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Abstract

This supplementary material includes: 1) additional explanations of Assumption
1; 2) revisiting previous methods in long-tailed classification; 3) the Background-
Exempted Inference for object detection and instance segmentation; 4) the differ-
ence between re-balancing NDE and the proposed TDE; 5) additional ablation
studies.

A Additional Explanations of Assumption 1

To better understand the (M,X)→ D and Assumption 1, let’s take a simple example. Given a
learnable parameter θ ∈ R2, and its gradients of instances for class A, B approximate to (1, 1) and
(-1, 1) respectively. If each of these two classes has 50 samples, the mean gradient would be (0, 1),
which is the optimal gradient direction shared by both A and B. The momentum will thus accelerate
on this direction that optimizes the model to fairly discriminate two classes. However, if there are 99
samples from class A and only 1 sample from class B (long-tailed dataset), the mean gradient would
be (0.98, 1). In this case, the momentum direction now approximates to the class A (head) gradients,
encouraging the backbone parameters to generate head-like feature vectors, i.e., creating an unfair
deviation towards the head.

Since the momentum in SGD [1, 2, 3] usually dominates the gradient velocity, the effect of such
a deviation is not trivial, which will eventually create the head projection D on all feature vectors
generated by the backbone. It’s worth noting that although there are non-linear activation layers in
the backbone, due to the central limit theorem [4], the overall effect of these deviated parameters
is still following the normal distribution, which means we can use the moving averaged feature to
approximate this head direction, i.e., the Assumption 1 in the original paper.

In addition, even in a balanced dataset, the Assumption 1 still holds. Considering the above example,
the mean gradient is (0, 1) for balanced A and B, which is not biased towards either direction: (1,
1) or (-1, 1). In other word, the D still exists for the balanced dataset, but the cos(x, d̂) should be
almost the same for all classes. Therefore, the M → D → Y won’t cause any preference in the
balanced dataset, which naturally allows X → Y free from the effect of M . It’s also intuitively easy
to understand, because when the dataset is balanced, the mean feature only represents the common
patterns shared by all classes, e.g., the D in a balanced face recognition dataset is the mean face,
which would be a contour of human head that not biased towards any specific face categories.

B Revisiting Previous Methods in Long-Tailed Classification

In this section, we will revisit the previous state-of-the-arts in two aspects: the normalized classifiers
and the re-balancing strategies.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



Methods BG-Exempted AP AP50 AP75 APr APc APf APbbox
De-confound 7 25.7 38.5 27.8 11.4 26.1 30.9 27.7

De-confound-TDE False 23.4 35.7 24.9 13.1 23.6 27.1 24.8
De-confound-TDE True 28.4 43.0 30.6 22.1 29.0 30.3 31.0

Table 1: The results of the proposed TDE with/without Background-Exempted Inference on LVIS [13]
V0.5 val set. The Cascade Mask R-CNN framework [14] with R101-FPN backbone [15] is used.

Normalized Classifiers. The normalized classifiers [5, 6, 7, 8] have already been widely adopted in
long-tailed classification based on empirical practice. As we discussed in the Section 4, the correctly
applied normalized classifiers are approximations of the proposed de-confounded training. However,
without the guidance of the proposed causal framework, most of them are not utilized in a proper
way. We define the general normalized classifier as the following equation:

argmax
i∈C

P (Y = i|X = x) =
ezi∑C
c=1 e

zc

, where zi =
τ

K

K∑
k=1

(wk
i )

>xk

N(xk,wk
i )
. (1)

Since in most of the previous methods, K is set to 1, so we slightly abuse the notation to omit the
superscript k for simplicity.

(a) Magnitude of 𝑤𝑖 for each class 𝑖
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Figure 1: The magnitudes of classifier
weights ‖wi‖ for each class after training
with momentum µ = 0.9, where i is rank-
ing by the number of training samples in a
descending order.

The cosine classifier [5, 6] is defined based on the co-
sine similarity, which has N(x,wi) = ‖x‖ · ‖wi‖.
It is commonly used in the tasks like few-shot learn-
ing [9]. In Table 2,3 of original paper, we have proved
its effectiveness in the long-tailed classification. The
capsule classifier is proposed by Liu et al. [8] as the
replacement of vanilla cosine classifier in OLTR. It
changes the l2 norm of x into the squashing non-linear
function proposed in Capsule Network [10], which
allows the normalized x having a magnitude range
from 0 to 1, representing the probability of x in its
direction. The final normalization term can thus be
defined as N(x,wi) = (‖x‖ + 1) · ‖wi‖. However,
the OLTR [8] doesn’t use it to de-confound the visual
feature. Instead, its x is the joint embedding of the
feature vector and an attentive memory vector. The
Decouple [7] also invents two different types of normal-
ized classifiers: τ -norm classifier and Learnable Weight
Scaling (LWS) classifier. They empirically found that
the l2 norm of wi is not uniform in the long-tailed
dataset, and has a positive correlation with the number
of training samples for class i, as shown in Figure 1.
Therefore, their normalized classifiers only normalize the wi: the τ -norm classifier is defined as
N(x,wi) = ‖wi‖τ , τ ∈ [0, 1] while LWS is N(x,wi) = gi, where gi is a learnable parameter. Yet,
these decouple classifiers fail to de-confound the M → X for two reasons: 1) they don’t considering
the confounding effect on x; 2) they only apply the normalized classifiers on the 2nd stage when the
backbone has already been frozen.

Re-balancing Strategies. Both OLTR [8] and Decouple [7] adopt the same class-aware sampler in
their 2nd stage training, which forces each class to contribute the same number of samples regardless
of the size. To dynamically combine the two training stages, the BBN [11] utilizes a bilateral-branch
design to smoothly transfer the sampling strategy from the imbalanced branch to the re-balancing
branch, where two branches share the same set of parameters but learn from different sampling
strategies, which has the same spirit as two-stage design in OLTR [8] and Decouple [7]. As to the
EQL [12], since the re-sampling is complicated in the object detection and instance segmentation
tasks, where objects from different classes co-exist in one image, they choose the re-weighted loss to
balance the contributions of different classes.
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Figure 2: A simple one-dimensional binary classification example of conventional classifier, one-
/two-stage re-balancing classifiers, and the proposed TDE.

C Background-Exempted Inference

The results with and without Background-Exempted Inference are reported in Table 1. As we can
see, the Background-Exempted strategy successfully prevents the TDE from hurting the foreground-
background selection. It is the key to apply TDE in tasks like object detection and instance segmen-
tation that include one or more legitimately biased head categories, i.e., this strategy allows us to
conduct TDE on a selected subset of categories.

D The Difference Between Re-balancing NDE and The Proposed TDE

In this section, we will further discuss the relationship between two-stage re-balancing NDE and the
proposed TDE. As we discussed in Section 4.3 of original paper, the 2nd-stage re-balanced classifier
essentially calculates the NDE(Yi) = [Yd′ = i|do(X = x)] − [Yd′ = i|do(X = x′)], where the
second term can be omitted because x′ is a dummy vector and the moving averaged d′ in a balanced
set won’t point to any specific classes, so it is actually a constant offset. Therefore, the crux of
understanding the NDE would be why the 2nd-stage re-balanced training equals to the first term
[Yd′ = i|do(X = x)]. It is because when the backbone is frozen, it breaks the dependency between
M → X , which is a straightforward implementation of causal intervention do(X = x). The original
OLTR [8] violates this intervention by fine-tuning the backbone parameters in the 2nd stage, and it
thus performs much worse than the Decouple-OLTR in the Table 2 of original paper, which freezes
the backbone parameters. Meanwhile, the balanced re-sampling also brings a fair d′ as we discussed
in the third paragraph of Section A.

To better illustrate both the similarity and the difference between re-balancing NDE and the proposed
TDE, we constructed a one-dimensional binary classification example for conventional classifier,
one-/two-stage re-balancing classifiers, and the proposed TDE in Figure 2, where the gaussian
distribution curve represents the feature distribution generated by the backbone, and the 0 point
is the classifier’s decision boundary. The conventional classifier and one-stage re-balancing are
fundamentally problematic, because they either cause the mismatching in the inference or learn
a bad backbone model. In the meantime, both two-stage re-balancing and the proposed TDE are
able to correctly remove the bias by proper adjustments. The 2nd-stage re-balanced training (NDE)
fixes the backbone parameters do(X = x) learnt from 1st-stage imbalanced training, i.e., the frozen
curve in the image, and then re-samples an artificially balanced data distribution to create a fair d′.
The overall re-balancing NDE can be considered as subtracting a bias offset from original decision
boundary. Meanwhile, the proposed TDE removes the bias effect (head projection) from feature
vectors. Both two types of adjustments can properly remove the head bias in this example. That’s why
TDE and NDE should be theoretically identical in the long-tailed classification scenario. However,
the 2nd-stage re-balancing NDE has two disadvantages: 1) its adjustment requires an additional
training stage to fine-tune the classifier weights, which relies on the accessibility of data distribution;
2) if non-linear modules are applied to the feature vectors, e.g., a global context layer that conducts
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K τ γ α Many-shot Medium-shot Few-shot Overall
1 16.0 1/32.0 7 69.8 42.8 14.9 49.4
4 16.0 1/32.0 7 69.0 42.3 13.1 48.6
2 8.0 1/32.0 7 69.5 31.3 1.6 42.0
2 32.0 1/32.0 7 68.6 41.3 13.0 47.9
2 16.0 1/16.0 7 69.3 44.0 14.2 49.7
2 16.0 1/64.0 7 69.9 43.3 14.7 49.6
2 16.0 1/32.0 7 69.5 43.9 15.2 49.8
2 16.0 1/32.0 2.5 66.2 49.8 29.4 53.3
2 16.0 1/32.0 3.0 64.5 50.0 32.6 53.3
2 16.0 1/32.0 3.5 62.5 49.9 36.0 52.9

Table 2: Hyper-parameters selection based on performances of ImageNet-LT val set, where 7 for α
means that TDE inference is not included. The backbone we used here is ResNeXt-50-32x4d.

Methods #heads K Many-shot Medium-shot Few-shot Overall
Cosine† [5, 6] 1 67.3 41.3 14.0 47.6
Cosine† [5, 6] 2 67.5 42.1 14.1 48.1

Capsule† [8, 10] 1 67.1 40.0 11.2 46.5
Capsule† [8, 10] 2 67.7 41.3 12.6 47.6

(Ours) De-confound 1 67.3 41.8 15.0 47.9
(Ours) De-confound 2 67.9 42.7 14.7 48.6
(Ours) Cosine-TDE 1 61.8 47.1 30.4 50.5
(Ours) Cosine-TDE 2 63.0 47.3 31.0 51.1
(Ours) Capsule-TDE 1 62.3 46.9 30.6 50.6
(Ours) Capsule-TDE 2 62.4 47.9 31.5 51.2

(Ours) De-confound-TDE 1 62.5 47.8 32.8 51.4
(Ours) De-confound-TDE 2 62.7 48.8 31.6 51.8

Table 3: The performances of cosine classifier [5, 6] and capsule classifier [8, 10] under different
number of head K on ImageNet-LT test set. Other hyper-parameters are fixed.

interactions among all objects {xj} in an image, the NDE can only remove a linear approximation of
this non-linear activated head bias, while the TDE would be able to maintain the natural interactions
of features in both original logit term and the subtracted counterfactual term. It explains why
the Decouple-OLTR in Table 2 of original paper doesn’t perform as good as Decouple-τ -norm or
Decouple-LWS, because OLTR involves non-linear interactions between feature vectors and memory
vectors, so a linear adjustment on classifier’s decision boundary cannot completely remove the head
bias.

E Additional Ablation Studies

The hyper-parameters used in original paper are selected according to the performances on ImageNet-
LT val set as shown in Table 2. To further study the multi-head strategy on different normalized
classifiers, we tested the K = 2 on cosine classifier [5, 6] and capsule classifier [8, 10] in Table 3. It

Methods Backbone Many-shot Medium-shot Few-shot Overall
Baseline ResNeXt-50 66.1 38.4 8.9 45.0

De-confound ResNeXt-50 67.9 42.7 14.7 48.6
De-confound-TDE ResNeXt-50 62.7 48.8 31.6 51.8

Baseline ResNeXt-101 68.7 42.5 11.8 48.4
De-confound ResNeXt-101 68.9 44.3 16.5 50.0

De-confound-TDE ResNeXt-101 64.7 50.0 33.0 53.3
Table 4: The performances of the proposed method under different backbones in ImageNet-LT test
set.
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Methods Backbone AP AP50 AP75 APr APc APf APbbox
Baseline R101-FPN 22.6 33.5 24.4 2.5 23.0 30.2 24.3

De-confound R101-FPN 25.7 38.5 27.8 11.4 26.1 30.9 27.7
De-confound-TDE R101-FPN 28.4 43.0 30.6 22.1 29.0 30.3 31.0

Baseline X101-FPN 26.4 39.5 28.4 7.4 28.1 32.0 28.5
De-confound X101-FPN 28.4 41.9 30.6 13.3 29.5 32.9 30.5

De-confound-TDE X101-FPN 30.4 45.1 32.9 21.1 31.8 32.3 33.1
Table 5: The performances of the proposed method under different backbones in LVIS V0.5 val set.

Methods AP AP50 AP75 APr APc APf
Baseline 19.4 29.8 20.6 3.9 21.9 30.8

De-confound 20.8 31.8 22.1 7.4 22.7 31.2
De-confound-TDE 23.0 35.2 24.1 12.7 24.5 30.7

Table 6: The single model performances of the proposed method on LVIS V0.5 evaluation test
server [16].

proves that the advantage of the proposed de-confounded model doesn’t come from larger K, and the
multi-head fine-grained sampling can generally improves the de-confounded training, no matter what
kind of normalization function we choose.

As shown in Table 4,5, we tested the proposed method on different backbones. After equipped
with ResNeXt-101-32x4d and ResNeXt-101-64x4d [17] for ImageNet-LT [8] and LVIS [13] V0.5,
respectively, the proposed method gains additional improvements. In ImageNet-LT dataset, we
changed some hyper-parameters (K = 4, γ = 1/64.0) and increased the training epochs to 120,
because of the significantly increased number of model parameters. The hyper-parameters for LVIS
are still the same as original paper.

We also reported the performances of the proposed method on LVIS V0.5 evaluation test server [16]
in Table 6, where we used ResNeXt-101-64x4d backbone and the original hyper-parameters. It’s
worth noting that these are single model performances, which neither exploited external dataset nor
utilized any model enhancement tricks.
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