
Supplementary Information:
A causal view of compositional zero-shot recog-
nition
A Approximating argmaxa,o p(x|a, o)

The conditional likelihood p(x|a, o) can be written by marginalizing over the latent factors φa and φo

p(x|a, o) =

∫∫
φa,φo

p(x, φa, φo|a, o) =

∫∫
φa,φo

p(x|φa, φo)p(φa|a)p(φo|o)dφodφa . (S.7)

Computing this integral is hard in the general case. Variational autoencoders (VAEs) [31] approximate
a similar integral by learning a smaller support using an auxiliary probability function Q over the
latent space. Here we make another approximation, taking a "hard" approach and find the single most
likely integrand.

argmax
(a,o)∈A×O

p(x|φa, φo)p(φa|a)p(φo|o) (S.8)

Based on Section 4, the three factors of the distributions are Gaussians. Therefore, maximizing
Eq. (S.8) is equivalent to minimizing the negative log likelihood

argmin
(a,o)∈A×O

1

σ2
x

||x− g(φa, φo)||2 +
1

σ2
a

||φa − ha||2 +
1

σ2
o

||φo − ho||2 . (S.9)

This expression is composed of three components. The components allow to infer (a, o) by evaluating
distances in three representation spaces X , ΦA and ΦO (Section 4).

However, we cannot apply Eq. (S.9) to infer (a, o) because the core features φa, φo are latent. Next,
we introduce two additional approximations we use to apply Eq. (S.9). The first, approximates
||x− g(φa, φo)||2 by ||x− g(ha, ho)||2, using a Taylor expansion at the means (φa, φo) = (ha, ho).
The second, recovers (infers) the core features φa, φo from the image, and substitute the recovered
features in ||φa − ha||2, ||φo − ho||2.

A.1 Approximating ||x− g(φa, φo)||2

A causal model can be equivalently represented using a“Structural Causal Model” (SCM) [49].
An SCM matches a set of assignments to a causal graph. Each node in the graph is assigned a
deterministic function of its parent nodes and an independent noise term. Specifically, based on the
Gaussian assumptions in Section 4, the SCM of our causal graph (Figure 1a) is

φa = na + ha (S.10)
φo = no + ho (S.11)
x = nx + g(φa, φo), , (S.12)

where na, no, nx are jointly independent Gaussian random variables na ∼ N (0, σ2
aI), no ∼

N (0, σ2
oI), nx ∼ N (0, σ2

xI). na, no, nx represent sampling from the manifold of attributes, ob-
jects and images near their prototypes ha and ho.

We use a zeroth-order Taylor expansion of g(φa, φo) at (φa, φo) = (ha, ho) and make the following
approximation (

x− g(φa, φo)
)
≈
(
x− g(ha, ho)

)
. (S.13)

Next, we discuss the first-order approximation error. For brevity, we denote with φao the concate-
nation of the elements in (φa, φo) into a single vector. Similarly (ha, ho) into hao and (na, no) into
nao.

We approximate g(φao) by a first-order Taylor expansion at φao = hao to

g(φao) ≈ g(hao) + [Jg](hao) · (φao − hao) = g(hao) + [Jg](hao) · nao, (S.14)

where [Jg] is the Jacobian of g and the last equality stems from the SCM (Eqs. S.10, S.11).
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Using Eq. (S.14) and the Cauchy-Schwarz inequality, the first-order squared error approximation of
Eq. (S.13) is:

E||
(
x− g(φao)

)
−
(
x− g(hao)

)
||2 = E||g(φao)− g(hao)||2

≈ E||[Jg](hao)nao||2 ≤ ||[Jg](hao)||2FE||nao||2 (S.15)

This implies that the error of the approximation Eq. (S.13) is mainly dominated by the gradients
of g at hao, and the variance of nao. If the gradients and the variance of nao are too large, then
this approximation may be too coarse, and one may resort to more complex models like variational
methods [31]. Empirically, we observe that this approximation is useful.

A.2 Recovering the core features

To apply Eq. (S.9), we approximate φa, φo, by reconstructing (inferring) them from the image.

The main assumption we make is that images preserve the information about the core features
they were generated from, at least to a level that allows us to differentiate what were the semantic
prototypes (ha and ho) of the core feature. Otherwise, inference on test data and labeling the training
data by human raters will render to random guessing.

Therefore, we assume that there exists an inverse mappings that can infer φa and φo from the image
up to a reasonably small error:

φ̂a ≡ g−1A (x) = φa + εA(x) (S.16)

φ̂o ≡ g−1O (x) = φo + εO(x) , (S.17)

where εA(x), εO(x) denote the image-based error of inferring the attribute and object core features.

Specifically, we assume that the error in substituting φa by φ̂a and φo by φ̂o in Eq. (S.9) is small
enough to keep them close to their prototypes (ha and ho). Namely, we make the following approxi-
mation

||φa − ha||2 = ||φ̂a − εA(x)− ha||2 ≤ ||φ̂a − ha||2 + ||εA(x)||2 ≈ ||φ̂a − ha||2

||φo − ho||2 = ||φ̂o − εO(x)− ho||2 ≤ ||φ̂o − ho||2 + ||εO(x)||2 ≈ ||φ̂o − ho||2 . (S.18)

To conclude, we use Eq. (S.13) and Eq. (S.18) to approximate Eq. (S.9) by :

argmin
(a,o)∈A×O

1

σ2
x

||x− g(ha, ho)||2 +
1

σ2
a

||φ̂a − ha||2 +
1

σ2
o

||φ̂o − ho||2,

which is the expression for Eq. (3) in the main paper.

B Independence Loss

Our loss includes a component Lindep, which is designed to capture the conditional-independence
relations that the causal graph dictates (Eq. (6)). We now describe Lindep in detail.

Since we do not have the actual values of the latent core features φa, φo, we wish that their recon-
structions φ̂a and φ̂o maintain approximately the same independence relations as Eq. (6). To learn
mappings that adhere to these statistical independences over φ̂a and φ̂o, we regularize the learned
mappings using a differentiable measure of statistical dependence.

Specifically, we use a positive differentiable measure of the statistical dependence, denoted by
I. For two variables (u, v), conditioned on a categorical variable Y , we denote by I(u, v|Y ) the
positive differentiable measure of the statistical conditional dependence of (u, v|Y ). For example we
encourage approaching the equality in Eq. 6b by minimizing I(φ̂a, φ̂o|A). I is based on measuring
the Hilbert-Schmidt Information Criterion (HSIC) [19, 20], which is a non-parametric method for
estimating the statistical dependence between samples of two variables. We adapt the HSIC criterion
to measure conditional dependencies. I penalizes conditional dependencies in a batch of samples
B =

{
(ui, vi, yi)

}|B|
i=1

, by summing over groups of samples that have the same label:
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I(u, v|Y ) =
1

|Y |
∑
y∈Y

HSIC(U |Y = y, V |Y = y) (S.19)

where (U |Y = y, V |Y = y) =
{

(ui, vi) ∈ B | yi = y
}
.

Finally, we have Lindep, a loss term that encourages the four conditional independence relations of 6:

Lindep = Loh + λrepLrep (S.20)

Loh = I
(
φ̂a, O|A

)
+ I

(
φ̂o, A|O

)
(S.21)

Lrep = I
(
φ̂a, φ̂o|A

)
+ I

(
φ̂a, φ̂o|O

)
, (S.22)

where λrep is a hyper parameter.

Minimizing Eq. (S.21) encourages the representation of the inferred attribute φ̂a, to be invariant to
the categorical (“one-hot”) representation of an object O. Minimizing Eq. (S.22) encourages φ̂a to be
invariant to the “appearance” of an object (φ̂o).

B.1 An expression for Hilbert-Schmidt Information Criterion (HSIC) with linear kernel

The linear-kernel HSIC between two batches of vectors U,V is calculated in the following manner
[20]: It uses two linear kernel matrices Ki,j = u[i,:]u

T
[j,:], Li,j = v[i,:]v

T
[j,:]. Then the HSIC is

calculated as the scaled Hilbert-Schmidt norm of their cross-covariance matrix:

HSIC(U, V ) =
1

(n− 1)2
· tr(KHLH),

where Hij = δi,j − 1
n is a centering matrix , and n is the batch size

B.2 Minimizing Lindep encourages robustness of the reconstructed core features φ̂a, φ̂o.

The conditional-independence term of Loh within Lindep is related to a metric named “Post Inter-
ventional Disagreement” (PIDA), recently introduced by [58]. PIDA measures disentanglement
of representations for models that are trained from unsupervised data. This section explains their
relation in more detail, by showing that minimizing Lindep encourages the following properties:
pdo(O=o)(φ̂o)≈pdo(A=a,O=o)(φ̂o) and pdo(A=a)(φ̂a))≈pdo(A=a,O=o)(φ̂a).

The PIDA metric for attributes is measured by

PIDA(a′|a, o) := d
(
Edo(a)[φ̂a′ ],Edo(a,o)[φ̂a′ ]

)
, (S.23)

where d is loosely described as “a suitable” positive distance function (like the L2 distance).
PIDA(a′|a, o) quantifies the shifts in the inferred features φ̂a′ when the object is enforced to
o. Similarly, the PIDA term for objects is PIDA(o′|o, a).

Below we show that encouraging the conditional independence (φ̂a ⊥⊥O|A), is equivalent to mini-
mizing d

(
pdo(a)(φ̂a′), p

do(a,o)(φ̂a′)
)

and therefore minimizes PIDA(a′|a, o).

First, in our causal graph (Figure 1a) a do-intervention on both a and o is equivalent to conditioning
on (a, o)

pdo(a,o)(φ̂a′) = p(φ̂a′ |a, o). (S.24)

Second, minimizing Eq. (S.21) encourages the conditional independence (φ̂a′ ⊥⊥ O|A), which
is equivalent to minimization of d

(
p(φ̂a′ |a), p(φ̂a′ |a, o)

)
2. Third, when d

(
p(φ̂a|a), p(φ̂a|a, o)

)
approaches zero, then pdo(a)(φ̂a) approaches p(φ̂a|a). This stems from the adjustment for-
mula, pdo(a)(φ̂a′) =

∑
o p(φ̂a′ |a, o)p(o): When d

(
p(φ̂a′ |a), p(φ̂a′ |a, o)

)
approaches zero, then

2When (φ̂a′ ⊥⊥ O|A), then by definition p(φ̂a′ |a, o) = p(φ̂a′ |a). Therefore encouraging (φ̂a′ ⊥⊥ O|A),
makes p(φ̂a′ |a, o) approach p(φ̂a′ |a)
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∑
o p(φ̂a′ |a, o)p(o) approaches

∑
o p(φ̂a′ |a)p(o) = p(φ̂a′ |a). Therefore pdo(a)(φ̂a′) approaches

p(φ̂a′ |a).

As a result, we have the following: Minimizing Eq. (S.21) leads to pdo(a,o)(φ̂a′) approaching
p(φ̂a′ |a), which as we have just shown, leads to p(φ̂a′ |a) approaching pdo(a)(φ̂a′). Therefore,
d
(
pdo(a)(φ̂a′), p

do(a,o)(φ̂a′)
)

is minimized and accordingly, PIDA(a′|a, o) (Eq. S.23) is minimized.

Similarly, for objects, encouraging the conditional independence (φ̂o′ ⊥⊥ A|O) minimizes
PIDA(o′|a, o). Therefore, minimizing Loh (Eq. S.21), optimizes both PIDA(a′|a, o) and
PIDA(o′|a, o).

C Implementation details

C.1 Architecture

Similar to LE [44], we implemented g, ha and ho by MLPs with ReLU activation. For g−1A and g−1O ,
every layer used a batch-norm and leaky-relu activation. All the MLPs share the same size of hidden
layer, denoted by dh.

For experiments on Zappos, we also learned a single layer network f to project pretrained image
features to the feature space X . This strategy was inspired by the baseline models LE and ATTOP.
Learning a projection f finds better solutions on the validation set than using the pretrained features
as X .

For HSIC we used the implementation of [18] and applied a linear kernel as it does not require tuning
additional hyper-parameters.

C.2 Optimization

AO-CLEVr: We optimized AO-CLEVr in an alternating fashion: First we trained ha, g−1A and
g, keeping ho, g−1O frozen. Then we froze ha, g−1A and trained ho, g−1O and g. This optimization
strategy allows to stabilize the attribute representation when minimizing Eq. (S.22). The strategy was
developed during the early experiments with a low-dimensional (X ⊂ R2) synthetic dataset. In the
ablation study (Section F below), we show that a standard (non-alternating) optimization strategy
achieves comparable results, but with somewhat higher bias toward seen accuracy.

We used SGD with Nesterov Momentum to train with AO-CLEVr. Empirically, we found that SGD
allowed finer control over Lindep than Adam [30].

In practice, we weighed the loss of ||φ̂a − ha||2 and ||φ̂o − ho||2 according to the respective attribute
and object frequencies in the training set. This detail has a relatively small effect on performance.
Without weighing the loss, the Harmonic decreases by 1.2% (from 68.8% to 67.6%) and Unseen
accuracy decreases by 1.3% (from 57.5% to 56.2%).

Zappos: We optimized Zappos in a standard (non-alternating) fashion. We couldn’t use the alter-
nating optimization strategy, because in Zappos we also learn a mapping f that projects pretrained
image features to the feature space X . Thus, updating the parameters of f changes the mapping to X
and we cannot keep ha, g−1A frozen once X changes.

As in [44], we used Adam [30] to train with Zappos.

C.3 Early Stopping and Hyper-parameter selection

We trained each model instantiation for a maximum of 1000 epochs and early stopped on the
validation set.

We used two metrics for early-stopping and hyper-parameter selection on the validation set: (i)
the Harmonic metric for testing the unseen-accuracy, the seen-accuracy and the Harmonic; and (ii)
accuracy of the Closed metric for testing the Closed accuracy. In Zappos, we followed [50] and used
the AUSUC for testing both the AUSUC metric and the Closed accuracy.
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For our approach and all the compared methods, we tuned the hyper-params by first taking a coarse
random search, and then further searching around the best performing values on the validation set.
As a rule of thumb, we first stabilized the hyper-parameters of the learning-rate, weight-decay, and
architecture. Then we searched in finer detail over the hyper-parameters of the loss functions. At
the most fine-grained iteration of the random search, each combination of hyper-parameters was
evaluated with 3 different random weight initializations, and metrics were averaged over 3 runs. We
chose the set of hyper-parameters that maximized the average metric of interest.

Since AO-CLEVr has 6 · 3 = 18 different splits, we searched the hyper-parameters over a single split
of each of the ratios {2:8, 5:5, 6:4, 7:3}. For {3:7, 4:6} ratios, we used the hyper-parameters chosen
for the {5:5} split.

C.4 Hyper-parameters for loss function

In practice, to weigh the terms of the loss function, we use an equivalent but different formulation.
Specifically, we set λindep=1 and λinvert=1, and use the following expressions for Lindep and
Linvert

Lindep = λohLoh + λrepLrep (S.25)

Linvert = λicore
(
CE(a, fa(ha)) + CE(o, fo(ho))

)
+ (S.26)

λig
(
CE(a, fga(g(ha, ho))) + CE(a, fgo(g(ha, ho)))

)
.

where λoh, λrep, λicore and λig weigh the respective loss terms.

C.5 Grid-search ranges

For Causal with AO-CLEVr, we started the random grid-search over the following
ranges: Architecture: (1) Number of layers for ha and ho ∈ {0, 1, 2}, (2) Number
of layers for g−1A and g−1O ∈ {1, 2, 3}, (3) Number of layers for g ∈ {2, 4}, (4) Com-
mon size of hidden layers dh ∈ {10, 30, 150, 300, 1000}3. Optimization: (1) learning
rate ∈ {1e-5, 3e-5, 1e-4, 3e-4, 1e-3}, when using alternate training, we used different
learning rates for each alternation. (2) weight-decay ∈ {1e-5, 1e-4, 1e-3, 0.01, 0.1, 1}
(3) λrep ∈ {0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300} (4)
λoh ∈ {0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100, 300} (5) λao ∈
{0, 0.1, 0.3, 1, 3, 10} (6) λicore ∈ {0, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100} (7) λig ∈
{0, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100}. We didn’t tune batch-size, we set it to 2048.

For Causal with Zappos, we used some hyper-parameters found with Causal&AO-CLEVr and some
already known for LE with Zappos. Specifically, for the architecture, we set (1) Number of hidden
layers for ha and ho = 0 (linear embedding), (2) Number of layers for g−1A and g−1O = 2, (3) Number
of layers for g = 2 (4) Common size of hidden layers dh = 300. For the optimization, in order to
find a solution around the solution used by LE, we selected λao = 1000, λig = 0,weight-decay =
5e-5, batch-size = 2048; and λicore = 100 as with Causal&AO-CLEVr. We applied the random
search protocol over λrep ∈ 15 · {0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, }, λoh ∈ 15 ·
{0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, }, and learning rate ∈ {1e-4, 3e-4}
For TMN, we applied the random grid-search according to the ranges defined in the supple-
mental of [50]. Specifically: lr ∈ {0.0001, 0.001, 0.01, 0.1}, lrg ∈ {0.0001, 0.001, 0.01, 0.1},
batch-size ∈ {64, 128, 256, 512}, concept-dropout ∈ {0, 0.05, 0.1, 0.2}, nmod ∈ {12, 18, 24, 30},
output-dimension ∈ {8, 16}, number-of-layers ∈ {1, 2, 3, 5}. Additionally, we trained TMN for
a maximum of 30 epochs, which is ×6 longer than the recommended length (4-5 epochs). As
instructed, we chose the number of negatives to be “all negatives”. With Zappos, our grid-search
found a hyper-parameters’ combination with better performance than the one reported by the authors.

For ATTOP with AO-CLEVr, we used the following ranges: λaux ∈
{0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100},
λcomm ∈ {0, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100},

3We used 150 and not 100, in order to have total size of 2 · 150 = 300 for the concatenated representation of
[φ̂a, φ̂o]. 300 is comparable to the default value for emb-dim in the LE baseline.
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emb-dim ∈ {10, 30, 150, 300, 1000}, weight-decay ∈ {1e-5, 1e-4, 1e-3, 1e-2}. We used the default
learning rate 1e-4, and used a batch size of 2048.

For ATTOP with Zappos, we used the hyper-parameters combinations recommended by [44, 50], and
also searched for emb-dim ∈ {300, 1000}
For LE, we used the following ranges: weight-decay ∈ {1e-4, 1e-3, 1e-2}, emb-dim ∈
{10, 30, 150, 300, 1000}. With Zappos we also followed the guideline of [50] and searched
lr ∈ {0.0001, 0.001}.
Note that for ATTOP and LE, when Glove embedding is enabled then emb-dim is fixed to 300.

For VisProd with AO-CLEVr, we used the following ranges: We used the same number of layers,
weight-decay and learning rates as used to train “Causal”. We also followed the alternate-training
protocol. With Zappos, we searched for emb-dim ∈ {100, 300, 1000}, lr ∈ {1e-4, 1e-3}.

C.6 AO-CLEVr dataset

Pretrained features: Similar to Zappos, we extracted pretrained features for AO-CLEVr using a
pretrained ResNet18 CNN.

Cross validation splits: For cross-validation, we used two types of splits. The first uses the same
unseen pairs for validation and test. We call this split the “overlapping” split. The split allows
us to quantify the potential generalization capability of each method. The second split, is harder,
where unseen validation pairs are not overlapping with the unseen test pairs. We call this split the
“non-overlapping” split.

For the overlapping split, we varied the ratio of unseen:seen pairs on a range of (2:8, 3:7, . . . 7:3),
and for each ratio we drew 3 random seen-unseen splits. For the non-overlapping split, we varied
the ratio of unseen:seen pairs on a range of (2:6, 3:5, . . . 5:3), and for each ratio we drew 3 random
seen-unseen splits. In addition, we always draw 20% of the pairs for validation.

D AO-CLEVr with a non-overlapping validation set.

Here we present results for AO-CLEVr with the “non-overlapping” split. For this split, the unseen
validation pairs are not overlapping with the unseen test pairs. It is harder than the “overlapping”
split, which uses the same unseen pairs for validation and test.

The non-overlapping split is important because, in practice, we cannot rely on having labeled samples
of the unseen pairs for validation purposes.

Figure S.1 shows the measured metrics when comparing “Causal”, LE, TMN, and ATTOP and
varying the ratio of seen:unseen pairs between 2:6 to 5:3.

For the main zero-shot metrics (Open-Unseen, Harmonic and Closed), our approach “Causal”,
performs substantially better than the compared methods. ATTOP performs substantially worse on
“seen" pairs.
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Figure S.1: AO clevr with a non-overlaping validation set.

E Complete results for AO clevr with overlapping split

Figure S.2 shows the accuracy metrics for compared approaches with AO-CLEVR when varying the
fraction of seen:unseen classes (between 2:8 to 7:3). The top row in the figure shows the measured
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metrics. The bottom row shows the difference (subtraction) from LE. We selected LE as the main
reference baseline because its embedding loss approximately models p(x|a, o), but without modeling
the core-features.
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Figure S.2: Accuracy metrics for AO-CLEVR on a sweep of 20% unseen classes up to 70% unseen
classes. The top row show the measured metrics. The bottom row show the difference (subtraction)
of measured metrics from the LE baseline method. Error bars denote Standard Error of the Mean
(S.E.M) over 3 random splits. To reduce visual clutter, error bars are shown only for our Causal
method and for the reference baseline (LE).

Across the full sweep of unseen:seen ratios, our approach “Causal”, performs better than or equivalent
to all the compared methods for the main zero-shot metrics (Open-Unseen, Harmonic and Closed).
VisProd, which approximates p(a, o|x), has a relatively low Unseen accuracy. VisProd&CI, the
discriminatively-trained variant of our model, improves the Unseen performance by a large margin,
while not hurting VisProd Seen accuracy. ATTOP is better than LE on open unseen pairs but performs
substantially worse than all methods on the seen pairs. TMN performs equally well as our approach
for splits with mostly seen pairs (unseen:seen @ 2:8, 3:7, 4:6), but degrades when the fraction of
seen pairs reduces below 60%.

E.1 Baseline models without language embeddings

Figure S.3 compares LE, ATTOP, and TMN with and without initialization by Glove word embedding.
It demonstrates that for AO-CLEVr, Glove initialization somewhat hurts LE, improves ATTOP, and
is mostly equivalent to TMN.
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Figure S.3: Comparing LE, ATTOP, and TMN with and without initialization by Glove word
embedding. Glove initialization somewhat hurts LE, improves ATTOP, and is mostly equivalent for
TMN.

F Ablation study

To understand the contribution of the different components of our approach, we conducted an ablation
study to quantify the effect of the components. We report test metrics for one of the 5:5 “overlapping”
splits of AO-CLEVr. Specifically, the split used for hyper-parameter search.
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UNSEEN SEEN HARMONIC CLOSED

CAUSAL 57.5 ± 2.3 85.7 ± 3.4 68.8 ± 2.1 73.8 ± 1.0
λindep = 0 30.0 ± 1.5 97.2 ± 0.2 45.7 ± 1.8 68.4 ± 1.0
λao = 0 44.9 ± 1.9 83.5 ± 5.6 58.1 ± 0.3 72.9 ± 3.0
λinvert = 0 19.5 ± 2.2 46.5 ± 2.9 27.3 ± 2.3 28.5 ± 4.6

NON-ALTERNATE TRAINING
CAUSAL 53.3 ± 2.0 90.6 ± 2.3 67.0 ± 1.5 74.5 ± 1.2
λrep = 0 53.0 ± 4.7 91.3 ± 1.4 66.7 ± 3.3 70.7 ± 1.3
λoh = 0 52.8 ± 4.0 90.5 ± 0.6 66.5 ± 3.0 71.9 ± 2.0
λindep = 0 38.0 ± 2.3 94.6 ± 0.4 54.1 ± 2.4 68.9 ± 0.6

UNSEEN SEEN HARMONIC CLOSED

WITH PRIOR EMBEDDINGS
LE 21.4 ± 1.1 84.1 ± 1.8 34.0 ± 1.3 34.2 ± 2.4
ATTOP 48.7 ± 0.5 73.5 ± 0.8 58.5 ± 0.1 58.2 ± 0.5
TMN 32.3 ± 2.8 87.3 ± 4.1 47.0 ± 3.3 65.1 ± 3.0

NO PRIOR EMBEDDINGS
VISPROD 19.1 ± 1.3 94.3 ± 1.1 31.7 ± 1.8 60.1 ± 0.2
LE* 28.2 ± 1.7 87.5 ± 0.5 42.5 ± 1.9 43.4 ± 2.7
ATTOP* 45.6 ± 0.5 76.3 ± 1.0 57.0 ± 0.1 54.6 ± 1.3
TMN* 36.6 ± 5.2 89.1 ± 3.5 51.6 ± 5.6 66.5 ± 4.3

VISP&CI 40.5 ± 2.7 84.7 ± 4.3 54.4 ± 1.8 59.9 ± 0.3

Table S.1: Left: Ablation study on a 5:5 split of AO-CLEVr. We use the split used for hyper-param
search. ± denote S.E.M on 3 random initializations. Right: Reference metrics for baselines.

Table S.1 reports the test metrics when ablating different components of our approach: We first
compared the different components of the model while using alternate-training (see implementation
details). Next, we compared the alternate-training strategy to standard (non-alternate) training.
Finally, we compared the different components of the conditional-independence loss.

We compared the following components:

1. “Causal” is our approach described in Section 4. We tested is with both alternate training,
and standard (non-alternate) training.

2. λindep = 0 indicates nullifying the loss terms that encourage the conditional independence
relations.

3. λao = 0 indicates nullifying the embedding to the image space X .
4. λinvert = 0 indicates nullifying the term that preserves information about source labels of

the attribute and object embeddings.

5. λrep = 0 indicates nullifying Lrep: The term that encourages invariance between φ̂a to φ̂o.

6. λoh = 0 indicates nullifying Loh: The term that encourages invariance of φ̂a to a categorical
representation of an object (and similarly for φ̂o).

First, we find that both alternate-training and standard non-alternate training result in a comparable
Harmonic metric. However, alternate training has a better Unseen accuracy (57.5% vs 53.3%), but
lower Seen accuracy (85.7% vs 90.6%)

Second, nullifying each of the major components of the loss has a substantial impact on the perfor-
mance of the model. Specifically, (1) nullifying λindep reduces the Harmonic from 68.8% to 45.7%,
(2) nullifying λao reduces the Harmonic to 58.1%, (3) nullifying λinvert reduces the Harmonic to
27.3%.

Finally, Loh and Lrep have a synergistic effect on the performance of AO-CLEVr. Their individual
performance metrics are comparable, but jointly they improve the Closed accuracy from ∼71.5% to
74.5%.

Accuracy versus hidden layer size: Figure S.4 shows the different accuracy metrics when chang-
ing the hidden layer size for the 5:5 split of AO-CLEVr. It shows that the seen accuracy increases
with the layer size, presumably because it can capture more subtleties of the seen pairs. The unseen
accuracy appears to be bi-modal, with peaks at 15-units and 150 units. Indeed the cross-validation
procedure selected a layer size of 150, because it maximized the harmonic-mean of the seen and
unseen accuracy.

G Error analysis

G.1 Zappos

We analyzed the errors that Causal makes when recognizing unseen pairs in Zappos (open). In
53% of cases the object was predicted correctly, in 14% the attribute was predicted correctly and in
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Figure S.4: Ablation: Accuracy versus hidden layer size (in a logarithmic scale)

33% neither. It appears that in Zappos, recognizing the object transferred better to the unseen pairs,
presumably because recognizing the attributes is harder in this dataset.

To gain further intuition, we compared the errors that Causal makes to those of LE*, the strongest
no-prior baseline. With Causal, 39% of unseen pairs (U) are confused for seen pairs (S), and 36% of
unseen pairs are confused for incorrect unseen-pairs. This yields a balanced rate of U→S

U→U = 39%
36% ≈

1.1. For comparison LE* errors are largely unbalanced: U→S
U→U = 67%

19% ≈ 3.5.

(a) Ground-truth = (Suede, Slippers)

(b) Ground-truth = (Hair.Calf, Shoes.Heels)

(c) Ground-truth = (Patent.Leather , Shoes.Heels)

Figure S.5: Qualitative examples of Causal success cases for Zappos: Every image was predicted
correctly by Causal, but erroneously by LE*. Above every image we denote the erroneous prediction
of LE*. (a) An unseen pair: the error rate was 40% for Causal, while it was 82% for LE*. (b) An
unseen pair: the error rate was 39% for Causal, while it was 58% for LE*. (c) A seen pair: the error
rate was 56% for Causal, while it was 83% for LE*.
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We further analyzed wins and losses of Causal compared with LE*, which are illustrated in Figure
S.5. Causal succeeded to overcome common failures of LE*, sometimes overcoming domain-shifts
that exist within the seen pairs. The main weakness of Causal is that the error rate for seen pairs is
higher compared to LE*. This effect is strongest for (1)

(
A=Leather, O=Boots.Ankle

)
, which was

mostly confused for either A=Full.grain.leather or A=Suede, while the object-class was correctly
classified. (2)

(
A=Leather, O=Boots.Mid-Calf

)
, which was mostly confused for A=Faux.Leather

while the object-class was correctly classified. This result shows that Causal is less biased toward
predicting Leather, which is the most common attribute in the training set.

G.2 AO-CLEVr

We analyzed the errors that Causal makes when recognizing unseen pairs at the 5:5 split4 of AO-
CLEVr (open). In 15% of cases the object was predicted correctly, in 82% the attribute was predicted
correctly and in 3% neither. It appears that in this case, recognizing the attribute transferred better to
the unseen pairs, because in this dataset colors can be easily recognized.

Comparing the errors that Causal makes to those of TMN*, the strongest no-prior baseline show that
with Causal, 19% of unseen pairs (U) are confused for seen pairs (S), and 20% of unseen-pairs are
confused for incorrect unseen-pairs, a balanced rate of U→S

U→U = 19%
20% ≈ 0.9. However, with TMN*,

confusion is largely unbalanced: U→S
U→U = 41%

13% ≈ 3.

Figure S.6: An example of a task on Amazon Mechanical Turk.

H Label-quality evaluation: Human-Rater Experiments

To better understand the level of label noise in MIT-states dataset we conducted an experiment with
human raters.

Each rater was presented with an image of an object and was asked to select the best and second-best
attributes that describe this object from a pre-defined list. The list was comprised of attributes that
co-occur with the given object in the dataset. For example, the object “apple” had candidate attributes
“green”, “yellow” and “red”, but not “black”. Raters were also presented with an option “none of
the above” and an option “I don’t know”, see Figure S.6. We sampled 500 instances of objects and
attributes, one from each attribute-object pair. As a label-quality score, we computed the balanced
accuracy of rater responses compared with the label provided by the dataset across the 500 tasks.
To verify that raters were attentive we also introduced a “sanity” set of 30 instances of objects for
which there were two clear attributes as answers. We also recorded the rate at which raters chose the
“none of the above” and “I don’t know” answers as a proxy for the difficulty of assigning labels to the
dataset. Balanced accuracy was computed by averaging the accuracy per attribute.

The average rater top-1 and top-2 accuracies were 31.79% and 47% respectively, indicating a label
noise level of ∼70%. The fraction of tasks that raters selected “none of the above” or “I don’t know”
was 5%, indicating that raters were confident in about ∼95% of their rating. The top-1 accuracy on
the “sanity” set was 88% and the top-2 accuracy was 100%, indicating that the raters were attentive
and capable of solving the task at hand.

4The split used for ablation study
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Finally, Fig. S.7 shows qualitative examples for the label quality of MIT-States. For each label of 5
attribute labels, selected by random, we show 5 images, selected by random. Under each image, we
show the choice of the amazon-turker in the label-quality experiment and the provided attribute label.

Lbl: Broken Lbl: Broken Lbl: Broken Lbl: Broken Lbl: Broken
AT: Broken AT: Modern AT: Ancient AT: Broken AT: Curved

Lbl: Burnt Lbl: Burnt Lbl: Burnt Lbl: Burnt Lbl: Burnt
AT: Melted AT: Splintered AT: Burnt AT: Ancient AT: Old

Lbl: Curved Lbl: Curved Lbl: Curved Lbl: Curved Lbl: Curved
AT: Curved AT: Engraved AT: Smooth AT: Curved AT: Curved

Lbl: Sliced Lbl: Sliced Lbl: Sliced Lbl: Sliced Lbl: Sliced
AT: Ripe AT: Cooked AT: Raw AT: Sliced AT: Cooked

Lbl: Empty Lbl: Empty Lbl: Empty Lbl: EmptyLbl: Empty
AT: Large AT: Bright AT: Modern AT: EmptyAT: Empty

Figure S.7: Label quality of MIT-States. Showing 5 attribute labels, selected by random. For each
label, we show 5 images, selected by random. For each image, we show the choice of the amazon-
turker (AT) and the provided attribute label (Lbl). Green image margins indicate that the turker choice
agrees with the label. Red margins indicate that the turker choice disagrees with the label.
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I Numeric values for the metrics

I.1 Overlapping split

U:S CAUSAL VISPROD&CI VISPROD
UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED

2:8 77.7 ± 1.4 89.7 ± 1.9 83.2 ± 1.2 87.0 ± 2.1 60.0 ± 2.7 87.8 ± 2.3 71.1 ± 1.7 85.9 ± 1.0 42.5 ± 3.0 90.1 ± 1.4 57.5 ± 2.9 87.3 ± 1.3
3:7 72.2 ± 1.0 80.9 ± 3.6 75.7 ± 2.3 84.1 ± 2.5 44.7 ± 5.0 84.3 ± 3.8 58.1 ± 4.9 72.6 ± 7.5 29.2 ± 3.7 85.6 ± 3.4 43.2 ± 4.4 73.5 ± 6.9
4:6 67.4 ± 2.0 84.1 ± 1.8 74.7 ± 1.7 86.6 ± 0.7 53.2 ± 1.5 87.9 ± 1.1 66.2 ± 0.9 88.2 ± 1.0 35.9 ± 3.6 85.0 ± 2.2 49.8 ± 2.9 87.0 ± 1.6
5:5 47.1 ± 4.5 83.8 ± 0.8 59.8 ± 3.9 71.6 ± 4.9 38.3 ± 1.1 82.1 ± 4.2 52.1 ± 1.8 65.4 ± 3.6 18.9 ± 0.2 84.5 ± 8.5 30.3 ± 0.8 61.6 ± 2.3
6:4 26.9 ± 0.5 86.1 ± 2.9 40.9 ± 1.0 44.6 ± 1.9 20.0 ± 1.8 86.4 ± 1.0 32.3 ± 2.4 39.6 ± 2.6 11.1 ± 1.4 81.0 ± 9.5 18.8 ± 1.5 37.4 ± 3.5
7:3 22.8 ± 3.0 69.3 ± 6.1 33.7 ± 4.2 40.9 ± 3.6 15.7 ± 2.5 68.5 ± 6.6 25.1 ± 3.4 38.9 ± 1.6 14.1 ± 1.5 50.0 ± 8.6 21.6 ± 2.4 36.8 ± 2.7

U:S LE* LE ATTOP*
UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED

2:8 72.1 ± 2.8 91.9 ± 0.2 80.7 ± 1.7 85.5 ± 1.8 72.7 ± 3.3 92.2 ± 0.3 81.2 ± 2.0 86.0 ± 1.5 78.4 ± 3.3 77.2 ± 1.0 77.6 ± 1.4 84.1 ± 4.0
3:7 41.9 ± 6.3 92.5 ± 0.3 56.8 ± 6.4 74.5 ± 4.5 42.1 ± 6.9 89.8 ± 2.8 56.6 ± 7.2 75.3 ± 5.1 62.5 ± 2.3 72.3 ± 1.4 66.9 ± 1.2 78.9 ± 4.1
4:6 57.8 ± 4.5 85.8 ± 1.5 68.6 ± 2.7 79.9 ± 2.7 47.2 ± 5.7 84.3 ± 1.6 59.7 ± 4.5 73.7 ± 1.6 68.8 ± 1.2 69.3 ± 2.8 68.8 ± 0.9 81.6 ± 2.1
5:5 31.7 ± 1.6 90.7 ± 1.4 46.8 ± 1.9 54.7 ± 5.6 26.3 ± 2.1 86.4 ± 1.1 40.2 ± 2.6 52.3 ± 8.3 44.3 ± 1.1 70.8 ± 2.3 54.4 ± 1.2 57.8 ± 2.5
6:4 20.1 ± 1.0 81.2 ± 4.7 31.9 ± 0.9 31.8 ± 1.3 20.8 ± 2.4 84.4 ± 2.6 33.1 ± 2.8 29.7 ± 1.7 25.8 ± 1.9 69.5 ± 2.2 37.4 ± 1.7 35.4 ± 0.3
7:3 13.7 ± 2.2 83.1 ± 3.8 23.1 ± 3.3 27.7 ± 3.4 11.4 ± 3.2 89.2 ± 3.3 19.7 ± 5.1 24.4 ± 6.0 10.6 ± 1.7 60.7 ± 7.7 17.9 ± 2.7 14.5 ± 1.6

U:S ATTOP TMN* TMN
UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED

2:8 79.9 ± 3.5 77.9 ± 1.1 78.7 ± 1.3 84.2 ± 3.9 78.4 ± 5.2 87.2 ± 0.8 82.2 ± 2.7 87.9 ± 1.5 79.7 ± 4.4 85.8 ± 0.9 82.4 ± 2.1 88.7 ± 1.6
3:7 64.3 ± 3.3 72.7 ± 1.8 68.0 ± 1.4 77.0 ± 3.9 62.7 ± 6.1 86.5 ± 0.4 72.1 ± 4.2 81.7 ± 5.0 62.2 ± 4.9 86.5 ± 0.3 72.0 ± 3.4 81.4 ± 5.0
4:6 68.8 ± 1.2 68.7 ± 3.1 68.5 ± 1.4 83.0 ± 2.0 70.4 ± 3.0 83.0 ± 3.2 75.8 ± 0.5 86.6 ± 1.3 68.1 ± 4.1 83.8 ± 2.6 74.5 ± 1.6 86.5 ± 2.5
5:5 46.3 ± 1.2 67.7 ± 2.5 55.0 ± 1.5 59.9 ± 2.8 39.7 ± 3.7 84.9 ± 3.7 53.2 ± 2.4 67.8 ± 5.1 38.0 ± 3.0 84.7 ± 2.2 51.5 ± 2.2 67.3 ± 4.7
6:4 27.9 ± 2.3 72.4 ± 2.7 39.9 ± 2.0 40.2 ± 0.3 17.0 ± 2.6 87.9 ± 1.2 28.1 ± 3.6 40.0 ± 0.9 18.1 ± 2.9 83.7 ± 0.4 29.1 ± 3.7 41.7 ± 0.7
7:3 13.3 ± 1.5 56.0 ± 5.2 21.2 ± 2.2 19.2 ± 2.1 7.3 ± 1.6 93.1 ± 3.3 13.1 ± 2.7 35.4 ± 2.2 5.8 ± 0.9 88.1 ± 2.5 10.8 ± 1.6 36.7 ± 1.0

Table S.2: Numeic values for results of Figure S.2 (top row)

I.2 Non-overlapping split

U:S CAUSAL LE ATTOP
UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED UNSEEN SEEN HARMONIC CLOSED

2:8 64.3 ± 1.0 79.4 ± 1.5 70.8 ± 1.0 82.1 ± 0.7 35.4 ± 5.1 80.1 ± 3.7 48.7 ± 5.5 71.2 ± 2.6 53.4 ± 3.7 67.8 ± 3.2 59.1 ± 1.1 76.0 ± 5.4
3:7 48.7 ± 4.7 75.3 ± 4.6 58.9 ± 5.0 79.0 ± 5.5 22.9 ± 2.5 84.5 ± 2.3 35.7 ± 3.3 52.5 ± 6.8 37.4 ± 5.5 65.6 ± 2.4 46.3 ± 4.2 61.1 ± 10.9
4:6 43.5 ± 4.6 69.2 ± 4.2 53.2 ± 4.5 66.8 ± 5.3 27.5 ± 2.3 80.7 ± 2.9 40.7 ± 2.6 43.4 ± 4.2 21.7 ± 9.5 49.2 ± 5.3 26.8 ± 10.6 40.9 ± 10.1
5:5 15.7 ± 1.7 75.2 ± 7.3 25.8 ± 2.7 37.5 ± 4.9 9.1 ± 2.1 91.1 ± 0.5 16.3 ± 3.5 19.9 ± 3.6 6.4 ± 1.9 65.3 ± 7.5 9.9 ± 2.0 22.0 ± 4.2

U:S TMN
UNSEEN SEEN HARMONIC CLOSED

2:8 47.2 ± 2.7 82.1 ± 2.9 59.5 ± 1.6 81.2 ± 2.2
3:7 23.4 ± 4.2 84.2 ± 0.2 35.1 ± 5.4 64.4 ± 5.6
4:6 15.3 ± 4.4 85.5 ± 3.1 24.7 ± 6.3 54.4 ± 4.7
5:5 3.0 ± 1.1 86.8 ± 3.4 5.6 ± 2.0 32.7 ± 1.6

Table S.3: Numeric values for results of Figure S.1
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