- We thank the reviewers for their detailed reviews and constructive feedback. Below we respond to each review as much
- 2 as space allows, to provide clarification on points of confusion and answer the questions raised. We are grateful to see
- 3 that the responses are unanimously positive and we hope this work will be beneficial to the field as a whole.

4 Reviewer #1

- 5 Improvement of ALEBO: Thanks for raising this. On stationary problems with low-d structure, the magnitude of
- 6 improvement is large (Fig. 5). Now, as we show, real-world problems can be more complicated and while the
- 7 improvement over REMBO remained large, local-search methods were highly competitive. However, there are still
- 8 settings where linear embedding BO (and thus ALEBO) would be the best choice. The promise of embedding BO is
- 9 that all of the BO machinery developed over the years can be applied directly to HDBO. For instance, BO can maintain
- high sample efficiency with high parallelism (e.g., 100 total iterations spread across 25 workers, where iterations take
- 11 hours or days). The same is not true for local search methods, including TuRBO, which requires sequential iterations
- to move the trust region. Other settings where BO is not matched by local search include cost-aware, multi-task, and
- multi-fidelity, to name a few. We will add discussion of this in the extra page.
- 14 Selecting d_e : This is a great point we will discuss in more detail. In some problems (e.g. robot locomotion) there is
- domain knowledge. Practically, the evaluation budget will be an important factor: 500 function evaluations will support
- a higher embedding dimension than 25. Sensitivity is explored in S9, and ALEBO is shown to be better than prior work.
- 17 Constraint on NASBench: See R3. Supplemental: Thanks for the suggestion, we will update to improve clarity!

Reviewer #2

- 19 Clarifications: Thanks for pointing these out, we will clarify them. k=4 is the recommendation made in the REMBO
- paper, which does some sensitivity analysis. L213: the random subspace will not be axis aligned w.p. 1.
- Selecting d_e : This was also brought up by R1 and is clearly a topic of importance, which has not been thoroughly
- explored by the embedding BO literature. The Mahalanobis kernel can be sample-efficient despite the quadratic number
- of hyperparameters parameters because of the posterior sampling, which avoids overfitting (Fig. S2). The optimization
- in Fig. 5(center) used d_e =12, yet had excellent performance already at 25 iterations. We will add discussion of this.
- 25 Kernel evaluation: Prop. 1 gives a generative model for the kernel starting from a d-dim ARD RBF. We will add the
- 26 requested comparison; from the theoretical result in Prop. 1 there is little reason to doubt its performance.

27 Reviewer #3

- 28 On performance: Thanks for the review, we agree that one conclusion of the paper is that linear embedding BO is not
- 29 appropriate in every case. But we do want to highlight that there are other reasons why one might still favor linear
- 30 embedding BO over methods like local search (CMA-ES, TuRBO) that performed strongly in our results; see the
- response to R1, which describes high parallelism and multi-fidelity optimization as two such settings.
- NASBench: Real problems of interest to us have constraints, and CMA-ES and TuRBO do not guarantee constraint satisfaction. We added results where we apply them via low objective for infeasibility, and ALEBO remained best.
- ³⁴ Constrained BO: The biggest benefit of linear embedding BO is the ability to directly apply existing BO techniques. In
- 35 Fig. 6, we actually did use the constrained EI of Gardner et al. 2014; this is described in Sec. S5. Random embeddings
- 36 are especially useful for constrained BO because we can maintain the same embedding for all outcomes. The method is
- agnostic to the acquisition function, and cPES or cMVES could be used just as easily. We'll move this to the main text.
- 38 Nonlinear embeddings: Thanks for the suggestion, we will add discussion of this in the extra page. In short, the main
- 39 findings all apply to the nonlinear case. A GP must be able to fit well in the embedding. End-to-end training a VAE to
- 40 include GP likelihood is an important first step, but then the same considerations apply for handling box bounds and
- 41 maintaining optima in the embedding. We will discuss potential extensions of our solutions.

42 Reviewer #4

- 43 MOO: Thanks for the suggestion. As discussed above, a benefit of linear embedding BO is that techniques like MOO
- can be directly applied. Similar to how constraints are handled in Sec. S5, we would evaluate multiple objectives in the
- embedding and use a MOO acquisition function. We will add discussion of this.
- 46 Popt: Thanks for raising this, we can increase clarity around this. The constrained space is not guaranteed to contain an
- optimum; this is the Popt evaluated in Sec. 5. Under the problem prior used there, Popt for ALEBO is higher than for
- 48 HeSBO. REMBO can use a larger space by clipping to the boundaries, but this makes the function harder to model, and
- so it is harder to find the optimum even if it is in the space.
- 50 Prop 1: The Mahalanobis kernel is specific for ARD RBF, but the corresponding result for a stationary kernel is that
- 51 stationary in the true space implies stationary in the embedding (a result that does not hold with clipping to box bounds).
- 52 CIFAR: See R3; it will be added.