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Abstract

In the contextual linear bandit setting, algorithms built on the optimism principle
fail to exploit the structure of the problem and have been shown to be asymptotically
suboptimal. In this paper, we follow recent approaches of deriving asymptotically
optimal algorithms from problem-dependent regret lower bounds and we introduce
a novel algorithm improving over the state-of-the-art along multiple dimensions.
We build on a reformulation of the lower bound, where context distribution and
exploration policy are decoupled, and we obtain an algorithm robust to unbalanced
context distributions. Then, using an incremental primal-dual approach to solve the
Lagrangian relaxation of the lower bound, we obtain a scalable and computationally
efficient algorithm. Finally, we remove forced exploration and build on confidence
intervals of the optimization problem to encourage a minimum level of exploration
that is better adapted to the problem structure. We demonstrate the asymptotic
optimality of our algorithm, while providing both problem-dependent and worst-
case finite-time regret guarantees. Our bounds scale with the logarithm of the
number of arms, thus avoiding the linear dependence common in all related prior
works. Notably, we establish minimax optimality for any learning horizon in the
special case of non-contextual linear bandits. Finally, we verify that our algorithm
obtains better empirical performance than state-of-the-art baselines.

1 Introduction

We study the contextual linear bandit (CLB) setting [e.g., 1], where at each time step ¢ the learner
observes a context X; drawn from a context distribution p, pulls an arm A;, and receives a reward
Y; drawn from a distribution whose expected value is a linear combination between d-dimensional
features ¢(X¢, A;) describing context and arm, and an unknown parameter 6*. The objective of the
learner is to maximize the reward over time, that is to minimize the cumulative regret w.r.t. an optimal
strategy that selects the best arm in each context. This setting formalizes a wide range of problems
such as online recommendation systems, clinical trials, dialogue systems, and many others [2].
Popular algorithmic principles, such as optimism-in-face-of-uncertainty and Thompson sampling
[3]], have been applied to this setting leading to algorithms such as OFUL [4] and LINTS [} 6] with
strong finite-time worst-case regret guarantees. Nonetheless, Lattimore & Szepesvari [[7] recently
showed that these algorithms are not asymptotically optimal (in a problem-dependent sense) as
they fail to adapt to the structure of the problem at hand. In fact, in the CLB setting, the values of
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different arms are tightly connected through the linear assumption and a possibly suboptimal arm
may provide a large amount of information about 6* and thus the optimal arm. Optimistic algorithms
naturally discard suboptimal arms and thus may miss the chance to acquire information about §* and
significantly reduce the regret.

Early attempts to exploit general structures in MAB either adapted UCB-based strategies [8, 9] or
focused on different criteria, such as regret to information ratio [10]. While these approaches succeed
in improving the finite-time performance of optimism-based algorithms, they still do not achieve
asymptotic optimality. An alternative approach to exploit the problem structure was introduced in [[7]
for (non-contextual) linear bandits. Inspired by approaches for regret minimization [[11} |12} [13]] and
best-arm identification [14] in MAB, Lattimore & Szepesvari [7]] proposed to compute an exploration
strategy by solving the (estimated) optimization problem characterizing the asymptotic regret lower
bound for linear bandits. While the resulting algorithm matches the asymptotic logarithmic lower
bound with tight leading constant, it performs rather poorly in practice. Combes et al. [[15] followed a
similar approach and proposed OSSB, an asymptotically optimal algorithm for bandit problems with
general structure (including, e.g., linear, Lipschitz, unimodal). Unfortunately, once instantiated for the
linear bandit case, OSSB suffers from poor empirical performance due to the large dependency on the
number of arms. Recently, Hao et al. [16] introduced OAM, an asymptotically optimal algorithm for
the CLB setting. While OAM effectively exploits the linear structure and outperforms other bandit
algorithms, it suffers from major limitations. From an algorithmic perspective, at each exploration
step, OAM requires solving the optimization problem of the regret lower bound, which can hardly
scale beyond problems with a handful of contexts and arms. Furthermore, OAM implements a
forcing exploration strategy that often leads to long periods of linear regret and introduces a linear
dependence on the number of arms |.A|. Finally, the regret analysis reveals a critical dependence
on the inverse of the smallest probability of a context (i.e., min, p(x)), thus suggesting that OAM
may suffer from poor finite-time performance in problems with unbalanced context distributionsE]
Degenne et al. [[17] recently introduced SPL, which significantly improves over previous algorithms
for MAB problems with general structures. Inspired by algorithms for best-arm identification [[18]],
Degenne et al. reformulate the optimization problem in the lower bound as a saddle-point problem
and show how to leverage online learning methods to avoid recomputing the exploration strategy
from scratch at each step. Furthermore, SPL removes any form of forced exploration by introducing
optimism into the estimated optimization problem. As a result, SPL is computationally efficient and
achieves better empirical performance in problems with general structures.

Contributions. In this paper, we follow similar steps as in [17] and introduce SOLID, a novel
algorithm for the CLB setting. Our main contributions can be summarized as follows.

* We first reformulate the optimization problem associated with the lower bound for contextual
linear bandits [15,[19,116] by introducing an additional constraint to guarantee bounded solutions
and by explicitly decoupling the context distribution and the exploration policy. While we
bound the bias introduced by the constraint, we also illustrate how the resulting exploration
policy is better adapted to unbalanced context distributions.

* Leveraging the Lagrangian dual formulation associated with the constrained lower-bound
optimization problem, we derive SOLID, an efficient primal-dual learning algorithm that
incrementally updates the exploration strategy at each time step. Furthermore, we replace forced
exploration with an optimistic version of the optimization problem by specifically leveraging
the linear structure of the problem. Finally, SOLID does not require any explicit tracking step
and it samples directly from the current exploration strategy.

* We establish the asymptotic optimality of SOLID, while deriving a finite-time problem-
dependent regret bound that scales only with log |.4| and without any dependence on min, p(x).
To this purpose, we introduce a new concentration bound for regularized least-squares that
scales as O(logt + dloglogt), hence removing the dlogt dependence of the bound in [4].
Moreover, we establish a O(|X'|v/dn) worst-case regret bound for any CLB problem with |X|
contexts, d features, and horizon n. Notably, this is implies that SOLID is the first algorithm to
be simultaneously asymptotically optimal and minimax optimal in non-contextual linear bandits.

* We empirically compare to a number of state-of-the-art methods for contextual linear bandits
and show how SOLID is more computationally efficient and often has the smallest regret.

*Interestingly, Hao et al. [16] explicitly mention in their conclusions the importance of properly managing
the context distribution to achieve satisfactory finite-time performance.



A thorough comparison between SOLID and related work is reported in App. [B]

2 Preliminaries

We consider the contextual linear bandit setting. Let X be the set of contexts and .4 be the set of arms
with cardinality |X'| < co and |.A| < oo, respectively. Each context-arm pair is embedded into R?
through a feature map ¢ : X x A — RY. For any reward model 6 € R?, we denote by yi¢(,a) =
#(z,a) "0 the expected reward for each context-arm pair. Let ajj(z) := argmax,¢ 4 pto (7, a) and
py(x) == maxge A po(2, a) denote the optimal arm and its value for context = and parameter 6. We
define the sub-optimality gap of arm a for context = in model 6 as Ag(z, a) := pj(z) — po(z, a).
We assume that every time arm a is selected in context z, a random observation Y = ¢(x,a)"0 + £
is generated, where & ~ N(0, 02) is a Gaussian noise Given two parameters 6,0’ € R?, we define
dy,a(0,0") := 525 (o(x,a) — pgr(x,a))?, which corresponds to the Kullback-Leibler divergence

between the Gaussian reward distributions of the two models in context 2 and arm a.

At each time step ¢ € N, the learner observes a context X; € X drawn i.i.d. from a context
distribution p, it pulls an arm A; € A, and it receives a reward Y; = ¢(X;, A;)T0* + &, where
6* € R? is unknown to the learner. A bandit strategy 7 := {m }4>1 chooses the arm A, to
pull at time ¢ as a measurable function 7;(H;_1, X;) of the current context X; and of the past
history Hy_q := (X1,Y1,...,X;_1,Y;_1). The objective is to define a strategy that minimizes
the expected cumulative regret over n steps, Ef | [Rn(0)] == Eg , Do (uh(Xy) — po( Xy, Ar))],
where Eg o denotes the expectation w.r.t. the randomness of contexts, the noise of the rewards, and
any randomization in the algorithm. We denote by 6* the reward model of the bandit problem at
hand, and without loss of generality we rely on the following regularity assumptions.

Assumption 1. The realizable parameters belong to a compact subset © of R such that |||, < B
for all € ©. The features are bounded, i.e., ||¢(x,a)lls < L forallxz € X,a € A. The context
distribution is supported over the whole context set, i.e., p(x) > pmin > 0 for all x € X. Finally,
w.Lo.g. we assume 0* has a unique optimal arm in each context [see e.g., 15| [16]].

Regularized least-squares estimator. We introduce the regularized least-square estimate of 8* using
t samples as 0 := V;lUt, where V; := 30| 6(Xs, Ag) (X, Ag)T + vI, with v > max{L?, 1}
and I the d X d identity matrix, and U; := 22:1 d(Xs, As)Ys. The estimator 6, satisfies the
following concentration inequality (see App. [J]for the proof and exact formulation).

Theorem 1. Let 6 € (0,1), n > 3, and é\f be a regularized least-square estimator obtained using
t € [n] samples collected using an arbitrary bandit strategy 7 := {m; };>1. Then,

P {Ht € [n]: [0, — 0* ||y, = ﬂrn,é} <,
where ¢y, 5 is of order O(log(1/0) + dloglogn).

For the usual choice § = 1/n, c,,,1/,, is of order O(logn + dloglog n), which illustrates how the
dependency on d is on a lower-order term w.r.t. n (as opposed to the well-known concentration bound
derived in [4]]). This result is the counterpart of [7, Thm. 8] for the concentration on the reward
parameter estimation error instead of the prediction error and we believe it is of independent interest.

3 Lower Bound

We recall the asymptotic lower bound for multi-armed bandit problems with structure from [20, |15}
19]. We say that a bandit strategy 7 is uniformly good if Ef | [Rn] = o(n®) for any @ > 0 and any
contextual linear bandit problem satisfying Asm. [T}

Proposition 1. Let 7 := {m; };+>1 by a uniformly good bandit strategy then,

ET |R,(6*
liminfig’p[ ( )]

minf =S8N 2 00, M

3This assumption can be relaxed by considering sub-Gaussian rewards.



where v*(0*) is the value of the optimization problem

i X : x pf
mfZO Z Z n(z,a)Ag«(z,a) s.t. 0’len®falt Z Z n(x,a)dy q(0%,60") > 1, P)

n(za) zEX a€A zEX a€A

where O,y = {0/ € © | Jx € X, aj.(x) # aj,(x)} is the set of alternative reward parameters
such that the optimal arm changes for at least a context x.

The variables 7(z, a) can be interpreted as the number of pulls allocated to each context-arm pair
so that enough information is obtained to correctly identify the optimal arm in each context while
minimizing the regret. Formulating the lower bound in terms of the solution of (P) is not desirable
for two main reasons. First, (P) is not a well-posed optimization problem since the inferior may not
be attainable, i.e., the optimal solution may allocate an infinite number of pulls to some optimal arms.
Second, (P) removes any dependency on the context distribution p. In fact, the optimal solution n*
of (P) may prescribe to select a context-arm (, a) pair a large number of times, despite = having low
probability of being sampled from p. While this has no impact on the asymptotic performance of
7™ (as soon as pmin > 0), building on n* to design a learning algorithm may lead to poor finite-time
performance. In order to mitigate these issues, we propose a variant of the previous lower bound
obtained by adding a constraint on the cumulative number of pulls in each context and explicitly
decoupling the context distribution p and the exploration policy w(z, a) defining the probability of
selecting arm a in context . Given z € R+, we define the optimization problem

min zIEp[Zw(a:,a)Ag*(a:,a) s.t. inf Ep[Zw(x,a)dw,a(g*ﬁ/) >1/z (P,

we 0'cO
a€A alt a€A

where Q = {w(z,a) >0 |Vz € X : ) . ,w(z,a) = 1} is the probability simplex. We denote by
w? g« the optimal solution of and u*(z, 0*) its associated value (if the problem is unfeasible we
set u*(z,0*) = 400). Inspecting (P.)), we notice that z serves as a global constraint on the number of
samples. In fact, for any w € §2, the associated number of samples 7)(x, a) allocated to a context-arm
pair (z, a) is now zp(z)w(z, a). Since p is a distribution over X and ) w(x, a) = 1 in each context,
the total number of samples sums to z. As a result, admits a minimum and it is more amenable to
designing a learning algorithm based on its Lagrangian relaxation. Furthermore, we notice that z can
be interpreted as defining a more “finite-time” formulation of the lower bound. Finally, we remark
that the total number of samples that can be assigned to a context x is indeed constrained to zp(z).
This constraint crucially makes more context aware and forces the solution w to be more adaptive
to the context distribution. In Sect. 4] we leverage these features to design an incremental algorithm
whose finite-time regret does not depend on py,in, thus improving over previous algorithms [[7, [16],
as supported by the empirical results in Sect.[6] The following lemma provides a characterization
of and its relationship with (P) (see App.|C|for the proof and further discussion).

Lemma 1. Ler 2z(6%) = min{z > 0: is feasible}, Z(6%)

maXgcx Za#ag*(z) % and z*(6*) e Za;&ag* (@) n*(xz,a).  Then ﬁ —
max,eq infoco,, Ep [Yacaw(@,a)dyq(0%,0')] and there exists a constant co > 0 such
that, for any z € (z(6*), +00),

u*(z,07) < v (6") +

2:BLz(6*) |1 ifz <Z(0%)
z — z(6%) min {max { cov2z (0") 2 (f ) } , 1} otherwise

oz

The first result characterizes the range of z for which is feasible. Interestingly, z(6*) < 400 is
the inverse of the sample complexity of the best-arm identification problem [21]] and the associated
solution is the one that maximizes the amount of information gathered about the reward model 6*.
As z increases, w} 5. becomes less aggressive in favoring informative context-arm pairs and more
sensitive to the regret minimization objective. The second result quantifies the bias w.r.t. the optimal
solution of (P.). For z > Z(6*), the error decreases approximately at a rate 1/,/z showing that the
solution of can be made arbitrarily close to v*(6*).

“The infimum over this set can be computed in closed-form when the alternative parameters are allowed to lie
in the whole R? (see App. [K.1). When these parameters are forced to have bounded £5-norm, the infimum has
no closed-form expression, though its computation reduces to a simple convex optimization problem (see [21]).



In designing our learning algorithm, we build on the Lagrangian relaxation of (P.)). For any w € €,
let f(w; 0*) denote the objective function and g(w, z; 8*) denote the KL constraint

flw;0%) = Ep[z w(@, a) o (x,a)], g(w;2,0%) = inf Ep[z w(:c,a)dw,a(ﬁ*,ﬁ’)] - %

0'cO
acA alt a€A

We introduce the Lagrangian relaxation problem

min max {h(w, X 2,0%) = f(w; 0°) + A\g(w; 2, 9*)}, (Py)

A>0 weR
where A € R>¢ is a multiplier. Notice that f(w;6*) is not equal to the objective function of (P)),
since we replaced the gap Ay« by the expected value 119« and we removed the constant multiplicative
factor z in the objective function. The associated problem is thus a concave maximization problem.
While these changes do not affect the optimality of the solution, they do simplify the algorithmic

design. Refer to App. [D]for details about the Lagrangian formulation.

4 Asymptotically Optimal Linear Primal Dual Algorithm

We introduce SOLID (aSymptotic Optimal
Linear prImal Dual), which combines a
primal-dual approach to incrementally com-
pute the solution of an optimistic estimate
of the Lagrangian relaxation within a
scheme that, depending on the accuracy of
the estimate 6, separates exploration steps,
where arms are pulled according to the explo-
ration policy wy, and exploitation steps, where
the greedy arm is selected. The values of the
input parameters for which SOLID enjoys
regret guarantees are reported in Sect. [5] In
the following, we detail the main ingredients
composing the algorithm (see Alg. [I).

Estimation. SOLID stores and updates the

regularized least-square estimate 6; using all
samples observed over time. To account for

the fact that 5,5 may have large norm (i.e.,
|6/l > B and 6, ¢ ©), SOLID explicitly
projects 6, onto ©. Formally, let C; := {0 €
RZ : |16 — @H%t < B;} be the confidence
ellipsoid at time ¢. Then, SOLID computes
0, = argmingegne, |0 — 575”2?,5 This is a
simple convex optimization problem, though

it has no closed-form expressionE] Note that,
on those steps where 60* ¢ C;, © N C; might

be empty, in which case we can set 6; = 6;_1.

Then, SOLID uses 91 instead of 5,5 in all steps
of the algorithm. SOLID also computes an
empirical estimate of the context distribution

as fy(x) = § ooy 1{Xs = a}.

Algorithm 1: SOLID

Input: Multiplier A1, confidence values {f8:}: and
{¢ }+, maximum multiplier Amax, normalization
factors {zx } x>0, phase lengths {pi }r>0, step
sizes ap, o

Set wy I‘XT"A,VO —vI,Uy+ 0,00+ 0,5 «0
Phase index: K71 < 0
fort=1,...,ndo
Receive context X¢ ~ p
Set Kt+1 <— Kt
if inf9’65t71 ||9t—1 — Gll‘%t_l > ﬂt71 then
// EXPLOITATION STEP
Ay < argmax, e 4 g, (Xt a)
At41 4 A, Wig1 — Wy
else
// EXPLORATION STEP
Sample arm: A; ~ we(Xz, -)
Set St < St—l +1
// UPDATE SOLUTION
Compute g¢ € Ohi(we, Ae, 2K, ) (see Eq.
Update policy

¥ x,a
wi(w,a)e ey at (@)

Wt+1(x7 a) < Yalea wt(x,a’)ea‘fét at(wal)
Update multiplier
Aig1 < min{[\e — aj, ge(we, 25, )]+, Amax }
// PHASE STOPPING TEST
if St — STthl = Pk then
Change phase: K¢41 +— K; +1
Reset solution: wyy1 < w1, Apr1 & A1
Pull A; and observe outcome Y;

Update V;, Us, b\t, pe using Xy, A, Y;
Set 0, := argmingcgne, 10 — 0|3,

Accuracy test and tracking. Similar to previous algorithms leveraging asymptotic lower bounds,
we build on the generalized likelihood ratio test [e.g., [18] to verify the accuracy of the estimate

f;. At the beginning of each step ¢, SOLID first computes infy o, | 16;—1 — 0|12 _» Where
;1 ={0 €O |Ixe, a> (x) # ag ()} is the set of alternative models. This quantity
t—1

3The projection is required to carry out the analysis, while we ignore it in our implementation (see App. [K.1).



measures the accuracy of the algorithm, where the infimum over alternative models defines the
problem 6’ that is closest to 6, and yet different in the optimal arm of at least one contextﬁ This
serves as a worst-case scenario for the true 6*, since if * = ' then selecting arms according to
5,5_1 would lead to linear regret. If the accuracy exceeds a threshold 5;_1, then SOLID performs
an exploitation step, where the estimated optimal arm aﬂ;}til (X4) is selected in the current context.

On the other hand, if the test fails, the algorithm moves to an exploration step, where an arm A; is
sampled according to the estimated exploration policy w; (X%, -). While this approach is considerably
simpler than standard tracking strategies (e.g., selecting the arm with the largest gap between the
policy wy and the number of pulls), in Sect. [5| we show that sampling from w, achieves the same level
of tracking efficiency.

Optimistic primal-dual subgradient descent. At each step ¢, we define an estimated optimistic
version of the Lagrangian relaxation as

fiw) =Y hea@) Y wiwa) (5, , (@.@) + VA6l ). @
zeEX acA
gr(w.2)i= i Y (@) Y wiwa) (dx,awtfl,e )+ VAl @)l ) -2, 0
9’E®t,1m€X acA o t—1 4
hi(w, A, 2) = fi(w) + Age(w, 2), “

where ~y; is a suitable parameter defining the size of the confidence interval.

Notice that we do not use optimism on the context distribution, which is simply replaced by its
empirical estimate. Therefore, h; is not necessarily optimistic with respect to the original Lagrangian
function h. Nonetheless, we prove in Sect. [5] that this level of optimism is sufficient to induce enough
exploration to have accurate estimates of 6*. This is in contrast with the popular forced exploration
strategy [e.g.[7,[15 19} 116], which prescribes a minimum fraction of pulls € such that at any step ¢,
any of the arms with less than €S, pulls is selected, where S; is the number of exploration rounds so

far. While this strategy is sufficient to guarantee a minimum level of accuracy for §t and to obtain
asymptotic regret optimality, in practice it is highly inefficient as it requires selecting all arms in each
context regardless of their value or amount of information.

At each step ¢, SOLID updates the estimates of the optimal exploration policy w; and the Lagrangian
multiplier A\;. In particular, given the sub-gradient ¢; of hy(wy, At, 2k, ), SOLID updates w; and A,
by performing one step of projected sub-gradient descent with suitable learning rates aj;, and O‘}\Q'
In the update of w;, we perform the projection onto the simplex {2 using an entropic metric, while the
multiplier is clipped in [0, Apax]. While this is a rather standard primal-dual approach to solve the

Lagrangian relaxation (P,), the interplay between estimates 6;, p;, the optimism used in h;, and the
overall regret performance of the algorithm is at the core of the analysis in Sect.[3]

This approach significantly reduces the computational complexity compared to [15} [16], which
require solving problem[P|at each exploratory step. In Sect.[6] we show that the incremental nature of
SOLID allows it to scale to problems with much larger context-arm spaces. Furthermore, we leverage
the convergence rate guarantees of the primal-dual gradient descent to show that the incremental
nature of SOLID does not compromise the asymptotic optimality of the algorithm (see Sect. [5).

The z parameter. While the primal-dual algorithm is guaranteed to converge to the solution of
for any fix z, it may be difficult to properly tune z to control the error w.r.t. (P). SOLID leverages the
fact that the error scales as 1/+/z (Lem.|1|for z sufficiently large) and it increases z over time. Given
as input two non-decreasing sequences {p }x and {zj }, at each phase k, SOLID uses 2, in the
computation of the subgradient of h; and in the definition of f; and g;. After p; explorative steps, it
resets the policy w; and the multiplier A; and transitions to phase k + 1. Since py, = S1,,, 1 — ST, -1
is the number of explorative steps of phase k starting at time T}, the actual number of steps during k
may vary. Notice that at the end of each phase only the optimization variables are reset, while the

learning variables (i.e., 5,5 V¢, and py) use all the samples collected through phases.

81n practice, it is more efficient to take the infimum only over problems with different optimal arm in the last
observed context X;. This is indeed what we do in our experiments and all our theoretical results follow using
this alternative definition with only minor changes.



5 Regret Analysis

Before reporting the main theoretical result of the paper, we introduce the following assumption.
Assumption 2. The maximum multiplier used by SOLID is such that Ayax > 2BLz(0%).

While an assumption on the maximum multiplier is rather standard for the analysis of primal-dual
projected subgradient [e.g., 22, 23], we conjecture that it may be actually relaxed in our case by
replacing the fixed A\« by an increasing sequence as done for {z } .

Theorem 2. Consider a contextual linear bandit problem with contexts X, arms A, reward parameter
0%, features bounded by L, zero-mean Gaussian noise with variance o2 and context distribution p
satisfying Asm. I} If SOLID is run with confidence values ;1 = ¢y, 1/, and v, = Cn,1/52, Where
Cn,s is defined as in Thm. |} learning rates ag = of = 1//pk and increasing sequences zj, = zpek
and py, = z,€%F, for some zy > 1, then it is asymptotically optimal with the same constant as in the
lower bound of Prop.[I} Furthermore, for any finite n the regret of SOLID is bounded as

Cn,1/n 1 3
EZ ,[Rn(6")] < v*(9) 524" + Ciog(loglog ) (logm)  + Ceonst, (5)
where Cloy = linzo(v*(ﬁ*),\X\,LQ,B2,\/&1/02) and Ceonst = U*(Q*)% +

linso(L, B, 20(2(0") /)%, (5(0) /0))[]

The first result shows that SOLID run with an exponential schedule for z is asymptotic optimal,
while the second one provides a bound on the finite-time regret. We can identify three main
components in the finite-time regret. 1) The first term scales with the logarithmic term c,, 1/, =
O(logn + dloglogn) and a leading constant v*(6*), which is optimal as shown in Prop.|l| In most
cases, this is the dominant term of the regret. 2) Lower-order terms in o(logn). Notably, a regret
of order /logn is due to the incremental nature of SOLID and it is directly inherited from the
convergence rate of the primal-dual algorithm we use to optimize (P.). The larger term (log n)3/ 4
that we obtain in the final regret is actually due to the schedule of {z; } and {py, }. While it is possible
to design a different phase schedule to reduce the exponent towards 1/2, this would negatively impact
the constant regret term. 3) The constant regret Co,¢t is due to the exploitation steps, burn-in phase
and the initial value zy. The regret due to 2, takes into account the regime when is unfeasible
(zr < z(0*)) or when zj is too small to assess the rate at which u*(zy,0*) approaches v*(6*)
(z < Z(0%)), see Lem. [I| Notably, the regret due to the initial value z, vanishes when zy > Z(6*). A
more aggressive schedule for z;, reaching Z(6*) in few phases would reduce the initial regret at the
cost of a larger exponent in the sub-logarithmic terms.

The sub-logarithmic terms in the regret have only logarithmic dependency on the number of arms.
This is better than existing algorithms based on exploration strategies built from lower bounds.
OSSB [15] indeed depends on |.A| directly in the main O(logn) regret terms. While the regret
analysis of OAM is asymptotic, it is possible to identify several lower-order terms depending linearly
on |A|. In fact, OAM as well as OSSB require forced exploration on each context-arm pair, which
inevitably translates into regret. In this sense, the dependency on |.A| is hard-coded into the algorithm
and cannot be improved by a better analysis. SPL depends linearly on |.A4| in the explore/exploit
threshold (the equivalent of our ;) and in other lower-order terms due to the analysis of the tracking
rule. On the other hand, SOLID never requires all arms to be repeatedly pulled and we were able
to remove the linear dependence on |.A| through a refined analysis of the sampling procedure (see
App. [E). This is inline with the experimental results where we did not notice any explicit linear
dependence on |A|.

The constant regret term depends on the context distribution through z(6*) (Lem. . Nonetheless,
this dependency disappears whenever zy is a fraction Z(0*). This is in striking contrast with OAM,
whose analysis includes several terms depending on the inverse of the context probability pp,in. This
confirms that SOLID is able to better adapt to the distribution generating the contexts. While the
phase schedule of Thm. 2]leads to an asymptotically-optimal algorithm and sublinear-regret in finite
time, it may be possible to find a different schedule having the same asymptotic performance and
better finite-time guarantees, although this may depend on the horizon n. Refer to App.[G.3|for a
regret bound highlighting the explicit dependence on the sequences {zj} and {py}.

"lin(-) denotes any function with linear or sublinear dependence on the inputs (ignoring logarithmic terms).
For example, lin>o(z,y?) € {ao + a1z + azy + azy® + asxy® : a; > 0}.
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Figure 1: Toy problem with 2 contexts and (left) p(x1) = .5, (center) p(x1) = .9, (right) p(z1) = .99.

As shown in [16]], when the features of the optimal arms span R¢, the asymptotic lower bound vanishes
(i.e., v*(0*) = 0). In this case, selecting optimal arms is already informative enough to correctly
estimate 6* and no explicit exploration is needed and SOLID, like OAM, has sub-logarithmic regret.

Worst-case analysis. The constant terms in Thm. |2 are due to a naive bound which assumes linear
regret in those phases where z, is small (e.g., when the optimization problem is infeasible). While
this simplifies the analysis for asymptotic optimality, we verify that SOLID always suffers sub-linear
regret, regardless of the values of zj. For the following result, we do not require Asm.[2]to hold.

Theorem 3 (Worst-case regret bound). Let z, be arbitrary, p, = e"* for some constant r > 1, and
the other parameters be the same as in Thm.[2] Then, for any n the regret of SOLID is bounded as

o2

Am XBL 2 T>\2- >\rn XBL
BE, [R0(0°)) < 3820 (44 2270 ) o 200mx iy 0 (14 222575 ) loglo)

where Cyqry, = lin>o(|X], Vi, B, L).

Notably, this bound removes the dependencies on z(6*) and Z(6*), while its derivation is agnostic to
the values of zj. Interestingly, we could set A2 = 0 and the algorithm would completely ignore the
KL constraint, thus focusing only on the objective function. This is reflected in the worst-case bound
since all terms with a dependence on o2 or a quadratic dependence on BL disappear. The key result
is that the objective function alone, thanks to optimism, is sufficient for proving sub-linear regret but
not for proving asymptotic optimality. More precisely, the resulting bound is O(|X|v/nd), which
matches the minimax optimal rate apart from the dependence on | X'|. The latter could be reduced

to 1/|X| by a better analysis. It remains an open question how to design an asymptotically optimal
algorithm for the contextual case whose regret does not scale with | X|.

6 Numerical Simulations

We compare SOLID to LinUCB, LinTS, and OAM. For SOLID, we set 3; = o%(log(t) +
dloglog(n)) and v; = 02 (log(S;) + dloglog(n)) (i.e., we remove all numerical constants) and we
use the exponential schedule for phases defined in Thm. 2| For OAM, we use the same [3; for the
explore/exploit test and we try different values for the forced-exploration parameter e. LinUCB uses
the confidence intervals from Thm. 2 in [4] with the log-determinant of the design matrix, and LinTS
is as defined in [5] but without the extra-sampling factor v/d used to prove its frequentist regret. All
plots are the results of 100 runs with 95% Student’s t confidence intervals. See App. [K] for additional
details and results on a real dataset.

Toy contextual linear bandit with structure. We start with a CLB problem with |X'| = 2 and
|A|,d = 3. Let z; (a;) be the i-th context (arm). We have ¢(z1,a1) = [1,0,0], ¢(x1,a2) = [0, 1,0],
(b(l‘l, a3) = [1 — f, 26, 0], (b(xg, (11) = [0, 0.67 0.8], (b(l‘g, ag) = [0, 0, 1], (b(xg, 0,3) = [0, 6/10, 1-—
€] and 6* = [1,0, 1]. We consider a balanced context distribution p(x;) = p(x2) = 0.5. Thisis a
two-context counterpart of the example presented by [7]] to show the asymptotic sub-optimality of
optimism-based strategies. The intuition is that, for £ small, an optimistic strategy pulls as in x; and
a; in zo only a few times since their gap is quite large, and suffers high regret (inversely proportional
to &) to figure out which of the remaining arms is optimal. On the other hand, an asymptotically
optimal strategy allocates more pulls to “bad" arms as they bring information to identify 8*, which in
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Figure 2: Randomly generated bandit problems with d = 8,|X| = 4, and |A| = 4, 8, 16, 32.

turns avoids a regret scaling with £. This indeed translates into the empirical performance reported in
Fig. [T} (left), where SOLID effectively exploits the structure of the problem and significantly reduces
the regret compared to LinTS and LinUCB. Actually, not only the regret is smaller but the “trend” is
better. In fact, the regret curves of LinUCB and LinTS have a larger slope than SOLID’s, suggesting
that the gap may increase further with n, thus confirming the theoretical finding that the asymptotic
performance of SOLID is better. OAM has a similar behavior, but the actual performance is worse
than SOLID and it seems to be very sensitive to the forced exploration parameter, where the best
performance is obtained for € = 0.0, which is not theoretically justified.

We also study the influence of the context distribution. We first notice that solving (P) leads to an
optimal exploration strategy 1* where the only sub-optimal arm with non-zero pulls is a1 in 2 since it
yields lower regret and similar information than a9 in x;. This means that the lower bound prescribes
a greedy policy in x1, deferring exploration to xo alone. In practice, tracking this optimal allocation
might lead to poor finite-time performance when the context distribution is unbalanced towards x1, in
which case the algorithm would take time proportional to 1/p(x5) before performing any meaningful
exploration. We verify these intuitions empirically by considering the case of p(z1) = 0.9 and
p(z1) = 0.99 (middle and right plots in Fig. [1| respectively). SOLID is consistently better than
all other algorithms, showing that its performance is not negatively affected by p,in. On the other
hand, OAM is more severely affected by the context distribution. In particular, its performance with
e = 0 significantly decreases when increasing p(z1) and the algorithm reduces to an almost greedy
strategy, thus suffering linear regret in some problems. In this specific case, forcing exploration
leads to slightly better finite-time performance since the algorithm pulls the informative arm a5 in 7,
which is however not prescribed by the lower bound.

Random problems. We evaluate the impact of the number of actions |.4| in randomly generated
structured problems with d = 8 and |X| = 4. We run each algorithm for n = 50000 steps. For
OAM, we set forced-exploration € = 0.01 and solve (P) every 100 rounds to speed-up execution as
computation becomes prohibitive. The plots in Fig. [2|show the regret over time for |A| = 4, 8, 16, 32.
This test confirms the advantage of SOLID over the other methods. Interestingly, the regret of
SOLID does not seem to significantly increase as a function of |.A|, thus supporting its theoretical
analysis. On the other hand, the regret of OAM scales poorly with |.A| since forced exploration pulls
all arms in a round robin fashion.

7 Conclusion

We introduced SOLID, a novel asymptotically-optimal algorithm for contextual linear bandits with
finite-time regret and computational complexity improving over similar methods and better empirical
performance w.r.t. state-of-the-art algorithms in our experiments. The main open question is whether
SOLID is minimax optimal for contextual problems with |X’| > 1. In future work, our method could
be extended to continuous contexts, which would probably require a reformulation of the lower bound
and the adoption of parametrized policies. Furthermore, it would be interesting to study finite-time
lower bounds, especially for problems in which bounded regret is achievable [9, [24] 25]]. Finally, we
could use algorithmic ideas similar to SOLID to go beyond the realizable linear bandit setting.



Broader Impact

This work is mainly a theoretical contribution. We believe it does not present any foreseeable societal
consequence.
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