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Abstract

Finding an effective medical treatment often requires a search by trial and error.
Making this search more efficient by minimizing the number of unnecessary trials
could lower both costs and patient suffering. We formalize this problem as learning
a policy for finding a near-optimal treatment in a minimum number of trials using
a causal inference framework. We give a model-based dynamic programming
algorithm which learns from observational data while being robust to unmeasured
confounding. To reduce time complexity, we suggest a greedy algorithm which
bounds the near-optimality constraint. The methods are evaluated on synthetic and
real-world healthcare data and compared to model-free reinforcement learning. We
find that our methods compare favorably to the model-free baseline while offering
a more transparent trade-off between search time and treatment efficacy.

1 Introduction

Finding a good treatment for a patient often involves trying out different options before a satisfactory
one is found (Murphy et al., 2007). If the first-line drug is ineffective or has severe side-effects,
guidelines may suggest it is replaced by or combined with another drug (Singh et al., 2016). These
steps are repeated until an effective combination of drugs is found or all options are exhausted, a
process which may span several years (NCCMH, 2010). A long search adds to patient suffering and
postpones potential relief. It is therefore critical that this process is made as time-efficient as possible.

We formalize the search for effective treatments as a policy optimization problem in an unknown
decision process with finite horizon (Garcia and Ndiaye, 1998). This has applications also outside of
medicine: For example, in recommendation systems, we may sequentially propose new products or
services to users with the hope of finding one that the user is interested in. Our goal is to perform as
few trials as possible until the probability that there are untried actions which are significantly better
is small—i.e., a near-optimal action has been found with high probability. Historical observations
allow us to transfer knowledge and perform this search more efficiently for new subjects. As more
actions are tried and their outcomes observed, our certainty about the lack of better alternatives
increases. Importantly, even a failed trial may provide information that can guide the search policy.

In this work, we restrict our attention to actions whose outcomes are stationary in time. This implies
both that repeated trials of the same action have the same outcome and that past actions do not
causally impact the outcome of future actions. The stationarity assumption is justified, for example,
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for medical conditions where treatments manage symptoms but do not alter the disease state itself, or
where the impact of sequential treatments is known to be additive. In such settings, past actions and
outcomes may help predict the outcomes of future actions without having a causal effect on them.

We formalize learning to search efficiently for causally effective treatments as off-policy optimization
of a policy which finds a near-optimal action for new contexts after as few trials as possible. Our set-
ting differs from those typical of reinforcement or bandit learning (Sutton et al., 1998): (i) Solving the
problem relies on transfer of knowledge from observational data. (ii) The stopping (near-optimality)
criterion depends on a model of unobserved quantities. (iii) The number of trials in a single sequence
is bounded by the number of available actions. We address identification of an optimal policy using a
causal framework, accounting for potential confounding. We give a dynamic programming algorithm
which learns policies that satisfy a transparent constraint on near-optimality for a given level of
confidence, and a greedy approximation which satisfies a bound on this constraint. We show that
greedy policies are sub-optimal in general, but that there are settings where they return policies with
informative guarantees. In experiments, including an application derived from antibiotic resistance
tests, our algorithms successfully learn efficient search policies and perform favorably to baselines.

2 Related work

Our problem is related to the bandit literature, which studies the search for optimal actions through
trial and error (Lattimore and Szepesvári, 2020), and in particular to contextual bandits (Abe et al.,
2003; Chu et al., 2011). In our setting, a very small number of actions is evaluated, with the goal
of terminating search as early as possible. This is closely related to the fixed-confidence variant of
best-arm identification (Lattimore and Szepesvári, 2020, Chapter 33.2), in which only exploration is
performed. To solve this problem without trying each action at least once, we rely on transferring
knowledge from previous trials. This falls within the scope of transfer and meta learning. Liao et al.
(2020) explicitly tackled pooling knowledge across patients data to determine an optimal treatment
policy in an RL setting and Maes et al. (2012) devised methods for meta-learning of exploration
policies for contextual bandits. A notable difference is that we assume that outcomes of actions are
stationary in time. We leverage this both in model identification and policy optimization.

Experiments continue to be the gold standard for evaluating adaptive treatment strategies (Nahum-
Shani et al., 2012). However, these are not always feasible due to ethical or practical constraints.
We approach our problem as causal estimation from observational data (Rosenbaum et al., 2010;
Robins et al., 2000), or equivalently, as off-policy policy optimization and evaluation (Precup, 2000;
Kallus and Santacatterina, 2018). Unlike many works, we do not fully rely on ignorability—that all
confounders are measured and may be adjusted for. Zhang and Bareinboim (2019) recently studied
the non-ignorable setting but allowed for limited online exploration. In this work we aim to bound
the effect of unmeasured confounding rather than to eliminate it using experimental evidence.

Our problem is closely related to active learning (Lewis and Gale, 1994), which has been used to
develop testing policies that minimize the expected number of tests performed before an under-
lying hypothesis is identified. For a known distribution of hypotheses, finding an optimal policy
is NP-hard (Chakaravarthy et al., 2007), but there exists greedy algorithms with approximation
guarantees (Golovin et al., 2010). In our case, (i) the distribution is unknown, and (ii) hypotheses
(outcomes) are only partially observed. Our problem is also related to optimal stopping (Jacka, 1991)
of processes but differs in that the process is controlled by our decision-making agent.

3 Learning to search efficiently for causally near-optimal treatments

We consider learning policies ⇡ 2 ⇧ that search over a set of actions A := {1, ..., k} to find an action
a 2 A such that its outcome Y (a) 2 Y is near-optimal. When such an action is found, the search
should be terminated as early as possible using a special stop action, denoted a = STOP. Throughout,
a high outcome is assumed to be preferred and we often refer to actions as “treatments”. The potential
outcome Y (a) may vary between subjects (contexts) depending on baseline covariates X 2 X ✓ Rd

and unobserved factors. When a search starts, all potential outcomes {Y (a) : a 2 A} are unobserved,
but are successively revealed as more actions are tried, see the illustration in Figure 1. To guide
selection of the next action, we learn from observational data of previous subjects.
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Figure 1: Illustration of the observed sequence of treatments at = (a1, ..., at) and outcomes y
t
=

(y1, ..., yt) for a patient, and the problem of estimating the outcome of possible future treatments.

Historical searches are observed through covariates X and a sequence of T action-outcome pairs
(A1, Y1), ..., (AT , YT ). Note the distinction between interventional and observational outcomes;
Ys(a) represents the potential outcome of performing action a at time s (Rubin, 2005). We assume
that y 2 Y are discrete, although our results may be generalized to the continuous case. Sequences
of s random variables (A1, ..., As) are denoted with a bar and subscript, As 2 As, and Hs =
(X,As, Y s) 2 Hs := X ⇥ {As ⇥ Ys} denotes the history up-to time s, with H0 = (X, ;, ;). With
slight abuse of notation, a 2 h means that a was used in h and (a, y) 2 h that it had the outcome y.
|h| denotes the number of trials in h. The set of histories of at most k actions is denoted H = [

k

s=1Hs.
Termination of a sequence is indicated by the sequence length T and may either be the result of
finding a satisfactory treatment or due to censoring. Hence, the full set of potential outcomes is not
observed for most subjects. Observations are distributed according to p(X,T,AT , Y T ).

We optimize a deterministic policy ⇡ which suggests an action a following observed history h,
starting with (x, ;, ;), or terminates the sequence. Formally, ⇡ 2 ⇧ ✓ {H ! A [ {STOP}}. Taking
the action ⇡(hs) = STOP at a time point s implies that T = s. Let p⇡(X,A, Y , T ) be the distribution
in which actions are drawn according to the policy ⇡. For a given slack parameter ✏ � 0 and a
confidence parameter � � 0, we wish to solve the following problem.

minimize
⇡2⇧

E
X,Y ,A,T⇠p⇡

[T ]

subject to Pr


max
a 62At

Y (a) > max
(a,y)2h

y + ✏
��� Ht = h, T = t

�
 �, 8t 2 N, h 2 Ht

(1)

In (1), the objective equals the expected search length under ⇡ and the constraint enforces that
termination occurs only when there is low probability that a better action will be found among the
unused alternatives. Note that if maxy2Y y is known and is in Y s, the constraint is automatically
satisfied at s. To evaluate the constraint, we need a model of unobserved potential outcomes. This is
dealt with in Section 4. We address optimization of (1) for a known model in Section 5.

4 Causal identification and estimation of optimality conditions

Our assumed causal model for observed data is illustrated graphically in Figure 2a. Most notably, the
graph defines the causal structure between actions and outcomes—previous actions A1, ..., As�1 and
outcomes Y1, ..., Ys�1 are assumed to have no direct causal effect on future outcomes Ys, ..., YT . To
allow for correlations between outcomes, we posit the existence of counfounders X (observed) and
U (unobserved) and an unobserved moderator Z. All other variables are assumed exogenous.

To evaluate the near-optimality constraint and solve (1), we must identify the probability
⇢(h) := Pr[max

a 62h

Y (a) > max
(a,y)2h

y + ✏ | H = h] , (2)

with the convention that max(a,y)2h0
y = �1 if |h0| = 0. Henceforth, let A�h = {a 2 A : a 62 hs}

denote the set of untried actions at h and let S(A�h) be all permutations of the elements in A�h.

We state assumptions sufficient for identification of ⇢(h) below. Throughout this work we assume that
consistency, stationarity of outcomes and positivity always hold, and provide identifiability results
both when ignorability holds (Section 4.1) and when it is violated (Section 4.2).
Identifying assumptions. Define As+1:k = (As+1, ..., Ak). Under the observational distribution p,

and evaluation distribution p⇡ , for all ⇡ 2 ⇧, h 2 Hs, and s, r 2 N, we assume
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(a) Assumed causal structure. Arrows between boxes
indicate connections between all variables in the
boxes: X is a cause of every As and Ys. Past actions
are assumed not to be direct causes of future outcomes.
Z is a moderator of treatment effects. Dashed outlines
indicate unobserved variables.
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action is found) and search length for varying amounts
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(CDP, CG), � = 0.35 (NDP). The suffix H indicates
historical smoothing and F function approximation.
Error bars indicate standard errors over 71 realizations.

Figure 2: Assumed causal structure (left) and results from synthetic experiments (right).

1. Consistency: Ys = Ys(As)

2. Stationarity: Ys(a) = Yr(a) =: Y (a)

3. Positivity: 9a 2 S(A�hs) : p⇡(Hs = hs) > 0 =) p(As+1:k = a | Hs = hs) > 0

4. Ignorability: Ys(a) ?? As | Hs�1

Ignorability follows from the backdoor criterion applied to the causal model of Figure 2a when U
is empty (Pearl, 2009). We expand on this setting next. In contrast to conventions typically used in
the literature, positivity is specified w.r.t. the considered policy class. This ensures that every action
could be observed at some point after every history h that is possible under policies in ⇧. Under
Assumption 2 (stationarity), there is no need to try the same treatment twice, since the outcome is
already determined by the first trial. We can restrict our attention to non-repeating policies,

⇧ ✓ {⇡ : H ! A [ {STOP} ; ⇡(h) 62 h} .

Non-repeating policies such as these take the form of a decision tree of depth at most k = |A|.
Remark 1 (Assumptions 1–4 in practice). Only the positivity assumption may be verified empirically;
stationarity, consistency and ignorability must be justified by domain knowledge. Readers experienced
with causal estimation will be familiar with the process of establishing ignorability and consistency
through graphical arguments or reasoning about statistical independences. Stationarity is more
specific to our setting and without it, the notion of a near-optimal action is not well-defined—the
best action could change with time. This phenomenon occurs is settings where outcomes naturally
increase or decrease over time, irrespective of interventions. For example, the cognitive function
of patients with Alzheimer’s disease tends to decrease steadily over time (Arevalo-Rodriguez et al.,
2015). As a result, measures of cognitive function Yt(a) for patients on a medication a will be
different depending on the stage t of progression that the patient is in. As a rule-of-thumb, stationarity
is better justified over small time-frames or for more stable conditions.

4.1 Identification without unmeasured confounders

Our stopping criterion ⇢(h) is an interventional quantity which represents the probability that an
unused action would be preferable to previously tried ones. In general, this is not equal to the rate at
which such an action was preferable in observed data. Nevertheless, we prove that ⇢(h) is identifiable
from observational data in the case that U does not exist (ignorability holds w.r.t. H). First, the
following lemma shows that the order of history does not influence the probability of future outcomes.
Lemma 1. Let I be a permutation of (1, ..., s). Under stationarity, for all a 2 As and b 62 a,

p(Y (b) | X,As = a, Y s = y) = p(Y (b) | X,As = (aI(1), ..., aI(s)), Y s = (yI(1), ..., yI(s))) (3)
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Lemma 1 is proven in Appendix A.1. As a consequence, we may treat two histories with the same
events in different order as equivalent when estimating p(Y (a) | H).

We can now state the following result about identification of the near-optimality constraint of (1).
Theorem 1. Under Assumptions 1–4, the stopping criterion ⇢(h) in (2) is identifiable from the

observational distribution p(X,T,A, Y ). For any time step s with history hs, let h(I)s =
(x, aI(1), ..., aI(s), yI(1), ..., yI(s)) be an arbitrary permutation of hs. Then, for any sequence of

untried actions as+1:k = (as+1, ..., ak) 2 S(A�hs) with h(I)r the (hypothetical) continued history

at time r > s corresponding to as+1:k and y
s+1:k, and with µ(hs) = max(a,y)2hs

y,

⇢(hs) =
X

ys+1:k2Yk�s

1 [max(y) > µ(hs) + ✏]
kY

r=s+1

p(Yr = yr | Ar = ar, Hr = h(I)r�1) . (4)

A proof of Theorem 1 is given in Appendix A.2. Equation (4) gives a concrete means to estimate ⇢(h)
from observational data by constructing a model of p(Ys | As, Hs�1 = h). Due to Assumption 2
(stationarity), this model can be invariant to permutations of h. Another important consequence of
this result is that, because Theorem 1 holds for any future sequence of actions, (4) holds also over any
convex combination for different future action sequences, such as the expectation over the empirical
distribution. Using likely sequences under the behavior policy will lead to lower-variance estimates.
Remark 2. In the fully discrete case, we may estimate p(Y | A,H) using a probability table, and
we do so in some experiments in Section 6. However, this becomes increasingly difficult for both
statistical and computational reasons when A and Y grow larger or when any of the variables are
continuous. The permutation invariance given by Theorem 1 provides some relief but, nevertheless,
the number of possible combinations (histories) grows exponentially with the number of actions.
As a result, it is very probable that certain pairs of histories and actions (h, a) are never observed
in practical applications. We consider two remedies to this. In Appendix B, we give methods for
leveraging observations of similar histories h0

⇡ h in the estimation of p(Y | H = h,A), one
based on historical kernel-smoothing in the tabular case, and one based on function approximation.
These are compared empirically in Section 6. In Section 5.2, we give bounds to use in place of the
probability of unobserved potential outcomes which further mitigate the curse of dimensionality.

4.2 Accounting for unobserved confounders

If Assumption 4 (ignorability) does not hold with respect to observed variables, the stopping criterion
⇢(hs) may not be identified from observational data without further assumptions. A natural relaxation
of ignorability is that the same condition holds w.r.t. an expanded adjustment set (Hs, U), where
U 2 U is an unobserved set of variables. This is the case in our assumed causal model, see Figure 2a.
We require additionally that U has bounded influence on treatment propensity. For all u 2 U , h 2 H,
with s = |h| and a 2 S(A�h), assume that there is a sensitivity parameter, ↵ � 1, such that

1

↵


Pr[As+1:k = a | Hs = h]

Pr[As+1:k = a | U = u,Hs = h]
 ↵ , (5)

where As+1:k is defined as in Assumption 3. Like ignorability, this assumption must be justified from
external knowledge since U is unobserved. We arrive at the following result.
Theorem 2. Assume that (5) and Assumptions 1–4 hold with respect to (Hs, U) for all s 2 [k] with

sensitivity parameter ↵ � 1. Then, for any h 2 Hs, a 2 S(A�h) and ⌫ = µ(h) + ✏, we have

Pr[
k

max
r=s

Yr > ⌫ | As+1:k = a,Hs = h] 
�

↵
=) ⇢(h) = Pr[max

a2a

Y (a) > ⌫ | Hs = h]  � .

A proof of Theorem 2 is given in Appendix A.4. To achieve near-optimality with confidence level of �
in the presence of unobserved confounding with propensity influence ↵, we must require a confidence
level of at most �/↵. Unlike classical approaches to sensitivity analysis, as well as more recent
results (Kallus and Zhou, 2018), this argument does not rely on importance (propensity) weighting.
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5 Policy optimization

We give two algorithms for policy optimization under the assumption that a model of the stopping
criterion ⇢(h) is known. As noted previously, this problem is NP-hard due to the exponentially
increasing number of possible histories (Rivest, 1987). Nevertheless, for moderate numbers of
actions, we may solve (1) exactly using dynamic programming, as shown next. Then we propose a
greedy approximation algorithm and discuss model-free reinforcement learning as alternatives.

5.1 Exact solutions with dynamic programming

Let X,A, Y be discrete. For sufficiently small numbers of actions, we can solve (1) exactly in this
setting. Let h0 = h [ {(a, y)} denote the history where (a, y) follows h and recall the convention
maxa2; Y (a) = �1. Now define Q to be the expected cumulative return—see e.g., Sutton et al.
(1998) for an introduction—of taking action a in a state with history h 2 H,

Q(h, a) = r(h, a) + 1[a 6= STOP]
X

y2Y
p(Y (a) = y | h) max

a02A[{STOP}
Q(h [ {(a, y)}, a0) , (6)

where r(h, a) is a reward function defined below. The value function V at a history h is defined in
the usual way, V (h) = maxa Q(h, a). To satisfy the near-optimality constraint of (1), we use an
estimate of the function ⇢(h), see (2), to define �✏,�,↵(h) := 1[⇢(h) < �/↵] for parameters ✏, � � 0,
↵ � 1. The function �✏,�,↵(h) represents whether an ✏, �/↵-optimum has been found. We define

r✏,�,↵(h, a) =

(
�1, if a = STOP, �✏,�,↵(h) = 0
0, if a = STOP, �✏,�,↵(h) = 1
�1, if a 6= STOP

. (7)

With this, given a model of p(Ys(a) | Hs�1, As), the Q-function of (6) may be computed using
dynamic programming, analogous to the standard algorithm for discrete-state reinforcement learning.
Theorem 3. Recall that H0 = (X, ;, ;). The policy maximizing (6), ⇡(h) = argmax

a
Q(h, a),

with reward given by (7) is an optimal solution to (1) with objective Ep⇡ [T ] = EX [�V (H0)].

Theorem 3 follows from Bellman optimality and the definition of r in (7), see Appendix A.5.

5.2 A greedy approximation algorithm

We propose a greedy policy as an approximate solution to (1) in high-dimensional settings where
exact solutions are infeasible to compute. We then discuss sub-optimality and approximation ratios
of greedy algorithms. First, consider the greedy policy ⇡G, which chooses the treatment with the
highest probability of finding a best-so-far outcome, weighted by its value, according to

f(h, a) = E[1[Y (a) > max
(·,y)2h

y]Y (a) | Hs = h] (8)

until the stopping criterion is satisfied,

⇡G(h) :=

⇢
STOP, �✏,�,↵(h) = 1
argmax

a 62h
f(h, a), otherwise , (9)

where �✏,�,↵ is defined as in Section 5.1. While using ⇡G avoids solving the costly dynamic
programming problem of the previous section, it still requires evaluation of �(h). Even for short
histories, |h| ⇡ 1, computing �(h) involves modeling the distribution of maximum-length sequences
over potentially |Y|

|A| configurations. To increase efficiency, we bound the stopping statistic ⇢, and
approximate �, using conditional distributions of the potential outcome of single actions.

⇢(h) := p

✓
max
a 62h

Y (a) > µ(h) + ✏ | h

◆


X

a 62h

p (Y (a) > µ(h) + ✏ | h) . (10)

A proof is given in Appendix A.3. Using the upper bound in place of ⇢(h) leads to a feasible solution
of (1) with more conservative stopping behavior and better outcomes but worse expected search time.
In the case � = 0, the exact statistic and the upper bound lead to identical policies. Representing
the upper bound as a function of all possible histories still requires exponential space in the worst
case, but only a small subset of histories will be observed for policies that terminate early. We use
the bound on ⇢(h) in experiments with both dynamic programming and greedy policies in Section 6.
The general problem of learning bounds on potential outcomes was studied by (Makar et al., 2020).
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Example 1. In the following example, the greedy policy does identify a near-optimal action after
the smallest expected number of trials, for � = 0, ✏ = 0. Let X = 0, Y 2 {0, 1} and A 2 {1, 2, 3},
Z = {1, ..., 4}, p(Z) = [0.20, 0.15, 0.20, 0.45]T and let C be the matrix with elements cij such that

p(Y (j) = 1 | Z = i) = cij , with C> =

"
1 0 1 0
0 1 0 1
1 0 0 1

#
.

In this scenario, p(Y (·) = 1) = [0.4, 0.6, 0.65]>. The greedy strategy would thus start with ⇡(;) = 3,
followed by ⇡((3)) = 2 and then ⇡((3, 2)) = 1 to guarantee successful treatment. An optimal strategy
is to start with A1 = 2 and then A2 = 1. The expected time E[T ] is 1.5 under the greedy policy and
1.4 under the optimal one. The worst-case time under the greedy strategy is 3 and 2 under the optimal.

In Appendix A.6, we show that our problem is equivalent to a variant of active learning once a model
for p(Y (a1), ..., Y (ak), X) is known. In general, it is NP-hard to obtain an approximation ratio better
than a logarithmic factor of the number of possible combinations of potential outcomes (Golovin et al.,
2010; Chakaravarthy et al., 2007). However, for instances with additional structure, e.g., through
correlations induced by the moderator Z, this ratio may be significantly smaller than |A| log |Y|.

5.3 A model-free approach

In off-policy evaluation, it has been noted that for long-term predictions, model-free approaches may
be preferable to, and suffer less bias than, their model-based counterparts (Thomas and Brunskill,
2016). They are therefore natural baselines for solving (1). We construct such a baseline below.

Let max(·,y)2h y represent the best outcome so far in history h, with s = |h| and let � > 0 be a
parameter trading off early termination and high outcome. Now, consider a reward function r(h, a)
which assigns a reward at termination equal to the best outcome found so far. A penalty �� is
awarded for each step of the sequence until termination, a common practice for controlling sequence
length in reinforcement learning, see e.g, (Pardo et al., 2018). Let

r�(h, a) = {0, if a 6= STOP ; max
(·,y)2h

y � �|h|, if a = STOP} . (11)

The policy ⇡� which optimizes this reward, using dynamic programming as in Section 5.1, is used
as a baseline in experiments in Section 6. While this approach has the advantage of not requiring
a model of future outcomes, without a model, the stopping criterion ⇢(h) cannot be verified and

the advantage of being able to specify an interpretable certainty level is lost. This is because the
trade-off parameter � does not have a universal interpretation—the value of � which achieves a
given rate of near-optimality will vary between problems. In contrast, the confidence parameter �
directly represents a bound on the probability that there is a better treatment available when stopping.
Additionally, in Appendix A.7, we prove that there are instances of the main problem (1), for a given
value of �, such that no setting of � results in an optimal solution.

6 Experiments

We evaluate our proposed methods using synthetic and real-world healthcare data in terms of the
quality of the best action found, and the number of trials in the search.3 In particular, we study the
efficacy of policies, defined as the fraction of subject for which a near-optimal action has been found
when the choice to stop trying treatments is made. Models of potential outcomes are estimated using
either a table with historical smoothing (labeled with suffix H) or using function approximation using
random forests (suffix F), see Appendix B. Following each estimation strategy, we compare policies
learned using constrained dynamic programming (CDP), the constrained greedy approximation (CG)
and the model-free RL variant, referred to as as naı̈ve dynamic programming (NDP), see Section 5.
Establishing near-optimality is infeasible in most observational data as only a subset of actions are
explored. However, as we will see, in our particular application, it may be determined exactly.

6.1 Synthetic experiments: Effect of sample size and algorithm choice

To investigate the effects of data set size, number of actions, dimensionality of baseline covariates and
the uncertainty parameter � on the quality of learned policies, we designed a synthetic data generating

3Implementations can be found at: https://github.com/Healthy-AI/TreatmentExploration
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process (DGP). This DGP parameterizes probabilities of actions and outcomes as log-linear functions
of a permutation-invariant vector representation of history and of (X,Z), respectively. For the results
here, A = {1, ..., 5},X = {0, 1},Y = {0, 1, 2},Z = {0, 1}3. Due to space limitations, we give the
full DGP and more results of these experiments in Appendix C.1.

We compare the effect of training set size for the different policy optimization algorithms (CDP, CG,
NDP and model estimation schemes ( F, H). Here, CDP and CG use � = 0.4, ✏ = 0 and the upper
bound of (10) and NDP � = 0.35. We consider training sets in a low-data regime with 50 samples
and a high-data regime of 75000, with fixed test set size of 3000 samples. Results are averaged over
71 realizations. In Figure 2b, we see that the value of all algorithms converge to comparable points
in the high-data regime but vary significantly in the low-data regime. In particular, CG and CDP
improve on both metrics as the training set grows. The time-efficacy trade-off is more sensitive to the
amount of data for NDP than for the other algorithms, and while additional data significantly reduces
the mean number of actions taken, this comes at a small expense in terms of efficacy. This highlights
the sensitivity of the naı̈ve RL-based approach to the choice of reward: the scale of the parameter �
determines a trade-off between the number of trials and efficacy, the nature of which is not known in
advance. In contrast, CDP and CG are preferable in that � and ✏ have explicit meaning irrespective
of the sample and result in a subject-specific stopping criterion, rather than an average-case one.

6.2 Optimizing search for effective antibiotics

Antibiotics are the standard treatment for bacterial infections. However, infectious organisms can
develop resistance to specific drugs (Spellberg et al., 2008) and patterns in organism-drug resistance
vary over time (Kanjilal et al., 2018). Therefore, when treating patients, it is important that an
antibiotic is selected to which the organism is susceptible. For conditions like sepsis, it is critical that
an effective antibiotic is found within hours of diagnosis (Dellinger et al., 2013).

As a proof-of-concept, we consider the task of selecting effective antibiotics by analyzing a cohort of
intensive-care-unit (ICU) patients from the MIMIC-III database (Johnson et al., 2016). We simplify
the real-world task by taking effective to mean that the organism is susceptible to the antibiotic.
When treating patients for infections in the ICU, it is common that microbial cultures are tested
for resistance. This presents a rare opportunity for off-policy policy evaluation, as the outcomes of
these tests may be used as the ground truth potential outcomes of treatment (Boominathan et al.,
2020). In practice, the results of these tests are not always available at the time of treatment. For this
reason, we learn models based on the test outcomes only of treatments actually given to patients. To
simplify further, we interpret concurrent treatments as sequential; their outcomes are not conflated
here since they are taken from the culture tests. We stress that this task is not meant to accurately
reflect clinical practice, but to serve as a benchmark based on a real-world distribution. Although a
patient’s condition may change as a response to treatment, bacteria typically do not develop resistance
during a particular ICU stay, and so the stationarity assumption is valid.

Baseline covariates X of a patient represent their age group (4 groups), whether they had infectious
or skin diseases (2⇥ 2 groups), and the identity of the organism, e.g., Staphylococcus aureus. These
were found to be important predictors of resistance by Ghosh et al. (2019). In total, X comprised
12 binary indicators. From the full set of microbial events in MIMIC-III, we restricted our study to
a subset of 4 microorganisms and 6 antibiotics, selected based on overall prevalence and the rate
of co-occurrence in the data. There were three distinct final outcomes of culture tests, resistant,

intermediate, susceptible, encoded as Y = 0, 1, 2, respectively, where higher is better. The resulting
cohort restricted to patients treated using only the selected antibiotics consisted of n = 1362 patients
which had cultures tested for resistance against all antibiotics. The cohort was split randomly into a
training and test set with a 70/30 ratio and experiments were repeated over five such splits. Patients
treated for multiple organisms were split into different instances. A full list of variables, the selected
antibiotics and organisms, and additional statistics are given in Appendix C.2.

We compare our learned policies to the policy used to select antibiotics in practice. However, due to
censoring, e.g., from mortality, the sequence length of observed patients may not be representative of
the expected number of trials used by the observed policy before an effective treatment is found. In
other words, the average outcome for patients who went through t treatments is a biased estimate of
the value of the observed policy. Therefore, for direct comparison with current practice (“Doctor”),
only the mean outcome following the first treatment point is displayed (star marker) in Figure 3a. For
an approximate comparison with current practice, as used in multiple treatment trials, we created a

8



1 2 3 4 5 6
1uPEer of trieG treDtPents

1.75

1.80

1.85

1.90

1.95

0
eD

n 
tr

eD
tP

en
t e

ff
eF

t

CD3_F
CG_F
1D3_F
EPulDteG GoFtor
0Dx outFoPe
DoFtor

(a) Mean best-at-termination or best-so-far outcome
found after a given number of trials, across all subjects,
for different policies. � = 0,� = 0.35.

1.24 1.26 1.28 1.30 1.32 1.34 1.36
0HDn nuPEHr of triDls

0.988

0.990

0.992

0.994

0.996

0.998

1.000

E
ff

iF
DF

y

Fu
nF

tio
n 

Dp
pr

ox
iP

Dt
io

n

H
is

to
riF

Dl
 s

P
oo

th
in

g

CD3_H
CG_H
1D3_H
CD3_F
CG_F
1D3_F

(b) Efficacy of antibiotics vs the mean number of trials
for different values of � and � (one value per marker)
and different model estimation schemes.

Figure 3: Results from the antibiotics experiment. Average best-found outcome of different policies
across patients at different stages of the search (a) and efficacy and search time (number of treatment
trials) as functions of � (b). In plot (a), at a given number of trials, the best-so-far outcome is used for
ongoing sequences, and the best-at-termination is used for terminated ones. Efficacy refers to the
rate at which a near-optimal treatment is found at the given �. Suffixes F and H indicates model
estimation using function approximation and historical smoothing respectively. ✏ = 0.

baseline dubbed “Emulated doctor”. It uses a tabular estimate of the observed policy to imitate the
choices made by doctors in the dataset in terms of the history H = (X,A, Y ), i.e., it operates on the
same information as the other algorithms. We compare this to CDP, CG and NDP, and evaluate all
policies using culture tests for held-out observations. We sweep all hyperparameters uniformly over
10 values; for CDP, CG, � 2 [0, 1], for NDP H, � 2 [0, 0.5] and for NDP F, � 2 [0, 1].

In Figure 3a, we see that CG, CDP and NDP, with function approximation, all learn comparable
policies that are preferable to the estimated behavior policy. The mean search length was 1.26 for
CDP and NDP, 1.28 for CG and 1.38 for Emulated doctor. We see that the best treatment found after
a single trial is slightly better in the raw data (star marker). This may be because more information
is available to the physician than to our algorithms. The physician could (1) take into account the
original value of continuous variables, such as age, instead of using age groups and (2) use more
features of the patient in order to find the right treatment. Using more covariates in this instance
would make the problem impractical to solve without further approximations since the table generated
by the dynamic programming algorithm grows exponentially. The current variable set was restricted
for this reason. In Figure 3b, we see that across different values of �,�, all algorithms achieve
near-optimal efficacy (almost 1), but vary in their search time. CDP is equal or preferable to CG,
with the model-free baseline NDP achieving the worst results. A much more noticeable difference is
that between policies learned using the model estimated with function approximation (suffix F) and
those with a (smoothed) tabular representation (suffix H).

7 Conclusion

We have formalized the problem of learning to search efficiently for causally effective treatments. We
have given conditions under which the problem is solvable by learning from observational data, and
proposed algorithms that estimate a causal model and perform policy optimization. Our solution using
constrained dynamic programming problem (CDP) in an exponentially large state space illustrates
the associated computational difficulties and prompted our investigation of two approximations, one
based on greedy search and one on model-free reinforcement learning. We found that the greedy
search algorithm performed comparably to the exact solution in experiments and was less sensitive to
sample size. Determining conditions under which greedy algorithms are preferable statistically is an
interesting open question. We believe that our work will have the largest impact in settings where a)
the assumption of potential outcome stationarity is justified, b) even a small reduction in search time
is valuable and c) a transparent trade-off between efficacy and search time is valuable in itself.
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Broader impact

Personalized and partially automated selection of medical treatments is a long-standing goal for
machine learning and statistics with the potential to improve the lives of patients and reduce the
workload on physicians. This task is not without risk however, as poor decisions may fail to reduce or
even increase suffering. It is important that implementations of such ideas is guided by strong domain
knowledge, thorough evaluation and that checks and balances are in place. Many previous works in
this field aim to identify new policies for treatment or doses with the goal of improving treatment
response itself. This goal is not always feasible to achieve—some conditions are fundamentally hard
to treat with available medications and procedures. In contrast, we focus on conditions where a
good enough treatment would be identified by an existing policy given enough time, with the goal of
reducing this search time as much as possible. The trade-off between a good outcome and time is
made transparent using a model of patient outcomes and a certainty parameter. With this, we hope to
contribute towards making machine learning methods more suitable for clinical implementation.
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