
A Explaining the 2009 Burlington Mayoral Election Outcome

The following input profile is derived from election data of the 2009 mayoral election in Burlington,
Vermont, which is known to exhibit interesting voting theoretic properties.4 Five candidates were
running. One of them, James Simpson for the Green Party, gathered almost no votes (35 first-place
votes compared to 1,306 first-place votes for the next-lowest candidate), so we ignore this candidate
for convenience. The other four candidates are

K = Bob Kiss M = Andy Montroll H = Dan Smith W = Kurt Wright.

The resulting profile consists of the following 3,352 votes.

143 37 139 87 48 112 200 55 432 131 50 72 198

H H H H H H K K K K K K M
K K M M W W H H M M W W H
M W K W K M M W H W H M K
W M W K M K W M W H M H W

· · ·

· · ·

129 211 89 151 82 114 324 66 89 288 105

M M M M M W W W W W W
H K K W W H H K K M M
W H W H K K M H M H K
K W H K H M K M H K H

Step 1

In each of the following profiles, we should declare a complete tie.

96 96 96 96

H K M W
W M H K
K H W M
M W K H

56 56 56 56

H K M W
K M W H
M W H K
W H K M

160 160 160 160

H K M W
K W H M
W M K H
M H W K

If we combine all of the above profiles, we should still declare a complete tie.

56 160 96 96 56 160 160 96 56 56 96 160

H H H K K K M M M W W W
K K W M M W H H W H K M
M W K H W M K W H K M H
W M M W H H W K K M H K

Step 2

In the following profile, the selected winners should be {M}.

948 948

M M
K W
H H
W K

In the following profile, the selected winners should be {M,H}.

4For instance, the plurality winner (W ) is different from the winner under Instant Runoff Voting rule (K)
which Burlington used, and both are different from the Condorcet winner (M ). See https://en.wikipedia.
org/wiki/2009_Burlington_mayoral_election.
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160 160

H M
M H
W K
K W

Combining the above two profiles, we get that in the following, the winners should be {M}.

160 160 948 948

H M M M
M H K W
W K H H
K W W K

In the following profile, the selected winners should be {M,H,K}.

260 260

K M
H H
M K
W W

Combining the above two profiles, we get that in the following, the winners should be {M}.

160 260 420 948 948

H K M M M
M H H K W
W M K H H
K W W W K

Step 3

Combining the profile of Step 1b (resulting in a complete tie) and the last profile in Step 2 (with
winners {M}), we get that in the following profile, the winners should be {M}.

56 160 160 96 260 96 56 160 580 96 948 1004 56 96 160

H H H H K K K K M M M M W W W
K K M W H M M W H H K W H K M
M W W K M H W M K W H H K M H
W M K M W W H H W K W K M H K

Now consider the input profile, and copy each voter 4 times. This gives

572 148 556 348 192 448 800 220 1728 524 200 288 792

H H H H H H K K K K K K M
K K M M W W H H M M W W H
M W K W K M M W H W H M K
W M W K M K W M W H M H W

· · ·

· · ·

516 844 356 604 328 456 1296 264 356 1152 420

M M M M M W W W W W W
H K K W W H H K K M M
W H W H K K M H M H K
K W H K H M K M H K H

These two profiles have the same weighted majority margins. Hence the winners of the original
profile must be {M}, which is the output of the Borda rule.
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B Proof of Theorem 2

Before we give the proof, we first introduce a generalization of our framework as presented in
Section 4.1: we allow an additional family of axioms (called PRED) which is parameterized by a
family T of linear functions.
Definition 5. Let f be a voting rule that can be embedded into a linear space V by h and g, and
assume that g admits operation �, which is commutative. Let S ✓ R be a set of base profiles, such
that S can be written as a finite union of sets of profiles, S =

SN
k=1 Si, for some N , where each

Si ✓ R is a possibly infinite set of profiles, and h(Si) lies in a one-dimensional subspace of V . Let
T be a (possibly infinite) set of linear functions from V to Q; we refer to these functions as linear
predicates. Then the L-axiomatization S(f, h, g, �, V, S, T ) consists of the following four axioms:

1. ADD: For all R1,R2 2 R such that A1 �A2 6= ;,
[R1 7! A1] ^ [R2 7! A2] ! [R1

L
R2 7! A1 �A2] .

2. EMB: For all R1,R2 2 R such that h(R1) = h(R2),
[R1 7! A1] ! [R2 7! A2].

3. INIT: For all R 2 S, [R 7! f(R)].

4. PRED: For all R 2 R and all ti 2 T such that ti(h(R)) = 0,W
A2g(K(ti))

[R 7! A], where K(ti) is the kernel of ti.

The PRED axiom is an intraprofile axiom which does not have an analogue among the axioms
discussed in Section 3. We include it to give our framework more expressive power, especially for
encoding neutrality-type axioms (which require that similar alternatives need to be treated identically).
PRED encodes the fact that if a profile satisfies some condition (given by ti) then its outcome should
reflect it. For example, if f is the Borda rule embedded into V = Qm by its scoring function, we
can let T = {tij : tij(v) = vi � vj}, where vi is the score of alternative i. Then K(tij) is the set of
vectors v with vi = vj , and thus g(K(tij)) is the set of voting outcomes A which satisfy i 2 A if and
only if j 2 A. In other words, PRED would require that any two alternatives with the same Borda
score are either both winners or both losers.

In Section 4.1, we stated our lower bound in terms of the dimension of the space V . In the enriched
model, we state the lower bound in terms of dimV as well as a complexity measure of the set T of
linear predicates. The definition of that measure is admittedly unwieldy, but directly related to the
length of explanations.
Definition 6. An outcome A is uniquely determined by a subset of linear predicates T 0 ✓ T if there is
a set of rational numbers C ✓ Q such that A =

T
ti2T 0 g(t�1

i (ci)), where t�1
i (ci) = {v : ti(v) = ci}

and ci 2 C. The sensitivity of g with respect to T , sen(g, T ), is the minimum size of T 0 ✓ T
such that there is an outcome A (of f ) that is uniquely determined by T 0. If there is no such T 0,
sen(g, T ) = +1.

For the embedding of Borda into Qm with T = {tij : tij(v) = vi � vj}, we can take the winner
set A = A. The function g outputs A only for vectors v with vk = v` for all k, `. Now, t�1

ij (0)

is the set of vectors v with vi = vj . Thus, the smallest set T 0 such that
T

ti2T 0 g(t�1
i (0)) = A is

T 0 = {t12, t13, . . . , t1m}. It follows that sen(g, T ) = m� 1.
Theorem 3. Let f be a voting rule that can be embedded into a linear space V of finite dimension d by
h and g. Consider an axiomatization S of f that is asymptotically weaker than some axiomatization
S(f, h, g, �, V, S, T ) based on operation �, base profiles S, and linear predicates T , satisfying the
conditions of Definition 3. Then, with high probability, every explanation of the outcome f(Rn) at
the random profile Rn using S consists of ⌦(min(d, sen(g, T ))) steps.

Define the random vector ⇠i = h(Ri), where Ri is the ranking (or single-voter profile) associated
with the ith voter (which is selected independently and uniformly at random from all m! possible
rankings). Fix an arbitrary basis B ✓ V , and let cB(v) be the coordinates of a vector v under B.
Define Xi = cB(b)|cB(⇠i), for some arbitrary non-zero vector b 2 V . X1, . . . , Xn are i.i.d. random
variables with mean µ and variance �2.
Lemma 1. For any vector b 6= 0, the random variable cB(b)|cB(⇠i) has non-zero mean or non-zero
variance.
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Proof. We prove that if cB(b)|cB(⇠i) is a random variable with zero mean then it cannot be determin-
istically zero (and thus has non-zero variance). Towards a contradiction, Pr[cB(b)|cB(⇠i) = 0] = 1
implies that cB(b)|cB(h(R)) = 0 for every R 2 R. But, by the definition of an embedding,
{h(R) : R 2 R} spans V . Therefore cB(b) must be the all zeros vector; a contradiction.

Lemma 2. For any non-zero vector b it holds that cB(b)|cB(h(Rn)) 6= 0 with high probability.

Proof. To prove the lemma we need to show that
Pn

i=1 Xi 6= 0 with high probability. By Lemma 1
either µ 6= 0 or � 6= 0. If � = 0, then the Xi’s are identical non-zero constants (note that this does
not imply that the ⇠i = h(Ri) is a constant vector). We trivially get that Pr[

Pn
i=1 Xi = 0] = 0, for

all n. If � 6= 0 then the central limit theorem gives us that

lim
n!1

sup
z2R

����Pr
p

n

✓Pn
i=1 Xi

n
� µ

◆
 z

�
� �

⇣ z

�

⌘���� = 0.

Therefore, for any given ✏ > 0, we have

Pr

"�����

nX

i=1

Xi

�����  ✏

#
= �

✓
✏� µnp

n�

◆
� �

✓
�✏� µnp

n�

◆
+ o(1)

=
1p
2⇡

Z (✏�µn)/(
p
n�)

(�✏�µn)/(
p
n�)

e
�x2/2 dx+ o(1)

 1p
2⇡

Z (✏�µn)/(
p
n�)

(�✏�µn)/(
p
n�)

1 dx+ o(1)

=
2✏

�
p
2⇡n

+ o(1), (1)

For any � > 0 we can pick ✏ small enough, and n large enough, so that both terms on the right hand
side of Equation (1) are smaller than �/2. It then holds that

� > Pr [|
Pn

i=1 Xi|  ✏] > Pr [
Pn

i=1 Xi = 0] .

Lemma 3. With high probability h(Rn) does not lie in the subspace spanned by any d� 1 elements
in h(S).

Proof. We can assume that h(S) spans V , since otherwise we can add vectors from V to make it so
(and the lemma still holds). We start by proving the lemma for finite h(S). We are going to show that,
with high probability, the coordinates of h(Rn) under any basis B0 ✓ h(S) of V have no zero entries.
This implies that h(Rn) is not in any subspace spanned by d� 1 elements in h(S). To see why this
is the case, notice that if h(Rn) lay in the space spanned by some B0 ✓ h(S), with |B0| = d � 1,
we could add one more v 2 V to B0 and make it a basis for V . Then the coordinates of h(Rn) with
respect to v under this basis would be zero, leading to a contradiction; thus, such a B0 cannot exist.

Recall that we have already fixed one a basis for V , the basis B. For every basis B0 ✓ h(S), there is
a unique non-singular matrix PB0 such that B = B0PB0 , and for any v 2 V , cB0(v) = PB0cB(v).
Thus, it is sufficient to prove that for every basis B0 ✓ h(S) all entries of PB0cB(h(Rn)) are
non-zero with high probability.

For any B0, by the union bound, the probability that PB0cB(h(Rn)) has a zero entry is at mostPd
i=1 Pr[P

i
B0cB(h(Rn)) = 0], where P i

B0 is the ith row of PB0 . Due to its non-singularity, each
row of PB0 must be non-zero. By Lemma 2 it holds that Pr[P i

B0cB(h(Rn)) = 0] converges to zero
as n goes to infinity. By applying the union bound again, we conclude that with high probability
PB0cB(h(Rn)) has no zero entries for every basis B0 ✓ h(S). This concludes the proof for finite
h(S).

When h(S) is infinite, we use that h(S) is a union of finitely many one-dimensional subsets, h(S) =SN
k=1 h(Si). Pick an arbitrary non-zero vector bi from each h(Si) and let B⇤ =

SN
k=1{bi}. Notice

that B⇤ spans V , since each h(Si) is one dimensional. Therefore, we can use the finite version of this
lemma for B⇤ and get that h(Rn) does not lie in the subspace spanned by any d� 1 elements in B⇤.

We claim that h(Rn) does not lie in the subspace spanned by any d � 1 elements in h(S) either.
Towards a contradiction, assume that h(Rn) lies in the subspace spanned by B0 ✓ h(S), with
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|B0| = d� 1. Without loss of generality we assume that the vectors in B0 are linearly independent.
Then, every element of B0 must come from a different h(Si) (since each h(Si) is one-dimensional).
Let B0 = {b0i1 , b

0
i2 , . . . , b

0
id�1

} and h(Rn) =
Pd�1

j=1 cjb
0
ij where b0ij is an element of h(Sij ), and the

cj are rational numbers. Since each h(Si) is one dimensional, b0ij = qij bij where qij is rational
and bij is the vector we included in B⇤. We immediately have that h(Rn) =

Pd�1
j=1 cjqij bij , which

implies that h(Rn) lies in a subspace spanned by d� 1 elements in B⇤ — a contradiction.

We are now ready to complete the theorem’s proof.

Proof of Theorem 2. Let B ✓ S, |B| = d � 1, be a set of INIT axiom instance and let C, |C| =
sen(g, T ) � 1, be a set of PRED axiom instances. We show that there exists no proof of [Rn 7!
f(Rn)] using the axiomatization Semb = S(f, h, g, �, V, S, T ) that uses only INIT axiom instances
in B and only PRED axiom instance in C.

Slightly abusing notation, let h(B) = {v1, v2, . . . , vd�1}, and assume without loss of generality
that these d � 1 vectors are linearly independent. Also assume that h(Rn) is not in any subspace
spanned by d � 1 elements of h(S), which happens with high probability by Lemma 3. There-
fore, {v1, v2, . . . , vd�1, h(Rn)} forms a linear basis of V .5 Furthermore, since there are at most
sen(g, T ) � 1 linear predicates in C, by the definition of sensitivity, no winning set A of f can be
uniquely determined by the linear predicates in the axioms of C. Thus, we can find a vector b such
that ti(b) = ti(h(Rn)) for all ti 2 C and g(b) 6= g(h(Rn)).

For a profile R we can write h(R) = k1v1 + k2v2 + · · · + kd�1vd�1 + kdh(Rn), for rational
k1, . . . , kd. Define a new embedding h0 : R ! V by h0(R) = k1v1+k2v2+ · · ·+kd�1vd�1+kdb,
where b is as above. Due to the uniqueness of this decomposition, h0 is well-defined.

Now consider the voting rule f 0 that outputs g(h0(R)) on a profile R. First, notice that f and f 0

disagree on Rn, as f 0(Rn) = g(h0(Rn)) = g(b) 6= f(Rn) by the choice of b. Second, for each
profile R in B, we have h(R) = h0(R), and therefore f 0(R) = f(R). Third, for two profiles
R1,R2 such that h(R1) = h(R2) we have h0(R1) = h0(R2), which implies f 0(R1) = f 0(R2).
Fourth, if f 0(R) � f 0(R0) 6= ; then f 0(R

L
R0) = g(h0(R) + h0(R0)) = f 0(R) � f 0(R0). Finally,

ti(h(R)) = 0 implies ti(h0(R)) = 0.

The above facts imply that the new rule f 0 satisfies ADD, EMB, B and C, but that f(Rn) 6= f 0(Rn).
Thus, by the consistency of L and the soundness of propositional logic, Rn’s outcome cannot
be explained assuming Semb without using INIT axioms outside B or PRED axioms outside C.
Since this holds for any B and C, every explanation of f(Rn) assuming Semb must contain at least
min(d, sen(g, T )) axiom instances of type INIT and PRED.

Consider a proof of [Rn 7! f(Rn)] assuming S of length r, which is formally a sequence '1, . . . ,'r

of formulae. By assumption, S is asymptotically weaker than Semb. Thus, for each 'i in the proof
which is an axiom instance of S, we can replace 'i by a proof of 'i assuming Semb. After these
replacements, we have obtained a proof of [Rn 7! f(Rn)] assuming Semb; let s be the number
of intraprofile axiom instances (INIT and PRED) in this proof. Because we have obtained this
proof by performing at most r replacements, each time introducing at most c intraprofile axiom
instances, we have s  c · r. From above, we know that s � min(d, sen(g, T )). Thus, r �
1
c min(d, sen(g, T )). Hence, any explanation of the outcome f(Rn) using the axiomatization S
requires ⌦(min(d, sen(g, T ))) steps.

C Details for Borda

C.1 Proof of Theorem 1

It will be useful to define the beta score of an alternative a in profile R as �R
a = 2ba ·m�m(m� 1)

where ba is the Borda score of a. The beta score is a monotonically increasing linear function of the
Borda score. Therefore, selecting the top alternatives based on beta scores or Borda scores defines

5In the case that h(S) spans V 0 ( V , the vectors in h(B) cannot be linearly independent. But, we can still
create a basis for V that includes a maximal subset of linearly independent vectors from h(B), h(Rn) and other
vectors from V .
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the same voting rule. For any profile R the beta vector �R maps alternatives to their beta score. Note
that �R is a linear transformation of �R. More precisely, define �̂(�R) as the following beta vector:
�̂(�R)a =

P
b2A\{a} �

R
ab.

We begin by establishing two lemmas that relate the length of a explanation in a profile R to the
length of the explanation in a profile with a similar delta vector. Recall that delta vectors are a
sufficient statistic to compute Borda outcomes. Therefore, if two profiles R1 and R2 have identical
delta vectors then they have the same set of winners under Borda. The following lemma shows that
given such profiles R1 and R2, and the set of winners of one of the two, we can produce a proof of
constant length that the other profile has the same set of winners.
Lemma 4. Let R1 and R2 be two profiles with the same delta vector. Given that [R1 7! A], then
[R2 7! A] can be explained by CANC, REINF and REINF-SUB in O(1) steps.

Proof. Let R1 be the profile with the same voters as R1, but reversed preferences. Clearly, for all
alternatives a, b 2 A, �R1

ab = ��R1
ab . We have the following explanation:

1. [R1 7! A]

2. [R2
L

R1 7! A] (CANC)

3. (1) ^ (2) ! [R2
L

R1
L

R1 7! A] (REINF)

4. [R2
L

R1
L

R1 7! A] (propositional reasoning from 1–3)

5. [R1
L

R1 7! A] (CANC)

6. (4) ^ (5) ! [R2 7! A] (REINF-SUB)

7. [R2 7! A] (propositional reasoning from 4–6)

The next lemma shows a similar fact about sums of profiles.

Lemma 5. Let R, RE and RC be profiles such that k1�R = k2�RE
L

RC for integers k1, k2, and
assume that [RE 7! A] and [RC 7! A]. Then [R 7! A] can be explained in O(1) steps.

Proof. The explanation works as follows.

1. [RE 7! A]

2. [RC 7! A]

3. (1) ^ (2) ! [RE
L

RC 7! A] (REINF)

4. [RE
L

RC 7! A] ! [k2(RE
L

RC) 7! A] (MULT)

5. [k2(RE
L

RC) 7! A] (propositional reasoning from 1–4)

6. [k1R 7! A] (5 and Lemma 4)

7. [k1R 7! A] ! [R 7! A] (SIMP)

8. [R 7! A] (propositional reasoning from 6–7)

where the sixth step contains the constant length explanation of Lemma 4.

The remainder of the proof focuses on the following task: given a profile R with A the set of Borda
winners, construct and explain two profiles RE and RC such that (1) k1�R = k2�RE

L
RC , (2)

[RE 7! A], and (3) [RC 7! A]. Specifically, RE will be a sum of elementary profiles whose winner
sets have a non-empty intersection, and RC will be a sum of cyclic profiles. Our approach borrows
ideas and facts from the analysis of the algorithm Borda-expl presented by Cailloux and Endriss
[2016].
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To construct RE , label the alternatives as a1, a2, . . . , am in order of decreasing beta scores, so
�R
a1

� . . . � �R
am

. Let

RE =
m�1M

i=1

Ri,

where

Ri =

(
�R
ai

��R
ai+1

2 R{a1,...,ai}
elem if �R

ai
� �R

ai+1
> 0,

RA
elem if �R

ai
� �R

ai+1
= 0.

Note that beta scores are always even, so (�R
ai

� �R
ai+1

)/2 is a non-negative integer.
Lemma 6. [RE 7! A] can be explained in O(m) steps.

Proof. If �R
ai

= �R
ai+1

for all i = 1, . . . ,m� 1, then RE is composed of copies of the profile RA
elem.

Hence by MULT and ELEM, we obtain [RE 7! A], as required, since in this case A = A.

Otherwise, let k be the smallest index with �R
ak

� �R
ak+1

> 0. For each i = 1, . . . ,m, an ELEM
axiom gives h

R{a1,...,ai}
elem 7! {a1, . . . , ai}

i
.

If �R
ai

� �R
ai+1

> 0, by MULT we have
"
�R
ai

� �R
ai+1

2
R{a1,...,ai}

elem 7! {a1, . . . , ai}
#
.

Note that {a1, . . . , ai} ✓ {a1, . . . , ai+1} ✓ A. Therefore we can inductively apply REINF to
combine the first i terms and the (i+ 1)th term in the

L
-summation in the definition of RE .

Thus, the outcome of RE is
\

i:�R
ai

��R
ai+1

>0

{a1, . . . , ai} = {a1, . . . , ak}.

By choice of k, the selected outcome {a1, . . . , ak} is the set of alternatives with the highest beta
scores, i.e. the set of Borda winners A.

A useful fact, following from the discussion of Young [1974], is that RE and mR have the same
beta scores.
Lemma 7 (Young 1974). For all alternatives a 2 A, �RE

a = �mR
a .

It remains to construct RC , and bound the length of its explanation. Lemma 7 implies that�
�RE �m�R

�
2 K(�̂), where K(�̂) is the kernel space of the linear map �̂ defined above. Cailloux

and Endriss [2016] show that the set of delta vectors of all cyclic profiles spans K(�̂).
Lemma 8 (Cailloux and Endriss 2016). There exists a set of m-cycles S, |S| =

�m�1
2

�
, such that

⇢ = {�R
S
cyc : S 2 S} spans K(�̂).

We now have the machinery in place to prove that the profile RC has the desired properties.
Lemma 9. There exists a profile RC such that �RC = k

�
�RE �m�R

�
, for some integer k, and

RC is the sum of cyclic profiles. Furthermore, [RC 7! A] can be explained in O(m2) steps.

Proof. By Lemma 8, there exists a basis ⇢ for K(�̂). Let �Ri be the ith base vector in ⇢, with Ri its
corresponding cyclic profile (i 2 [

�m�1
2

�
]), where a profile Ri that corresponds to �Ri is guaranteed

to exist by Lemma 8.6 One can therefore decompose the target delta vector as

�RE �m�R =
X

i2[(m�1
2 )]

ci�
Ri ,

6The proof of Cailloux and Endriss [2016] gives an explicit construction of ⇢, thus we can find the profiles
Ri by solving a linear system.

17



where the coefficients ci are all rationals (since the delta vectors are integer vectors). If there is
a negative ci in this decomposition, we can substitute Ri by Ri, the profile where every voter’s
preference is reversed; the delta vector changes sign and therefore ci�Ri = �ci�Ri . Thus, without
loss of generality, we can assume that all ci are non-negative.

Next, because all the coefficients are rational, there must be an integer k such that k · ci is a
non-negative integer for all i 2 [

�m�1
2

�
]. Let

RC =
(m�1

2 )M

i=1

k · ciRi.

We can see that �RC = k
�
�RE �m�R

�
as desired.

Towards bounding the length of the explanation, since the profiles Ri are all cyclic, we can use
CYCL and MULT to show [kciRi 7! A], for i 2 [

�m�1
2

�
]. We can then apply REINF O(m2) times,

in any order, to combine these profiles. We conclude that RC can be explained in O(m2) steps.

Theorem 1 now follows directly from Lemmas 5, 6 and 9.

C.2 Proof of Corollary 1

We finish our proof that the L-axiomatization in the proof is asymptotically weaker than SBorda.

For convenience, in the following proofs we use the deduction theorem, which can be easily proved
for this system: if we have given a proof of '2 using '1 as an assumption, then the deduction theorem
states that there exists a proof of ('1 ! '2) [see Ben-Ari, 2012, Thm. 3.14].

Let R,R0 be profiles and let A ✓ A. Consider the REINF-SUB axiom instance
([R

L
R0 7! A] ^ [R0 7! A]) ! [R 7! A]. We show that this axiom instance can be proven using

ADD axioms:

1. [R
L

R0 7! A] (assumption)
2. [R0 7! A] (assumption)
3. For each B ✓ A where B 6= A:

(a) ([R 7! B] ^ [R0 7! A]) ! [R
L

R0 7! B] (ADD)
(b) [R 7! B] ! [R

L
R0 7! B] (propositional reasoning from 2 and (a))

(c) ¬[R
L

R0 7! A] _ ¬[R
L

R0 7! B] (FUNC)
(d) ¬ [R

L
R0 7! B] (propositional reasoning from 1 and (c))

(e) ¬[R 7! B] (propositional reasoning from (b) and (d))
4.

W
C2P;(A) [R 7! C] (FUNC)

5. [R 7! A] (propositional reasoning from 3(e) and 4)
6. ([R

L
R0 7! A] ^ [R0 7! A]) ! [R 7! A] (deduction theorem from 1, 2, 5)

Let R be a profile, let k 2 Z+, and consider the SIMP axiom instance [kR 7! A] ! [R 7! A]. We
prove that this axiom can be proven using the MULT axiom, which is easy to deduce from ADD.

1. [kR 7! A] (assumption)
2. For each B ✓ A where B 6= A:

(a) [R 7! B] ! [kR 7! B] (MULT)
(b) ¬[kR 7! A] _ ¬[kR 7! B] (FUNC)
(c) ¬[kR 7! B] (propositional reasoning from 1 and (b))
(d) ¬[R 7! B] (propositional reasoning from (a) and (c))

3.
W

C2P;(A) [R 7! C] (FUNC)

4. [R 7! A] (propositional reasoning from 2(d) and 3)
5. [kR 7! A] ! [R 7! A] (deduction theorem from 1 and 4)
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D Details for Plurality

D.1 An Upper Bound for Plurality

There are multiple ways of rendering Sekiguchi’s [2012] proof in our formal system, where the details
depend on the exact formal axioms used. Here we give an axiomatization that leads to particularly
simple explanations.

We define a family of base profiles for our axiomatization, consisting of lollipop profiles RA
lolli, for each

non-empty A ✓ A, which has |A| voters. Write A = {x1, . . . , xk} and A \ A = {y1, . . . , ym�k}.
The first voter has preferences x1 � x2 � · · · � xk � y1 � · · · � ym�k, the second voter has
preferences x2 � x3 � · · · � xk � x1 � y1 � · · · � ym�k, and so on. For example, the profile
R{a,b,c}

lolli for A = {a, b, c, d, e} has three votes: a � b � c � d � e, b � c � a � d � e and
c � a � b � d � e. Intuitively, in the profile RA

lolli, the alternatives in A are symmetric under the
cyclic permutation (x1 x2 . . . xk), and are all stronger than the other alternatives. Thus, a symmetric
and efficient voting rule should select the alternatives in A. Note that in RA

lolli, the alternatives in A
each have plurality score 1, and other alternatives have plurality score 0.

We now define our axioms.

1. LOLLI: For a lollipop profile RA
lolli, the set of winners should be A. Formally, for each k 2 Z+⇥

kRA
lolli 7! A

⇤
.

2. TOPS: If the plurality score vectors of two profiles are same, they should select the same winners.
Formally, for any profiles R1,R2 with ↵R1 = ↵R2 , [R1 7! A] ! [R2 7! A].

3. REINF: For any two profiles R1 and R2, and any two subsets of alternatives A1 and A2 with
A1 \A2 6= ;, it holds that ([R1 7! A1] ^ [R2 7! A2]) ! [R1

L
R2 7! A1 \A2].

Let us refer to the L-axiomatization consisting of Axioms 1� 3 listed above as SPlu.
Theorem 4. For any profile R with m alternatives, the outcome of the Plurality rule can be explained
in O(m) steps assuming the L-axiomatization SPlu.

Proof. Suppose, without loss of generality, that ↵b1  ↵b2  . . .  ↵bm . Then R can be decomposed
into subprofiles as follows:

R =
mM

k=1

Ri,

where Ri is a profile in which alternatives bi, bi+1, . . . , bm each have plurality score ↵bi � ↵bi�1

and the other alternatives have plurality score 0. Write A = {bi, bi+1, . . . , bm}. Then Ri has the
same plurality score vector as the profile (↵bi � ↵bi�1)R

A
lolli. If ↵bi � ↵bi�1 > 0, then by TOPS

and LOLLI we have [Ri 7! {bi, bi+1, . . . , bm}]. By applying REINF repeatedly, we then obtain
[R 7! fP (R)] in O(m) steps.

We can obtain other similar axiomatizations and upper bounds by replacing the LOLLI axiom by
other axioms that imply the LOLLI axiom. For instance, we can use ORB and

• EFF: for every profile R in which each voter ranks a higher than b,
W

A2P;(A\{b})[R 7! A]

which says that a Pareto-dominated alternative should not be elected. It is easy to check that each
axiom instance of LOLLI can be deduced from ORB and EFF using a proof with O(m) steps.
Since the explanations in the proof of Theorem 4 contain O(m) instances of LOLLI, we can thus
produce an explanation of the plurality rule in O(m2) steps. Similarly, we can deduce instances
of LOLLI by using ORB, FAITH, and MULT (the latter as defined in Section 3), following the
arguments in Sekiguchi [2012, Lemmas 1 and 2]; this again takes O(m) steps per instance of LOLLI,
giving an overall explanation length of O(m2). Applying our framework gives a lower bound of
⌦(m) on the proof length both for the axiomatization based on efficiency, and for the one based on
faithfulness. Thus, it is conceivable that a different strategy could give shorter explanations under
these axiomatizations.
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D.2 Proof of Corollary 2

We prove the result with an additional axioms called equal support (this strengthens the lower bound),
which says that in a profile where each alternative has either plurality score 1 or 0, the alternatives
with score 1 are elected. First we formally define new axioms: orbit, faithfulness, equal support, and
tops-only. The plurality score ↵R

c of an alternative c 2 A in profile R is the number of voters in R
who rank c in top position. For a bijection � : A ! A and a strict order � 2 A!, write �(�) for the
strict order obtained from � by relabeling alternatives according to �, so that �(a)�(�)�(b) if and
only if a � b. Given a profile R, write �(R) for the profile with �(R)(�(�)) = R(�) obtained
from R by relabeling alternatives according to �. Then we say that a profile R is invariant under � if
R = �(R).

• ORB: If a profile R is invariant under a bijection � : A ! A, and �(i) = j, we haveW
A2↵i,j

[R 7! A] where ↵i,j ✓ P;(A) is the set of outcomes such that {i, j} ✓ A or
{i, j} \A = ;.

• FAITH: If a profile R contains only a single voter who ranks alternative a first, we have
[R 7! {a}].

• EQUAL: Let R be a profile in which ↵R
a 2 {0, 1} for all a 2 A. Then the alternatives with

score 1 are elected, so we have
⇥
R 7! {a 2 A : ↵R

a = 1}
⇤
.

• TOPS: If the plurality score vectors of two profiles are same, they should select the same
winners. Formally, for any profiles R1,R2 with ↵R1 = ↵R2 , [R1 7! A] ! [R2 7! A].

Formally speaking, Corollary 2 claims a lower bound for the axiomatization consisting of REINF,
ORB, FAITH, EQUAL, and TOPS. Note that the axiomatization does not contain a formal version
of anonymity; that axiom is implicit in our formal setup and the definition of R.

Proof of Corollary 2. We embed profiles into the linear space V = Qm, using h which maps a
profile R to the plurality score vector ↵R = (↵R

a )a2A and g = argmax. The set S consists of
all single-voter profiles and of all profiles with ↵R

a 2 {0, 1} for each a 2 A. The set S is finite.
Further, we use predicates T = {tij : tij(v) = vi � vj}. With these predicates, a PRED instance
requires that in a profile R in which alternatives i and j have the same plurality score, either both
are winners or both are losers. Now assume that the profile R is invariant under the permutation �
with �(i) = j. Then we automatically have ↵i = ↵j . Hence, each instance of ORB can be inferred
from an instance of PRED. To calculate the sensitivity sen(g, T ) consider for instance the size of the
smallest T 0 ✓ T that uniquely identifies the outcome A. Outcome A only occurs in profiles in which
all alternatives have the same plurality score. Note that t�1

ij (0) is the set of vectors v with vi = vj .
A smallest set T 0 such that

T
ti2T 0 g(t�1

i (0)) = {A} is T 0 = {t12, t13, . . . , t1m}. Similarly one can
show that at least m� 1 predicates are required to uniquely determine any other outcome. It follows
that sen(g, T ) = m� 1. The axiomatization stated in the corollary is asymptotically weaker than
the axiomatization derived from the embedding: FAITH and EQUAL are implied by INIT, ORB is
implied by PRED, and TOPS is implied by EMB.

Corollary 2 applies to the axiomatization Splu used in Theorem 4, since EQUAL prescribes the output
at any lollipop profile, so any LOLLI axiom instance can be deduced from EQUAL and REINF.
Thus, Splu is asymptotically weaker than the axiomatization in Corollary 2. Hence, explanations
using Splu require ⇥(m) steps.

E Details for Approval Voting

E.1 Proof of Corollary 3

Let us redefine R to be the set of functions R : P;(A) ! N of profiles of approval ballots; the
function R specifies how many voters submit a given set of approved candidates. With this alternative
definition, we can define notions like voting rules f : R ! P;(A) and our language L exactly as
before. Also, everything in Sections 4.1 and 4.2, and in particular the main lower bound of Theorem 2,
continues to apply with the new R. For the distribution over R used in the definition of “with high
probability” for Theorem 2, we can take any distribution D over R as long as h(supp(D)) spans
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V , for example impartial culture for approval profiles (which selects each voter’s approval set i.i.d.
uniformly at random).

Now let us define axioms appropriate for the approval-based setting. Given a profile R, the approval
score of an alternative a is the number of voters who approve a.

1. REINF: For any two profiles R1 and R2, and any two subsets of alternatives A1 and A2 with
A1 \ A2 6= ;, it holds that ([R1 7! A1] ^ [R2 7! A2]) ! [R1

L
R2 7! A1 \A2]. (Note that

this is identical to the previous definition for strict orders.)
2. ORB: If a profile R is invariant under a bijection � : A ! A, and �(i) = j, we haveW

A2↵i,j
[R 7! A] where ↵i,j ✓ P;(A) is the set of outcomes such that {i, j} ✓ A or {i, j} \

A = ;.
3. FAITH-AV: If a profile R contains only a single voter with approval set A, we have [R 7! A].
4. DE: If a profile R contains exactly two voters, one with approval set A and one with approval

set B where A \B = ;, we have [R 7! A [B].
5. CANC-AV: If in profile R all alternatives have the same approval score, then [R 7! A].

The voting rule Approval Voting (AV) selects the set of alternatives with maximum approval score.
To prove our lower bound, similarly to plurality, we embed AV into V = Qm using h which maps a
profile R to the vector of approval scores, and g = argmax. The set S consists of all single-voter
profiles, all two-voter profiles with disjoint approval sets, and all profiles in which all alternatives
have the same approval score. Then S satisfies the conditions of Theorem 2, because the first two
parts are finite, and the third part maps to a one-dimensional subspace of V . For the set of predicates,
we again take T = {tij : tij(v) = vi � vj} with sensitivity m� 1.

The axiomatization with axioms 1–5 above is asymptotically weaker than the axiomatization from
Theorem 2: REINF follows from ADD, ORB follows from PRED, and FAITH-AV, DE, CANC-AV
all follow from INIT.

To obtain an upper bound on the length of explanations for AV, one can follow the proofs by Brandl
and Peters [2019].
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