
We would like to thank the reviewers for their valuable feedback.1

[R1, R3] Asymptotic problem-dependent vs finite-time worst-case regret. We agree that finite-time regret is the2

performance measure of interest. At the same time, problem-dependent optimality is a stronger notion than worst-case3

optimality, as it requires an algorithm to perform optimally in every single instance. Linear contextual bandits have been4

studied extensively from a worst-case perspective and minimax optimal strategies exist. These strategies are robust5

to worst-case instances, but in general they fail to adapt to the structure of the problem (e.g., they ignore informative6

arms) and may perform poorly in practice (see e.g., [7] and our experiment in Fig.1). In recent years, several attempts7

have been made to design more adaptive algorithms by leveraging asymptotic lower bounds, which effectively capture8

all problem-specific characteristics (e.g., set of arms, possible constraints on the parameters, reward distribution) into9

the regret bound. While the resulting algorithms directly inherit asymptotic optimality, the question is whether their10

more problem-adaptive behavior translates to competitive finite-time performance w.r.t. worst-case optimal algorithms.11

While this is the case for best-arm identification (see e.g., “Explicit Best Arm Identification in Linear Bandits Using12

No-Regret Learners" [Zaki et al., 2020] and “Gamification of Pure Exploration for Linear Bandits" [Degenne et al.,13

2020]), it still remained as an open question for regret minimization in linear bandit, where algorithms like OSSB and14

OAM have several practical limitations and they are rarely preferable over LinUCB or LinTS. We believe our paper is15

a significant step forward in addressing this question: SOLID resolves most of the issues of existing asymptotically16

optimal algorithms, significantly improves their finite-time regret guarantees, and it is shown to be empirically better17

than practical versions of LinUCB and LinTS in a variety of settings (including real data, see App. K.3).18

[R1, R3] Dependence on contexts. We significantly improved the regret guarantees w.r.t. [14] by removing any19

dependency on 1/ρmin (which is at least as large as |X |). Yet, we conjecture the dependence on |X | could be improved20

further. SOLID optimizes and updates a context-arm exploration strategy and this may suggest a polynomial dependency21

on the size of the exploration strategy is unavoidable. Nonetheless, we managed to push the dependency on the number22

of arms to a logarithmic term (greatly improving previous results) and a similar approach could be used for contexts by23

avoiding concentrating ρ̂ to ρ (see e.g., Lemma 11), which is currently the main source of dependency on |X |. This24

conjecture is also supported by empirical evidence. On the Jester dataset in App. K.3, SOLID’s performance is not25

significantly affected by the number of contexts (almost 200) and it still performs better than LinUCB/LinTS. We will26

run additional experiments on Jester for different values of |X | to further investigate the dependency.27

[all] Non-contextual case. We would like to bring to the reviewers’ attention that while the paper is framed in the28

general contextual case, our contribution should also be assessed in the simpler and yet significant non-contextual case.29

Our algorithm and analysis resolve many open questions in this setting, including the dependence on |A|, the derivation30

of confidence sets over parameters with optimal asymptotic scaling (Thm. 1), and the efficient incremental computation31

of the lower bound. After the submission, we have also analyzed the finite-time worst-case properties of SOLID when32

|X | = 1. In this case, a simple proof following almost directly from the proof of Thm. 2, we derived an Õ(
√
dn) regret33

bound that holds for any horizon n. This implies that SOLID is the first algorithm that is both finite-time minimax34

optimal and asymptotically problem-dependent optimal for linear (non-contextual) bandits.35

[R1] Experiments. We ran the practical version of LinUCB/LinTS, using confidence sets without numerical constants,36

with log-determinant of the design matrix for LinUCB, and without the theoretical oversampling
√
d-factor for LinTS.37

[R1] “The leading order term depends inversely on the smallest possible gaps between arms’ mean rewards". This is not38

the case in problems with structure (e.g., linear). Examples like the one of the first experiment (which extends the one39

in [7]) show that there exist problems in which one can make some arm gap arbitrarily small, yet the optimal regret rate40

v?(θ?) does not scale with it since pulls are allocated to other informative arms. As a result, the algorithm’s behavior41

and performance are not negatively affected by the existence of policies that are extremely similar to the optimal one.42

[R2] Sub-Gaussian assumption. The lower-bound remains the same, except that the KL divergence needs to be43

computed for some distribution in the sub-Gaussian family. The analysis would be almost identical thanks to the44

Lipschitz property of KL divergences between sub-Gaussian distributions (see, e.g., [15]) and the results would be the45

same with a distribution-dependent Lipschitz constant in lower order terms.46

[R3] “a simple epsilon-greedy algorithm [...] is already asymptotically optimal". An algorithm is asymptotically optimal47

if its regret scales as log(n) with a leading problem-dependent constant matching the v?(θ?) in the lower bound. This48

is very important in practice because it certifies that the algorithm effectively adapts to the problem’s structure. In49

this sense, an epsilon-greedy algorithm is far from being asymptotically optimal as it only recovers a O(log n) regret50

possibly with a prohibitively large constant (e.g., scaling linearly with the number of context-arms or inverse of the51

gaps, which can be extremely small). This directly translates into a poor performance in practice.52

[R3] “The authors need to take a look at Chu et al.". We cite [4], which refine the original results ofChu et al. [2011].53

[R4] Thanks for the supportive review and for the suggested corrections. We have already updated the paper accordingly.54


