
Auto Learning Attention

Benteng Ma1,2∗ Jing Zhang2∗ Yong Xia1,3 Dacheng Tao2

1Northwestern Polytechnical University, China
2The University of Sydney, Australia

3Research & Development Institute of Northwestern Polytechnical University, Shenzhen
{mabenteng@mail,yxia@}.nwpu.edu.cn

{jing.zhang1, dacheng.tao}@sydney.edu.au

Abstract

Attention modules have been demonstrated effective in strengthening the repre-
sentation ability of a neural network via reweighting spatial or channel features
or stacking both operations sequentially. However, designing the structures of
different attention operations requires a bulk of computation and extensive ex-
pertise. In this paper, we devise an Auto Learning Attention (AutoLA) method,
which is the first attempt on automatic attention design. Specifically, we define a
novel attention module named high order group attention (HOGA) as a directed
acyclic graph (DAG) where each group represents a node, and each edge rep-
resents an operation of heterogeneous attentions. A typical HOGA architecture
can be searched automatically via the differential AutoLA method within 1 GPU
day using the ResNet-20 backbone on CIFAR10. Further, the searched attention
module can generalize to various backbones as a plug-and-play component and
outperforms popular manually designed channel and spatial attentions for many
vision tasks, including image classification on CIFAR100 and ImageNet, object
detection and human keypoint detection on COCO dataset. Code is available at
https://github.com/btma48/AutoLA.

1 Introduction

Attention learning has been increasingly incorporated into convolutional neural networks (CNNs) [1],
aiming to compact the image representation and strengthen its discriminatory power [2, 3, 4, 5]. It
has been widely recognized that attention learning is beneficial for many computer vision tasks, such
as image classification, segmentation, and object detection.

There are two types of typical attention mechanisms. The channel attention is able to reinforce
the informative channels and to suppress irrelevant channels of feature maps [2], while the spatial
attention enables CNNs to dynamically concentrate processing resources at the location of interest,
resulting in better and more effective processing of information [4]. Let either the channel attention
or spatial attention be treated as the first-order attention. The combination of both channel attention
and spatial attention constitutes the second-order attention, which has been proven in benchmarks
to produce better performance than either first-order attention by modulating the feature maps in
both channel-wise and spatial-wise [4]. Accordingly, we propose to extend attention modules from
the first- or second-order to a higher order, i.e., arranging more basic attention units structurally.
However, considering the highly variable structures and hyperparameters of basic attention units,
exhaustively searching the architecture of high order attention module is an exponential explosion in
complexity.
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Recent years have witnessed the unprecedented success of neural architecture search (NAS) in
the automated design of neural network architectures, surpassing human designs on various tasks
[6, 7, 8, 9, 10, 11, 12]. We advocate the use of NAS to search the optimal architecture of high
order attention module, which however is challenging for several reasons. First, there is no explicit
off-the-shelf definition of the search space for attention modules, where various attention operations
may be included [13]. Second, the sequential structure for arranging different attention operations
should be computationally efficient so that it can be searched within affordable computational budgets.
Third, how to search the attention module, e.g., given the backbone or together with the backbone
cells, remains unclear. Fourth, the searched attention module is expected to generalize well to various
backbones and tasks.

In this paper, we propose an Auto Learning Attention (AutoLA) method for automatically search-
ing efficient and effective plug-and-play attention modules for various well-established backbone
networks. Specifically, we first define a novel concept of attention module, i.e., high order group
attention (HOGA), by exploring a ’split-reciprocate-aggregate’ strategy. Technically, each HOGA
block receives feature tensor from each block in the backbone as input, which is divided into K
groups along the channel dimension to reduce the computational complexity. Then, a directed acyclic
graph (DAG) [14] is constructed, where each node is associated with a split group, and each edge
represents a specific attention operation. The sequential connections between different nodes can
represent different combinations of basic attention operations, resulting in various first-order to Kth
order attention modules, which indeed constitute a search space of HOGA. By customizing DARTS
[8] for our problem, the explicit HOGA structure can be searched efficiently within 1 GPU day on a
modern GPU given a fixed backbone network (e.g., ResNet-20) on CIFAR10. Extensive experiments
demonstrate the obtained HOGA generalizes well on various backbones and outperforms previous
hand-crafted attentions for many vision tasks, including image classification on the CIFAR100 and
ImageNet datasets, object detection, and human keypoint detection on the COCO dataset.

To summarize, the contribution of our paper is three-fold. First, to the best of our knowledge,
AutoLA is the first attempt to extend NAS to search plug-and-play attention modules beyond the
backbone architecture. Second, we define a novel concept of attention module named HOGA that
can represent high order attentions and the previous channel attention and spatial attention can be
treated as its special cases. Third, we utilize a differentiable search method to search the optimal
HOGA module efficiently, which can generalize well on various backbones and outperform previous
attention modules for many vision tasks.

2 Related work

Attention mechanism. The attention mechanism was originally introduced in neural machine
translation to handle long-range dependencies [15], which enables the model to attend to important
regions within a context adaptively. Self-attention was added to CNNs by either using channel
attention or non-local relationships across the image [2, 3, 16, 17, 18]. As different feature channels
encode different semantic concepts, the squeeze-and-excitation (SE) attention captures channel
correlations by selectively modulating the scale of channels [2, 19]. Spatial attention is also explored
together with the channel attention in [4], resulting in a second-order attention module called CBAM
and achieving superior performance. In [19, 20], the attention is extended to multiple independent
branches which achieves improved performance than the original one. In contrast to these hand-
crafted attention modules, we define the high order group attention and construct the search space
accordingly where SE [2] and CBAM [4] are special instances in it. Consequently, a more effective
attention module can be searched automatically, outperforming both SE [2] and CBAM [4] on various
vision tasks.

Neural Architecture Search. In terms of the NAS methods, reinforcement learning [9, 21, 22],
sequential optimization [10, 23], evolutionary algorithms [24, 25, 26], random search [27, 28], and
performance predictors [29, 30] tend to demand immense computational resources which probably
not suitable for efficient search. Recent NAS methods reduce the search time significantly by
weight-sharing [14, 31, 32] and continuous relaxation of the space [8, 33]. DARTS [8] and its
variants [34, 35, 36] only need to train a single neural network with repeated cells during the
searching process [37], providing elegant differentiable solutions to optimizing network weights and
architecture simultaneously. Besides, DARTS is computationally efficient which is only slightly
slower than training one architecture in the search space. Instead of searching basic cells and stacking
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them sequentially to form the backbone network, we propose to search an efficient and plug-and-
play attention module given a fixed backbone, aiming to enhance the representation capacity of the
backbone. The searched attention module shows good generalization ability for various backbones
and downstream tasks, implying that the proposed method could be complementary to existing NAS-
based search of the backbone architectures. Note that the architectures of backbone and attention
module can be searched alternatively or synchronously in a framework that we leave as future work.

3 Auto Learning Attention

3.1 High Order Group Attention

First-order Attention
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Figure 1: Attention Order. The typical channel attention, spatial attention, and normalization attention
are all first-order attentions. CBAM is a second-order attention. The solid line represents the specific
attention operation and the dotted line in High order Attention represents the candidate attention
operation which will be searched automatically.

From the view of computational flow, attention operation represents a function that transforms the
input tensor F to an enhanced representation F̂ through a series of attention operations. This can be
formalized in the computational graph, where the operations are represented as a directed acyclic
graph with a set of nodes U . Each node Uk represents a tensor (we use the same symbol to represent
the node and the tensor at the node without causing ambiguity). An attention operation o ∈ O is
defined on the edge between Uk and its parent nodes Pk. In the typical first-order attention module,
each node has a single parent and |Pk| = 1. Denoting the parent feature tensor Pk ∈ RC×H×W as
input, the above attention operation can be defined as:

Uk = o (Pk) . (1)

Obviously, the increased order of attention may increase the computational complexity. To generate
an efficient high order attention module, we divide the input tensor F intoK groups along the channel
dimension, where K is a cardinally hyper-parameter. In this case, we get F = {F0, F1, ..., FK−1}
which is illustrated in Figure 1. Then, a series of operations o ∈ O (where O is the search space
which will be further explained in section 3.2) are applied on the split group features {Fi}K−1i=0 . This
process generates K intermediate features as shown in Figure 1, where the kth intermediate tensor is
calculated as:

Uk = ok,kFk +
∑
j<k

oj,kUj , (2)

where Uk ∈ RH×W×C/K for k ∈ 0, 1, ...,K − 1, H , W and C are the sizes of the block output
feature map, oi,j ∈ O denotes the attention operation between node Ui and Uj . Specifically, ok,k
represents the attention operation applied from Fk to Uk. These intermediate tensors are concatenated
along the channel axis to generate the final attentive output:

Û = ϕ[U0;U1; ...;UK−1, U ], (3)

where U =
∑K−1
i=0 Ui, [; ] denotes the concatenation along the channel axis, and ϕ denotes the

mapping function learned by 1× 1 convolutional layers and channel attention.
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Figure 2: HOGA architecture search. The left represents the searching stage of HOGA architecture
and the line between each two nodes represents the mixed attention operations with architecture
weight αoi,j and the right represents the searched HOGA architecture which is a sampled sub-graph
of the full graph used in the searching stage.

3.2 Attention Searching Space

Given the structure of HOGA defined above, searching an HOGA module means sampling an attention
operation from a search space for each oj,k in Eq. (2). Here we propose an attention search space
which includes typical attention operations used in the literature. We also include some operations
such as identity mapping as attention operation in our search space for a unified terminology. Details
are presented as follows.

(a) Channel Attention: Following [2], we define the channel attention as:

Ac (F ) = S
(
fc
(
F cavg

))
⊗ F, (4)

where F cavg ∈ RC×1×1 represents the global spatial average pooled feature from the input F , fc is a
Multilayer perceptron (MLP), and S denotes the Sigmoid activation function.

(b) Channel Attention v2: In contrast to the channel attention defined in Eq. (4), a variant of it is to
utilize both average pooling and max pooling when calculating the pooled feature, i.e.,:

Ac2 (F ) = S
(
fc
(
F cavg

)
+ fc (F cmax)

)
⊗ F, (5)

where F cmax is the max pooled feature. Note that F cave and F cmax are fed into the same MLP fc.

(c) Spatial Attention: Similar to the channel attention v2, we define the spatial attention as:

As (F ) = S
(
fs
([
F savg;F

s
max

]))
⊗ F, (6)

where F savg and F smax represent the global spatial average and max pooled feature, respectively.
[; ] denotes the concatenation operator. fs represents a convolutional layer. In this paper, we use a
depth-wise convolutional layer with a 3× 3 kernel and a dilation rate chosen from {1, 2} to improve
the computational efficiency of the attention module.

(d) Normalization Attention: Normalization attention refers to normalizing a tensor to the scale
within [0, 1] and using it at the attention map, i.e.,

An (F ) = S (fn (F ))⊗ F, (7)

where fn is a depth-wise convolutional layer like fs in Eq. (6).

(e) Convolutional Block Attention Module (CBAM): We also include the CBAM in our search
space, which can be treated as a combination of the channel attention v2 and spatial attention, i.e.,:

Ab(F ) = As (Ac2 (F )) . (8)

(f) Identity and Zero Attention: Specifically, we also name two special attention operations to
represent the identity mapping and zero mapping, respectively, i.e.,

Ak(F ) = k⊗ F,k ∈ {1,0}. (9)

3.3 HOGA Architecture Search

With the comprehensive coverage of the search space and the definition of HOGA, we can formulate
the problem of HOGA architecture search. The ultimate objective of the searching is to find an
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optimized HOGA architecture that minimizes the expected loss L. We denote the datasets as D, the
attention search space as O and the space of all candidate HOGA architectures as H. A general
architecture search algorithm is defined as the following mapping:

Γ : D ×O → H. (10)

Given a specific dataset d, which is split into a training partition dtrain and a validation partition dval,
the searching algorithm estimates the model hα,θ ∈ Hα, where α is the architecture parameter of
the HOGA and θ is the learnable weight of the model. The best HOGA architecture is searched by
minimizing a loss function L as follows:

α∗ = argmin
α
L(Γ(α, dtrain), dval). (11)

As shown in Figure 2, the HOGA can be represented as a directed acyclic graph (DAG): G = (V,E).
Each node Ui ∈ V, i = 0, 1, ..K − 1, represents an intermediate tensor, and the corresponding edge
ei,j ∈ E represents a candidate attention operation which is predefined in the searching space O.
Let oi,j = {o0i,j , o1i,j , ..., o

M−1
i,j } be the set of candidate attention operations on edge ei,j , where

M = |O|. In each HOGA module, we assume that each operation outputting Uk only receives a
single input from a former node. Accordingly, the intermediate tensor in HOGA is obtained by:

Uk =
∑
m∈|O|

omk,k(Fk|βk,k,m = 1) +
∑
i<k

∑
m∈|O|

omi,k(Ui|βi,k,m = 1), (12)

where βi,j,m ∈ {0, 1},m ∈ {0, 1, ...,M−1}, denoting whether the attention operation omi,j is applied.
Since O is a discrete set, similar to [8], we introduce a continuous relaxation to make the search
space of HOGA continuous so that the architecture can be optimized through gradient descent. We
relaxes the attention categorical choice to a softmax over all operations in O to form a fusion output:

ôi,j(Ui) =
∑
o∈O

exp(αoi,j )∑
o′∈O exp(αo′i,j

)
o(Ui), (13)

where αoi,j denotes the corresponding architecture weight for the attention operation oi,j on ei,j . And
a discrete architecture can be obtained by replacing each mixed operation ôi,j with the most likely
operation and we adopt the the following approximation to generate the optimal discrete attention
architecture:

softmax(αoi,j )→ βi,j , (14)

where βi,j = (βi,j,1, βi,j,2, ..., βi,j,M ).

The attention architecture search problem is reduced to learn α∗ and the network weight ω∗ that
minimize the validation loss Lval(ω∗, α∗), which can be solved by the bi-level optimization:

min
α
Lval(ω∗(α), α)

s.t. ω∗(α) = argmin
ω
Ltrain(ω, α)

(15)

To solve Eq. (15), we adopt the first-order approximation in [8] and partition the training data into two
disjoint sets trainA and trainB . Then we optimize both the weights of the network and architecture
parameters of the HOGA by alternating gradient descent, i.e.,

• Train the network weights ω by LtrainA(ω, α),

• Update HOGA architecture weights α by LtrainB(ω, α),

where the loss function L is the cross entropy calculated on the mini-batch. The partition of training
data is to prevent the architecture from overfitting the train data. As shown in Figure 2, the candidate
attention operations at each edge are mixed with the normalized continuous coefficient αoi,j during
the training phase. When finishing the training, we replace the mixed attention for edge ei,j to a
single operation. Thus ei,j can be encoded into a one-hot vector where

βi,j,m =

{
1, m = argmink αoki,j
0, othervise

(16)

Consequently, the specific attention operation can be determined for each edge.
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Table 1: Comparison of different attention
modules on CIFAR10.

Acc(%) Param.(M) FLOPS(G)

ResNet20 [1] 91.95 0.27 0.04
ResNet20 + SE [2] 92.30 0.29 0.04
ResNet20 + CBAM [4] 92.81 0.30 0.04
ResNet20 + AutoLA 93.38 0.34 0.05

ResNet32 [1] 92.55 0.46 0.07
ResNet32 + SE [2] 93.16 0.49 0.07
ResNet32 + CBAM [4] 93.47 0.49 0.07
ResNet32 + AutoLA 94.33 0.51 0.09

ResNet56 [1] 93.03 0.85 0.13
ResNet56 + SE [2] 94.02 0.90 0.13
ResNet56 + CBAM [4] 94.10 0.92 0.13
ResNet56 + AutoLA 94.78 1.04 0.16

Table 2: Comparison of different attention
modules on CIFAR100

Acc(%). Param.(M) FLOPS(G)

ResNet20 [1] 75.42 4.07 0.65
ResNet20 + SE [2] 76.84 4.13 0.65
ResNet20 + CBAM [4] 76.93 4.14 0.67
ResNet20 + AutoLA 77.85 5.23 0.71

ResNet32 [1] 75.72 6.85 1.10
ResNet32 + SE [2] 77.81 6.97 1.10
ResNet32 + CBAM [4] 78.01 7.01 1.10
ResNet32 + AutoLA 78.57 8.91 1.30

ResNet56 [1] 77.56 12.41 2.01
ResNet56 + SE [2] 79.05 13.84 2.01
ResNet56 + CBAM [4] 79.07 13.85 2.02
ResNet56 + AutoLA 79.59 14.48 2.37

𝐹 𝐹ଵ 𝐹ଶ 𝐹ଷ

𝑈 𝑈ଷ𝑈ଶ𝑈ଵ

𝑂: 𝐴ଵ , skip connection

𝑂ଵଵ: 𝐴௦ , (kernel =3, dilation=1)

𝑂ଵ: 𝐴 , (kernel =3, dilation=1)

𝑂ଶଶ: 𝐴 , (kernel =7, dilation=1)

𝑂ଵଶ: 𝐴ଵ , skip connection

𝑂ଶ: 𝐴 , (kernel =3, dilation=1)

𝑂ଷ: 𝐴ଵ ,  skip connection

𝑂ଵଷ: 𝐴 , (kernel =3, dilation=2)

𝑂ଶଷ: 𝐴௦ , (kernel =3, dilation=1)

𝑂ଷଷ: 𝐴 , (kernel =3, dilation=1)

Figure 3: The searched architecture of HOGA.

4 Experiments

4.1 Datasets

Four benchmark datasets, including CIFAR10 [38], CIFAR100 [38], ImageNet ILSVRC2012 [39],
and COCO [40], are used for this study.

4.2 Experiment Setup

HOGA is a general module which can be integrated into any well-established CNN architectures
and is end-to-end trainable along with the backbone. Taking ResNet20 [1] as an exemplar backbone
network, where the base number of channel (width) is 16, we search the best architecture of the
attention module on it and then transfer the searched attention module to ResNet-32 and ResNet-56
for the evaluation on CIFAR10 and CIFAR100. To evaluate the capabilities of image classification
on larger datasets, we transfer the searched attention module to ResNet-18, ResNet-34, ResNet-50,
ResNet101 [1], and WiderResNet [41] and train them on ImageNet. When testing on CIFAR100 and
ImageNet, the base channel number of the network is set to 64. To further evaluate the generalization
capability [42] of the searched HOGA, we incorporate it into ResNet50, pretrain the network on
ImageNet, and apply the pretrained network to two heavy downstream tasks, i.e., object detection
and human keypoint detection on the COCO dataset.

In the training stage, we set the order of HOGA to K = 4 to achieve a trade-off between accuracy
and complexity. We randomly split the training set of CIFAR10 into two parts evenly, one for tuning
network parameters (denoting trainA) and the other one for tuning the attention architecture (denoting
trainB). The architecture search procedure is conducted for a total of 100 epochs with a batch size
of 128. When training network weights ω, we adopt the SGD optimizer with a momentum 0.9 and
a weight decay 0.0003, and the cosine learning rate policy that decays from 0.025 to 0.001 [43].
The initial value of α before softmax is sampled from a standard Gaussian and times 0.001. In the
evaluation stage, the standard test set is used.

4.3 Image Classification Results on CIFAR10 and CIFAR100

In the evaluation stage on CIFAR10, the entire training set is used, and the network is trained from
scratch for 500 epochs with a batch size of 256. The results are summarized in Table 1 and Table 2,
which demonstrate the searched HOGA attention (denoting “AutoLA”) outperforms other attention
baselines with slightly more computations. Figure 3 shows the searched architecture of HOGA. As
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Table 3: Comparison of different attention modules on ResNeXt and PNAS.

Acc (%) Param (M) FLOPS (G) Acc (%) Param (M) FLOPS (G)

ResNext 94.76 1.71 0.28 PNAS 93.34 0.72 0.08
ResNext + SE 95.22 2.23 0.30 PNAS + SE 93.71 0.75 0.08
ResNext + CBAM 95.31 2.24 0.31 PNAS + CBAM 93.79 0.76 0.08
ResNext + AutoLA 95.67 2.35 0.41 PNAS + AutoLA 94.10 0.91 0.11

can be seen, compared to the hand-crafted attention modules, the searched HOGA contains more
connections between various types of attentions. We also presented the results for other different
backbones, including ResNeXt [44] and the one searched by PNAS [23] on CIFAR10 in Table 3.
From Table 1, Table 2, and Table 3, we can see that the HOGA searched by AutoLA outperforms
other attention modules on CIFAR10 when deployed on highly variable architectures including
ResNet, ResNeXt, and PNAS, indicating the consistent superiority of the HOGA searched by AutoLA
over previous attention methods.

4.4 Image Classification Results on ImageNet

Table 4: Comparison of different attentions on ImageNet

Top-1 Error (%) Param. (M) FLOPS. (G)

ResNet18 [1] 29.60 11.69 1.81
ResNet18 + SE [2] 29.41 11.78 1.82
ResNet18 + CBAM [4] 29.27 12.01 1.82
ResNet18 + AutoLA 27.90 13.51 2.10

WResNet18 [41] 26.85 26.85 3.87
WResNet18 + SE [2] 26.21 26.07 3.87
WResNet18 + CBAM [4] 26.10 26.08 3.89
WResNet18 + AutoLA 25.02 29.76 4.55

ResNet34 [1] 26.69 21.80 3.67
ResNet34 + SE [2] 26.13 21.96 3.67
ResNet34 + CBAM [4] 25.99 21.96 3.67
ResNet34 + AutoLA 24.65 24.63 4.29

ResNet50 [1] 24.56 25.56 4.11
ResNet50 + SE [2] 23.14 28.09 4.12
ResNet50 + CBAM [4] 22.66 28.09 4.12
ResNet50 + AutoLA 21.82 29.39 4.73

ResNet101 [1] 23.38 44.55 7.57
ResNet101 + SE [2] 22.35 49.33 7.58
ResNet101 + CBAM [4] 21.51 49.33 7.58
ResNet101 + AutoLA 20.95 51.81 8.94

We also perform image classification
on the ImageNet dataset to evaluate
the searched HOGA module for this
more challenging task. We adopt the
same data augmentation scheme as [4, 8]
for training. We plug the searched
HOGA module from the above experi-
ment into various backbone networks in-
cluding ResNet18, ResNet34, ResNet50,
ResNet101 [1], and WideResNet [41].
More training details are in the supple-
mentary material.

Table 4 summarizes the results on the
validation set of ImageNet. As can be
seen, CBAM [4] marginally outperforms
SE [2] on shallow backbones such as
ResNet18, and ResNet34. By contrast,
it achieves better performance than SE
by a larger margin on the WiderResNet,
ResNet50, and ResNet101 backbones.
We suspect that the second-order atten-
tion benefits from more diverse and rep-
resentative features from the deeper back-
bones. As for the proposed AutoLA, it outperforms all baselines by large margins on all backbones.
We present the explanations as follows. Firstly, AutoLA searches the optimal architecture of HOGA
from numerous candidates in the search space via a differentiable algorithm. It has already surpassed
many candidates which may include some first- and second-order attentions. Secondly, due to the
diverse combinations and transformations in HOGA, it can learn more representative features after a
series of feature mapping steps even for shallow backbone networks.

Table 5: Results of other attentions modules on ImageNet.

Top-1 Error (%) Param (M) FLOPS (G)

ResNet50 + GENet [3] 22.00 31.20 3.87
ResNet50 + AugAtt [17] 22.30 24.30 7.90
ResNet50 + GCNet [45] 22.30 28.08 3.87
ResNet50 + AutoLA 21.82 29.39 4.73

Further, we also compare the perfor-
mance with other recent well-designed
attention modules, including GENet [3],
GCNet[45], and AugAtt [17] where GC-
Net and AugAtte are non-local attentions.
The results are listed in Table 5. All this
models are based on ResNet50 backbone
with different attention modules. With
comparable or even less parameters and
FLOPS, the proposed AutoLA outperforms other attention modules by a substantial margin.
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4.5 FLOPS Fair Comparison and Ablation Study on Image Classification

To further analyse the performance of AutoLA, we increase the width of the backbone networks
for SE and CBAM (denoted by “Wide”) and further customize SE and CBAM using the group split
operation (denoted by “HOG”), resulting in a specific instantiation of HOGA (i.e., k=4) in which all
the operations in HOGA are SE/CBAM attentions in these two cases and the FLOPS are fair for the
AutoLA. The results on CIFAR10 are listed in Table 6. It reveals that HOGA searched by AutoLA
(k=4)) still outperforms SE and CBAM by a large margin. And the expansion backbone with SE
and CBAM even contain more parameters than AutoLA (k=4), which confirms the superiority of the
proposed AutoLA.

We also present the ablation study on the number of group split (i.e., the hyper-parameter K). From
Table 6, less groups mean lower order of attentions in HOGA, leading to inferior performance. If
we set K = 8 or other larger number, the parameters and FLOSP would increase a lot, thus we take
K = 4 in our final setting. We also test the generalization ability of HOGA searched on ResNet56
(denoted by “AutoLA_56”) on a new backbone, i.e., ResNet20. Although the results are inferior
to the ones searched directly on ResNet20, this HOGA still outperforms SE and CBAM. We also
compare the attention modules generated by random search and AutoLA in Table 6. The HOGA
searched by AutoLA outperforms its randomly searched counterparts (denoted by “Rand”). Note that
the attention modules by random search exceed SE and CBAM.

Table 6: Experiments with fair settings of parameters and FLOPGs and ablation study results on
CIFAR10.

Acc (%) Param (M) FLOPS (G) Acc (%) Param (M) FLOPS (G)

ResNet20 + SE 92.30 0.29 0.04 ResNet32 + SE 93.16 0.49 0.07
ResNet20 + CBAM 92.81 0.3 0.04 ResNet32 + CBAM 93.47 0.49 0.07

ResNet20_Wide + SE 93.16 0.36 0.05 ResNet32_Wide_SE 94.08 0.62 0.09
ResNet20_Wide + CBAM 93.13 0.37 0.05 ResNet32_Wide_CBAM 93.92 0.63 0.09

ResNet20 + HOG_SE (k=4) 92.87 0.32 0.05 ResNet32 + HOG_SE (k=4) 93.62 0.54 0.09
ResNet20 + HOG_CBAM (k=4) 93.07 0.35 0.05 ResNet32 + HOG_CBAM (k=4) 93.72 0.56 0.09

ResNet20 + AutoLA (k=2) 93.18 0.33 0.05 ResNet32 + AutoLA (k=2) 93.81 0.49 0.09
ResNet20 + AutoLA_56 (k=4) 93.31 0.35 0.05 ResNet32 + AutoLA_56 (k=4) 94.18 0.57 0.09
ResNet20 + Rand_HOGA (k=4) 93.28 0.35 0.05 ResNet32 + Rand_HOGA (k=4) 94.15 0.59 0.09
ResNet20 + AutoLA (k=4) 93.38 0.34 0.05 ResNet32 + AutoLA (k=4) 94.33 0.52 0.09

4.6 Object Detection Results on COCO

Image classification networks provide generic image features that may be transferred to other
computer vision tasks. As an example, we evaluate the usefulness of the searched HOGA module
for object detection in this part. Specifically, we choose the popular object detection framework
named Single-Shot Detector (SSD) [46] and a popular two-stage framework Faster RCNN [47]
+ FPN [48] use ResNet50 with different attentions (e.g., SE, CBAM, and HOGA) pretrained on
ImageNet dataset as the backbone networks. We train the detection models on COCO dataset and
take average precision as the evaluation metric [49]. More implementation details can be found in the
supplementary material.

Table 7: Comparison of object detection results on COCO
dataset (Average Precision). We adopt SSD and Faster
RCNN + FPN detection frameworks and apply different
attention modules to the base network.

SSD Faster RCNN + FPN

ResNet50 25.01 36.03
ResNet50 + SE 26.05 36.47
ResNet50 + CBAM 26.63 36.55
ResNet50 + AutoLA 27.78 37.21

The results are summarized in Table 7.
As can be seen, CBAM outperforms SE
owing to the additional spatial attention.
The model using AutoLA obtains the
best score 27.78 AP, which is higher
than the vanilla ResNet50 backbone by
2.77 AP with SSD framework. Com-
pared with the manually designed SE and
CBAM attentions, it also outperforms
them by a large margin. Further, Au-
toLA also achieves better results in the
Faster RCNN + FPN framework. It owes
to the larger receptive fields of HOGA introduced by high order attention operations, which enables
to produce discriminative attention proposals and capture multi-scale context. These results further
confirms the superiority of HOGA over existing attentions for object detection.
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Figure 4: Visual inspection of the networks with Grad-CAM [52] and Guided Back Propagation [53]

4.7 Human Keypoint Detection Results on COCO

We further assess the generalization of AutoLA on the task of human keypoint detection which
aims at detecting human body keypoints. We adopt the model in [50] and follow [51] for evaluating
different attentions. Similar to Section 4.6, we plug different attention modules into ResNet50 and
train them on ImageNet dataset. Then, we use them as the pretrained backbone networks and train
them on COCO dataset. More implementation details can be found in the supplementary material.

Table 8: Human keypoint detection results

AP AP@.5 AR

ResNet50 72.8 89.9 78.5
ResNet50 + SE 73.6 90.2 79.3
ResNet50 + CBAM 73.6 90.0 79.3
ResNet50 + AutoLA 74.6 90.5 80.0

The results are summarized in Table 8. As can be seen,
CBAM improves the vanilla ResNet50 but does not
perform better than SE for this task. We suspect that
since the input of the keypoint detection model is a
cropped and re-scaled person detection region where
the human body is salient, therefore, the spatial atten-
tion may not benefit the model more given the channel
attention. However, the searched HOGA outperforms
all of them by large margins, demonstrating that diverse
combinations and transformations of various attention operations actually matters.

4.8 Visual Inspection on the Networks with Different Attention Modules
For the qualitative analysis, we apply the Grad-CAM [52] and guided back propagation [53] to
inspect the “layer4” in ResNet50 with different attention modules. In Figure 4, we can see that the
Grad-CAM masks of the network with AutoLA cover the target object regions more precisely than
other methods. These results show that the network integrated with the searched HOGA can learn
more discriminative features by attending to the target object and discarding irrelevant information.

Further, we use the class selectivity index metric [54] to analyze the features in different layers of
models with different attention modules on the validation data of ImageNet. We also analyze the
performance of CIFAR10 classification by the ResNet20, ResNet32, and ResNet56 backbones with
different attention modules using Barnes-Hut-SNE [55]. These two visual inspections on different
attention modules are shown and analysed in the supplementary material.

5 Conclusion and Future Work

In this work, we present the first attempt to search efficient and effective plug-and-play high order
attention modules for various well-established backbone networks. We propose a new attention
module named high order group attention and search its explicit architecture via a differential method
efficiently. The searched attention module generalizes well on various backbones and outperforms
manually designed attentions on many typical computer vision tasks. For the future work, we will
formulate the backbone and attention architecture into a unified framework and search their optimal
architectures in an alternative or synchronous manner.

Acknowledgement This work was supported by the the National Natural Science Foundation of
China under grants 61771397, China Scholarship Council, Science and Technology Innovation Com-
mittee of Shenzhen Municipality under Grant JCYJ20180306171334997 and Australian Research
Council Project FL-170100117.
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Broader Impact

Machine learning and related technologies have already achieved remarkable performance in many
areas. Current methods still require intensive empirical efforts for network design and hyperparameter
fine-tuning. Our research can search the optimal high order group attention module automatically,
and the searched module is computationally efficient and generalizes well to various tasks. It will
help to build a strong deep neural network model automatically without having to rely on the manual
design of the attention architecture. Since machine learning can promote the development of industry,
healthcare, and education, AutoML can accelerate this process by offering various specific optimal
models that fit different hardware platforms and latency constraints.

However, AutoML usually searches the model without domain knowledge, and may result in some
uncertain and unreliable models that will make confusing decisions. The excessive trust in these
decision will lead to many ethics issues. For example, when the diagnostic system optimized by
AutoML leads to the death of the patients or other property damage, who should be responsible
for this? What’s more, the abuse of AutoML may cause horrible disasters, especially in military
applications. Machine learning can optimize the design of weapons to make them adapted to the
specific operational conditions. AutoML will speed up this process and makes it possible to search
the optimal system under any different constraints and to customize the mass production of weapons.
The weapon design systems optimized by AutoML will cause a great threat to world peace, and we
advocate the AutoML will not apply to the field of military or warfare.

Further, AutoML will tip the scales in favor of the developed countries that are developing these
technologies to improve living conditions across the board in a variety of ways. However, the labor
force in developing countries is largely unskilled, and the use of AutoML in many cases means higher
unemployment, lower-income, and more social unrest. The purpose of artificial intelligence in this
condition should be to enhance their workforce skills, not to replace them. As a researcher, we need
to work principally to make sure technology matches our values.
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