only if there is great uncertainty about which48

treatment is likely to work and this can be reduced by a sub-optimal treatment. Our greedy approximation incentivizes49

short-term response by preferring actions higher that are likely to have a higher outcome (see 5.2). Such incentives50

could be incorporated into the dynamic programming solution as well, and is an interesting direction for future work.51
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