	OOD K. α_0 /var.	OOD K. MI.	OOD F. α_0 /var.	OOD F. MI.	OODom K. α_0 /var.	OODom K. MI.	OODom F. α_0 /var.	OODom F. MI
Ensemble	*97.19±0.0	*97.44±0.0	97.53±0.1	97.69±0.1	42.36±0.3	42.38±0.3	37.85±1.1	37.86±1.1
RKL-PN	54.11±3.4	54.9±3.3	72.54±3.6	73.33±3.5	8.94±0.0	8.94±0.0	8.96±0.0	8.96±0.0
RKL-PN w/ F. PostN	78.4±4.8 96.04 ± 0.2	78.73±4.8 96.05±0.2	*100.0±0.0 98.17±0.2	*100.0±0.0 98.17±0.2	9.08±0.1 * 100.0 ± 0.0	9.08±0.1 *100.0±0.0	87.49±5.0 * 100.0 ± 0.0	87.49±5.0 *100.0±0.0

Table A: OOD detection (MNIST). MI and α_0 (Dirichlet) / variance (Ensemble) results are highly correlated.

	Acc.	Alea. Conf.	Epist. Conf.	Brier	OOD S. Alea.	OOD S. Epist.	OODom S. Alea.	OODom S. Epist.
Ensemble	*91.34±0.0	*99.1±0.0	98.77±0.0	17.69 ± 0.1	*80.1±0.3	75.14±0.2	21.1±3.1	24.42±3.7
RKL-PN	60.05 ± 0.7	85.63 ± 0.8	82.11±1.3	$70.84{\pm}0.9$	50.97±3.9	55.37±4.3	56.16±1.4	51.33±2.4
RKL-PN w/ C100 PostNet	88.18±0.1 90.05 ± 0.1	95.44±0.3 98.87 ± 0.0	94.15±0.3 * 98.82 ± 0.0	79.99±2.0 * 15.44 ± 0.1	56.67±2.1 76.04 ± 0.4	73.37±2.3 * 75.57 ± 0.4	57.06±1.7 * 87.65 ± 0.3	50.31±1.4 * 92.13 ± 0.5

Table B: Results (VGG16) on CIFAR10 on classic split. RKL-PN w/ C100 uses CIFAR100 as training OOD.

- Uncertainty metrics (R1). Based on R1's comments we also evaluated the models based on mutual information (Tab. A). MI is highly correlated with both α_0 and variance with barely score changes.
- AUROC vs APR (R1). Both metrics have been used by prior works to assess OOD detection
- performance [20,4,A,B]. Theoretically, the two metrics bring similar information [C]. In practice,
- 5 APR is preferred when working with imbalanced classes (such as anomaly detection) since AUROC
- might lead to too optimistic results [D]. For these reasons, we decided to use APR. 6
- 7 Flow on input vs latent space (R1). As shown in existing work, distinguishing between CIFAR10
- and SVHN is not trivial [4, 24, E]. We attribute the strong performance of PostNet to the dim.
- reduction and the classification task (Sect. 2.2). Similar conclusions have been drawn in [E].
- PostNet CIFAR10 acc. (R1). PostNet provides both good uncertainty estimates and accuracy (Fig. 5, 7, 8, 9, 10). In our paper we use 5 random splits (60%, 20%, 20%). Based on R1's comments, 11 we also trained on the classic split (79%, 5%, 16%). PostNet achieves ~90% accuracy (Tab. B). 12 Experiments using random splits lead to better estimates of the true model performance. We made a 13
- proper comparison focused on small number of classes similar to [20] and enrich experiments with 14 tabular, shifts and OODom settings. We agree that results on more classes are interesting future work. 15
- PriorNet acc. w/o OOD (R1, R3). Specifying training OOD data is unrealistic (1.70-71) and is 16 unlikely to generalize to all other OOD datasets (1.72-74). We demonstrate these issues with practical 17 results (Tab. 3, Tab. B). Indeed, the results of PriorNets deteriorate when the OOD data used at training 18 time (e.g. noise/KMNIST/CIFAR100) differs from the OOD data at test time (e.g. FMNIST/SVHN). 19 Still, we also report results for PriorNet with true OOD on MNIST and CIFAR10, where it obtains 20 \sim 99% and \sim 89% accuracy, respectively. This is similar to reported results in [21], ruling out the
- possibility of under-trained or mis-specified models.

21

- Ensemble baseline (R1, R3). We provide results of Ensemble in Fig. 5, 7, 8, 9, 10 in app. and additionally on CIFAR10 with VGG16 in Tab. B. Ensemble has a high training cost which justified 24
- a specific treatment. Note that Tab. 4 aims at comparing models training a single network (1.298), 25
- this is why here ensemble is not included. Ensemble achieves good performance except for tabular 26
- left-out classes and OODom datasets where PostNet shows substantially better results. 27
- Flow choice (R3). In our experiments (app. Fig. 5, 7, 8, 9, 10), both flows (e.g. PostN Rad (6) and 28
- PostN IAF (6)) achieve good performance on the four datasets, even though the flow depth can impact 29
- the performance. Using MoG leads to weaker performance. Note that the No-Flow model outputs α
- which are directly used to compute the Bayesian loss (no likelihood with NF or MoG). 31
- Stronger baselines (R3). We compare PostNet to recent Dirichlet-based SoTA methods (2018 and 32 newer). We also consider Drop-Out and Ensembles, which are strong baselines [20, 21, 33]. 33
- Dataset shifts (R4). Fig. 4 shows that PostNet assigns lower confidence to larger dataset shifts (1.264).
- Related work (R1, R2, R3). We will include suggestions and correct the misleading EDL statement. 35 In particular, we will explain connections between RKL and the Bayesian loss. 36
- [A] Hendrycks et al. "Deep Anomaly Detection with Outlier Exposure". ICLR 2019. 37
- B] Hendrycks et al. "A Baseline for Detecting Misclassified & OOD Examples in Neural Networks". ICLR 2017. 38
- [C] Jesse et al. Davis. "The Relationship Between Precision-Recall and ROC Curves". ICML 2006. 39
- [D] Takaya Saito and Marc Rehmsmeier. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets". PloS one 2015. 40
- 41
- [E] Kirichenko et al. "Why Normalizing Flows Fail to Detect OOD Data". Arxiv 2020.