
Supplemental Materials: Re-Examining Linear Embeddings for
High-Dimensional Bayesian Optimization

This supplemental material contains a number of additional results and analyses to support the main
text.

S1 HeSBO Embeddings

We consider HeSBO embeddings in the case of a random axis-aligned true subspace, and a uniform
prior on the location of the optimum within that subspace. As explained in Sec. 4, with d = 2 and this
prior, regardless of de or D there are three possible embeddings: (1) each of the active parameters
are captured by a parameter in the embedding; (2) the embedding is constrained to the diagonal
xi1 = xi2 ; or (3) the embedding is constrained to the diagonal xi1 = −xi2 . Fig. S1 shows these
three embeddings for the Branin problem from the top row of Fig. 1.

Within the first embedding, the optimal value of 0.398 can be reached. Within the second, the best
value is 0.925 and within the third it is 17.18. Under a uniform prior on the location of the optimum
within a random axis-aligned true subspace, it is easy to compute the probability that the HeSBO
embedding contains an optimum:

Popt(de) =
de!

(de − d)!dde
. (S1)

For d = 2, this is exactly the probability of the first embedding shown in Fig. S1. This probability
does not depend on D, but increases with de, and is the probability shown in Fig. 4.

S2 The Mahalanobis Kernel

When fitting the Mahalanobis kernel derived in Proposition 1, we use an approximate Bayesian
treatment of Γ to improve model performance while still maintaining tractability. We propagate
uncertainty in Γ into the GP posterior by first constructing a posterior for Γ using a Laplace approx-
imation with a diagonal Hessian, and then drawing m samples from that posterior. The marginal
posterior for f(y) can then be approximated as:

p(f(y)) ≈ 1

m

m∑
i=1

p(f(y)|Γi).

Because of the GP prior, each conditional posterior p(f(y)|Γi) is a normal distribution with known
mean µi and variance σ2

i . Thus the posterior p(f(y)) is a mixture of Gaussians, which we can

−1.0 −0.5 0.0 0.5 1.0

x1

−1.0

−0.5

0.0

0.5

1.0

x
2

−1.0 −0.5 0.0 0.5 1.0

x1

−1.0 −0.5 0.0 0.5 1.0

x1

Figure S1: Three possible HeSBO embeddings of the d = 2 Branin function. (Left) The first
embedding fully captures the function, and thus captures all three optima. (Middle) The second is
restricted to the subspace x1 = −x2. This subspace does not contain an optimum, but comes fairly
close. (Right) The third embedding is restricted to the subspace x1 = x2 and does not come close to
any optimum.

1

−2 −1 0

True value

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

M
o
d
el

p
re

d
ic

ti
o
n

ARD RBF

−2 −1 0

True value

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Mahalanobis
point estimate

−3 −2 −1 0 1

True value

−3

−2

−1

0

1

Mahalanobis
posterior sampled

Figure S2: Test-set model predictions for three GP kernels on the same train/test data generated by
evaluating the Hartmann6 D=100 function on a fixed linear embedding. A typical ARD kernel fails
to learn and predicts the mean. The Mahalanobis kernel predicts well, and posterior sampling is
important for getting reasonable predictive variance.

approximate using moment matching:

p(f(y)) ≈ N

(
1

m

m∑
i=1

µi,
1

m

m∑
i=1

σ2
i + Vari[µi]

)
.

We do this to maintain a Gaussian posterior, under which acquisition functions like EI have analytic
form and can easily be optimized, even subject to constraints as in (1).

As described in Sec. 5, we show the importance of the Mahalanobis kernel using models fit to
data from the Hartmann6 D=100 function. We generated a projection matrix B using hypersphere
sampling to define a 6-d linear embedding. We then generated a training set (100 points) and a test
set (50 points) within that embedding—that is, within the polytope given by (1)—using rejection
sampling. We fit three GP models with different kernels to the training set, and then evaluated each
on the test set: a typical ARD RBF kernel in 6 dimensions, the Mahalanobis kernel using a point
estimate for Γ, and the Mahalanobis kernel with posterior marginalization for Γ as described above.

Fig. S2 compares model predictions for each of these models with the actual test-set outcomes; results
here are the same as in Fig. 3 with the addition of the Mahalanobis point estimate kernel. With an
ARD RBF kernel, the GP predicts the function mean everywhere, which is typical behavior of a GP
that has failed to learn the function. With the same training data, the Mahalanobis kernel is able to
make accurate predictions on the test set. Using a point estimate for Γ significantly underestimates
the predictive variance, which is rectified by using posterior sampling as described above. In BO
exploration is driven by model uncertainty, so well-calibrated uncertainty intervals are especially
important.

Fig. S3 evaluates the predictive log marginal probabilities for the ARD RBF kernel and the Ma-
halanobis kernel with posterior sampling across a wide range of training sets with different sizes
(without posterior sampling, Fig. S2 shows that the Mahalanobis point estimate significantly under
covers and so has very poor predictive log marginal probabilities). We used the same linear embed-
ding and Hartmann6 D=100 function used in Fig. S2 to sample 1000 test points which were held
fixed. For each of 8 training set sizes ranging from 40 to 200, we randomly sampled 20 training sets
from the embedding. For each training set, we fit the two GPs, made predictions on the 1000 test
points, and then computed the average marginal log probability of the true values. Fig. S3 shows that
as the training set size increased from 40 to 200, the ARD RBF kernel could only improve slightly on
predicting the mean, as it did in Fig. S2; even 200 points in the 6-d embedding were not sufficient to
significantly improve the model. For small training set sizes, the Mahalanobis kernel (with sampling)
had high variance in log likelihood, as it has the potential to overfit and thus under cover. But for
training set sizes of 50 and greater it had better predictive log likelihood than the ARD RBF kernel,
and continued to learn as the training set size was increased. For small datasets, the Mahalanobis
kernel can overfit and thus have poor predictive likelihood, but for the purposes of BO, overfitting
can be better than not fitting at all (predicting the mean), even when predicting the mean has better

2

50 75 100 125 150 175 200

Training set size

−1.0

−0.5

0.0

0.5

1.0

1.5

A
v
er

a
g
e

te
st

-s
et

lo
g

li
k
el

ih
o
o
d

Mahalanobis, sampled

ARD RBF

Figure S3: Average test-set log likelihood as a function of training set size, for training sets randomly
sampled from a fixed linear embedding. Log marginal probabilities were averaged over a fixed test
set of 1000 random points. For each training set size, 20 random training sets were drawn of that size
and the figure shows the average result over those draws (with error bars for two standard errors).
The ARD RBF kernel continues to predict the mean as the training set size is increased, while the
Mahalanobis kernel is able to learn as the training set is expanded.

predictive log likelihood. This can be seen in the optimization results (Figs. 5 and S7) where ALEBO
showed strong performance even with less than 50 iterations.

S3 Stationarity in the Embedding

A stationary kernel is one that depends only on x − x′, not on the individual values of x and x′,
and is thus invariant to translation [41]. The following result shows that with linear embeddings,
stationarity in the true function implies stationarity in the embedding.
Proposition S1. Suppose the function on the true subspace is drawn from a GP with a stationary
kernel: fd ∼ GP(m(·), k(·, ·)) where k(z, z′) = κ(z − z′). Let g(y) = TB†y. For any pair of
points in the embedding y and y′,

Cov[fB(y), fB(y′)] = κ̃(y − y′) ,

where κ̃ = κ ◦ g. The implied kernel on the embedding is thus stationary.

Proof. The argument follows that of Prop. 1. As shown there, fB(y) = fd(TB†y). Then,

Cov[fB(y), fB(y′)] = Cov[fd(TB†y), fd(TB†y′)]

= κ(TB†y − TB†y′)

= κ̃(y − y′).

Consider now clipping to box bounds in the ambient space with the L2 projection pB. Then,
fB(y) = fd(T pB(B†y)), and the implied kernel in the embedding is

Cov[fB(y), fB(y′)] = κ(T (pB(B
†y)− pB(B†y′))).

This is clearly non-stationary, because pB is not translation invariant.

S4 Polytope Bounds on the Embedding

Rather than using projections to the box bounds B, we specify polytope constraints in (1). Fig. S4
illustrates the embedding with these constraints for the same Branin D = 100 problem from the top
row of Fig. 1. The embedding in the left figure was created with the REMBO strategy of sampling
each entry from N (0, 1). For the embedding in the right figure, that same projection matrix had

3

−40 −20 0 20 40

x1

−30

−20

−10

0

10

20

30

x
2

−50 −25 0 25 50

x1

−40

−20

0

20

40

x
2

Figure S4: (Left) An embedding from a N (0, 1) projection matrix on the same Branin D = 100
problem from Fig. 1 subject to constraints of (1). (Right) The embedding from the same projection
matrix after normalizing the columns to produce unit circle samples. Sampling from the unit circle
increases the probability that an optimum will fall within the embedding, and polytope bounds avoid
nonlinear distortions.

each column normalized. This converts the projection matrix to be a sample from the unit circle, as
described in Sec. 4.

The N (0, 1) embedding does not contain any optima within the polytope bounds. Converting that
projection matrix to a hypersphere sample rounds out the vertices of the polytope and expands the
space to capture two of the optima. Consistent with Fig. 4, we see that hypersphere sampling
significantly improves the chances of the embedding containing an optimum. Fig. S4 also shows that
with the polytope bounds, we avoid the nonlinear distortions seen with REMBO in Fig. 1.

Note that adding linear constraints to a non-convex optimization problem (acquisition function
optimization) does not change the complexity of that problem.

S5 Evaluating the Probability the Embedding Contains an Optimum

As in other parts of the paper, we consider a uniform prior on the location of the optimum within a
random axis-aligned subspace. A random true projection matrix T is sampled by selecting d columns
at random and setting each to one of the d-dimensional unit vectors. z∗ is then sampled uniformly at
random from [−1, 1]d. B is sampled according to the desired strategy, which in our experiments was
REMBO (N (0, 1) entries), HeSBO, or hypersphere. Given these three quantities, we can evaluate
whether or not the embedding contains an optimum that satisfies the constraints of (1) by solving the
following linear program:

maximize 0>x

subject to Tx = z∗,

(B†B − I)x = 0,

x ≥ −1,

x ≤ 1.

If this problem is feasible, then the embedding produced by B contains an optimum; if it is infeasible,
then it does not. Solving this over many draws of T , z∗, and B produces an estimate of Popt under
that prior for the location of optima. Here we used a uniform prior, but this linear program can be
taken to compute Popt under any prior.

Fig. S5 shows Popt for the three embedding strategies as a function of d and de, for D fixed at 100.
The results shown for d = 2 and d = 6 are those given in the main text in Fig. 4. Fig. S6 shows Popt
for a wide range of values of d and D, for hypersphere sampling. Across this wide range we see
that for many values of d we can achieve high values of Popt with reasonable values of de, even for
relatively high values of D.

4

0 5 10 15 20

de

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

b
a
b
il
it

y
em

b
ed

d
in

g
co

n
ta

in
s

o
p
ti

m
iz

er

d = 2

REMBO

HeSBO

Hypersphere

0 5 10 15 20

de

d = 6

0 5 10 15 20

de

d = 10

Figure S5: Popt as estimated in Fig. 4, extended with the results for d = 10. Setting de > d
significantly improves the probability of the embedding containing an optimum.

2 6 10 14 18

Embedding de

2

6

10

14

18

T
ru

e
su

b
sp

a
ce

d
im

en
si

o
n
d

D = 50

2 6 10 14 18

Embedding de

D = 100

2 6 10 14 18

Embedding de

D = 200

0.00

0.25

0.50

0.75

1.00

Figure S6: Popt for hypersphere sampling, as estimated in Fig. 4 but here for a wider range of values
of d and D. Contour color indicates Popt. Doubling D decreases Popt for d and de fixed, however
even at D = 200, high values of Popt with reasonable values of de can be had for many values of d.

S6 Selecting the Embedding Dimension

Linear embedding HDBO requires selecting a dimensionality for the embedding. The results in
Sections 5 and S5 show clearly that choosing an embedding dimensionality higher than that of the
true subspace is vital for obtaining a high probability of the the embedding containing an optimum. In
principal, if one knew the true subspace dimension d, the results of Sec. S5 could be used to calculate
Popt as a function of de, and then de could be chosen to reach a desired value of Popt. In practice,
however we will not typically know what the true subspace dimension is, or even be certain of the
existence of a true, linear subspace.

In real BO problems, which have expensive function evaluations, there is always a sample budget
that depends on the function evaluation cost and available resources. A simulation that takes several
minutes may allow a few hundred iterations, as in the Daisy experiment of Sec. 7. When function
evaluations are A/B tests that take around a week, the evaluation budget may be limited to less than
50 iterations [e.g., 29]. Generally in BO, there is a trade-off between the number of parameters one
can optimize and the number of iterations that will be required, and in real problems one must select
the number of parameters according to the evaluation budget. In that sense, there is no difference
with linear embedding HDBO: de should be set to the highest value that is supported by the available
evaluation budget. With a budget of 50 iterations and de = 15, it will be unlikely to get good model
fit quickly enough to effectively optimize, so smaller values like 8 or 10 would be warranted. On the
other hand, with the 500 iteration budget of the Daisy problem, one could set de in the 15–20 range
(the maximum supported by normal BO) to maximize Popt.

5

Simulations and model cross-validation can be helpful for identifying the maximum number of
parameters that can be effectively tuned for a particular evaluation budget, but there has been little
work in this area. The nature of the dimensionality vs. iteration budget trade-off is important in all
real BO problems, not just with linear embedding HDBO, so appropriate heuristics for this question
is an important area of future work.

S7 Handling Black-Box Constraints in High-Dimensional Bayesian
Optimization

In many applications of BO, in addition to the black-box objective f there are black-box constraints
cj and we seek to solve the optimization problem

minimize f(x)
subject to cj(x) ≤ 0, j = 1, . . . , J,

x ∈ B.
In most settings the constraint functions cj are evaluated simultaneously with the objective f .
Constraints are typically handled in BO by fitting a separate GP to each outcome (that is, to f and to
each cj). The acquisition function is then modified to consider not only the objective value but also
whether the constraints are likely to be satisfied [e.g., 14].

The extension of BO in an embedding to constrained BO is straightforward, so long as the same
embedding is used for every outcome. A separate GP (in the case of ALEBO, using the Mahalanobis
kernel) is fit to data from each outcome. Because the embedding is shared, predictions can be made
for all of the outcomes at any point in the embedding. This allows us to evaluate and optimize an
acquisition function for constrained BO in the embedding. Once a point is selected, it is projected up
to the ambient space and evaluated on f and each cj as usual. Random projections are especially
well-suited for constrained BO because there is no harm in requiring the same projection for all
outcomes, since it is a random projection anyway.

These same considerations apply to multi-objective optimization. Acquisition functions for multi-
objective optimization can be directly applied to HDBO using linear embeddings in the same way
that those for constrained optimization are used here.

S8 Additional Benchmark Experiment Results

Here we provide results from two additional benchmark problem (Hartmann6D=100, and Hartmann6
random subspace D=1000), three additional methods (LineBO variants), and provide a study of the
sensitivity of ALEBO performance to de and D. We also provide implementation details for the
experiments, and an extended discussion of the results from each experiment.

S8.1 Method Implementations and Experiment Setup

The linear embedding methods (REMBO, HeSBO, and ALEBO) were all implemented using BoTorch,
a framework for BO in PyTorch [2], and so used the same acquisition functions and the same tooling
for optimizing the acquisition function. Importantly, this means that all of the difference seen between
the methods in the empirical results comes exclusively from the different models and embeddings.
EI was the acquisition function for the Hartmann6 and Branin benchmarks, and NEI [30] was used
to handle the constraints in the Gramacy problem. ALEBO and HeSBO were given a random
initialization of 10 points, and REMBO was given a random initialization of 2 points for each of its 4
projections used within a run.

The remaining methods used reference implementations from their authors with default settings for
the package: REMBO-φkΨ and REMBO-γkΨ

1; EBO2; Add-GP-UCB 3; SMAC4; CMA-ES5; and
1github.com/mbinois/RRembo
2github.com/zi-w/Ensemble-Bayesian-Optimization
3github.com/dragonfly/dragonfly, with option acq="add_ucb"
4github.com/automl/SMAC3, SMAC4HPO mode
5github.com/CMA-ES/pycma

6

github.com/mbinois/RRembo
github.com/zi-w/Ensemble-Bayesian-Optimization
github.com/dragonfly/dragonfly
github.com/automl/SMAC3
github.com/CMA-ES/pycma

CoordinateLineBO, RandomLineBO, and DescentLineBO6. EBO requires an estimate of the best
function value, and for each problem was given the true best function value. SMAC and CMA-ES
require an initial point, and were given the point at the center of the ambient space box bounds. See
the benchmark reproduction code at github.com/facebookresearch/alebo for the exact calls
used for each method.

The function evaluations for all problems were noiseless, so the stochasticity throughout the run
and in the final value all comes from stochasticity in the methods themselves. For linear embedding
methods the main sources of stochasticity are in generating the random projection matrix and in the
random initialization.

S8.2 Analysis of experimental results

Fig. S7 provides a different view of the benchmark results of Fig. 5, showing log regret for each
method, averaged over runs with error bars indicating two standard errors of the mean. This is
evaluated by taking the value of the best point found so far, subtracting from that the optimal value
for the problem, and then taking the log of that difference. The results are consistent with those seen
in Fig. 5, and the standard errors show that ALEBO’s improvement in average performance over the
other methods is statistically significant. We now discuss some specific aspects of these experimental
results.

Branin D=100 Starting from around iteration 20, ALEBO performed the best of all of the methods.
The distribution of final iteration values shows that in one iteration the ALEBO embedding did not
contain an optimum and so achieved a final value near 10. However, across all 50 runs nearly all
achieved a value very close to the optimum, leading to the best average performance. Without the log
transform (Fig. 5), SMAC and the additive GP methods were the next best performing.

The poor performance of HeSBO on this problem (particularly in Fig. 5 without the log, where
it is outperformed by all methods other than Sobol) can be attributed entirely to the embedding
not containing an optimum. Recall that for this problem there are exactly three possible HeSBO
embeddings, which are shown in Fig. S1. As explained in Sec. S1, the first embedding contains the
optimum of 0.398, while the best value in the other embeddings are 0.925 and 17.18. Thus, if the BO
were able to find the true optimum within each embedding with the budget of 50 function evaluations
given in this experiment, the expected best value found by HeSBO would be:

0.398Popt + 0.925

(
1− Popt

2

)
+ 17.18

(
1− Popt

2

)
.

This is the best average performance one can hope to achieve using the HeSBO embedding on
this problem. Using (S1) we can compute Popt for de = 4 as 0.75, and it follows that the HeSBO
expected best value is 2.56. This is nearly exactly the average best-value shown in Fig. 5. The poor
performance of HeSBO is thus not related to BO, but comes entirely from the 12.5% chance of
generating an embedding whose optimal value is 17.18. The presence of these embeddings can be
clearly seen in the distribution of final best values in Fig. 5.

Hartmann6 D=1000 As noted in the main text, the additive kernel methods and REMBO-γkΨ

could not scale up to the 1000 dimensional problem. SMAC also became very slow and was only
run for 10 repeats (rather than 50) on the D=1000 problems. A nice property of linear embedding
approaches is that the running time is not significantly impacted by the ambient dimensionality.
Table S1 gives the average running time per iteration for the various benchmark methods (all run
on the same 1.90GHz processor and allocated a single thread). Inferring the additional parameters
in the Mahalanobis kernel and the added linear constraints make ALEBO slower than other linear
embedding methods, but it is faster than the additive kernel methods (an order of magnitude faster
than Add-GP-UCB), and at D=1000 is an order of magnitude faster than SMAC. The average of
about 50s per iteration is short relative to the function evaluation time of typical resource-intensive
BO applications.

On both this problem and the D=100 version, REMBO performed worse than Sobol, despite there
being a true linear subspace that satisfies the REMBO assumptions. The source of the poor perfor-

6github.com/jkirschner42/LineBO

7

github.com/facebookresearch/alebo
github.com/jkirschner42/LineBO

0 10 20 30 40 50

−6

−4

−2

0

2
L

o
g

re
g
re

t

Branin, d=2, D=100

0 25 50 75 100 125 150 175 200

−2

−1

0

1

L
o
g

re
g
re

t

Hartmann6, d=6, D=1000

0 10 20 30 40 50

−6

−4

−2

L
o
g

re
g
re

t

Gramacy, d=2, D = 100

0 25 50 75 100 125 150 175 200

−4

−2

0

L
o
g

re
g
re

t

Hartmann6, d=6, D=100

ALEBO

REMBO

HeSBO, de=d

HeSBO, de=2d

REMBO-φkΨ

REMBO-γkΨ

EBO

Add-GP-UCB

SMAC

CMA-ES

TuRBO

Sobol

CoordinateLineBO

RandomLineBO

DescentLineBO

0 25 50 75 100 125 150 175 200

Function evaluations

−2

−1

0

1

L
o
g

re
g
re

t

Hartmann6, d=6 random subspace, D=1000

Figure S7: Log regret for the benchmark experiments of Fig. 5, plus Hartmann6 with D=100 and
with a random (non-axis-aligned) subspace in D=1000. Each trace is the mean over 50 repeated runs,
with errors bars showing two standard errors of the mean. ALEBO was a best-performing method
on all problems; on Hartmann6 D=100 it tied with REMBO-γkΨ, TuRBO, and SMAC as the best
methods.

8

Table S1: Average running time per iteration in seconds on the Hartmann6 problem, D=100 and
D=1000.

D=100 D=1000
ALEBO 42.7 52.5
REMBO 1.6 1.9
HeSBO, de=d 1.1 2.0
HeSBO, de=2d 1.1 2.3
REMBO-φkΨ 2.1 1.1
REMBO-γkΨ 7.2 —
EBO 69.6 —
Add-GP-UCB 995.0 —
SMAC 26.2 1137.9
CMA-ES 0.0 0.1
Sobol 0.1 0.8

mance is the poor representation of the function on the embedding illustrated in Fig. 1. Correcting
these issues as is done in ALEBO significantly improves the performance.

Hartmann6 D=100 ALEBO, REMBO-γkΨ, TuRBO, and SMAC were the best-performing meth-
ods on this problem. HeSBO and Add-GP-UCB both did very well early on, but then got stuck
and did not progress significantly after about iteration 50. For HeSBO, this is likely because the
performance is ultimately limited by the low probability of the embedding containing an optimum.

This problem was used to test three additional methods beyond those in Fig. 5: CoordinateLineBO,
RandomLineBO, and DescentLineBO [27]. These are recent methods developed for high-dimensional
safe BO, in which one must optimize subject to safety constraints that certain bounds on the functions
must not be violated. The performance of these methods can be seen in the fourth panel of Fig. S7:
all three LineBO variants perform much worse than Sobol, and show almost no reduction of log
regret. This finding is consistent with the results of Kirschner et al. [27], who used the Hartmann6
D=20 problem as a benchmark problem. At D=20, they found that CoordinateLineBO required
about 400 iterations to outperform random search, and even after 1200 iterations RandomLineBO and
DescentLineBO did not perform better than random search. These methods are designed specifically
for safe BO, which is a significantly harder problem than usual BO that has much worse scaling
with dimensionality. The primary challenge for high-dimensional safe BO lies in optimizing the
acquisition function, which is difficult even for relatively small numbers of parameters where there is
no difficulty in optimizing the traditional BO acquisition function. The LineBO methods develop new
techniques for acquisition function optimization, but do not consider difficulties with GP modeling in
high dimensions, which is the main focus of HDBO work. LineBO methods perform very well on
safe BO problems relative to other methods, but ultimately non-safe HDBO is not the problem that
they were developed for, and so it is not surprising to see that they were not successful on this task.

Hartmann6 random subspace D=1000 Linear embedding BO methods assume the existence
of a true linear subspace, but do not assume anything about the orientation of that subspace and
are generally invariant to rotation. Prior work on HDBO has typically focused on the axis-aligned
(unused variables) problems that we used here, but we also include a non-axis-aligned problem. We
generated a random true embedding by sampling a rotation matrix from the Haar distribution on the
special orthogonal group SO(D) [45], and then taking the first d rows to specify a projection matrix
T from D = 1000 down to d = 6. This defines a non-axis-aligned true subspace, and we took the
true low-dimensional function fd as the Hartmann6 function on this subspace. Bayesian optimization
proceeded as with the other problems, and results for the linear subspace methods were similar to the
axis-aligned D=1000 problem, except REMBO performed equal to HeSBO.

S8.3 Sensitivity of ALEBO to Embedding and Ambient Dimensions

We study sensitivity of ALEBO optimization performance to the embedding dimension de and the
ambient dimension D using the Branin function. To test dependence on de, for D = 100 we ran 50
optimization runs for each of de ∈ {2, 3, 4, 5, 6, 7, 8}. To test dependence on D, for de = 4 we ran

9

0 10 20 30 40 50

Function evaluations

0

2

4

6

B
es

t
va

lu
e

fo
u
n
d

Branin, D = 100

de = 2

de = 3

de = 4

de = 6

de = 8

0 10 20 30 40 50

Function evaluations

Branin, de = 4

D = 50

D = 100

D = 200

D = 500

D = 1000

Figure S8: ALEBO performance on the Branin problem, (Left) as a function of embedding dimension
de and (Right) as a function of ambient dimension D. Performance shown is the average of 50
repeated runs. Optimization performance is poor with de = 2, but shows little sensitivity to de for
values greater than 2. Optimization performance shows little sensitivity with D, all the way up to
D = 1000.

2 3 4 5 6 7 8

Embedding dimension de

0.5

1.0

1.5

2.0

2.5

B
es

t
va

lu
e

fo
u
n
d

Branin, D = 100

50 200 500 1000

Ambient dimension D

Branin, de = 4

Figure S9: Final best value for the Branin problem optimizations of Fig. S8, as mean with error bars
showing two standard errors. With the exception of de of 2 or 3, optimization performance was good
across a wide range of values of de and D.

50 optimization runs for each of D ∈ {50, 100, 200, 500, 1000}. Note that the de = 4 and D = 100
case in each of these is exactly the optimization problem of Fig. 5.

The results of the optimizations are shown in Figs. S8 and S9. For de = d, optimization performance
was poor. From Fig. 4 we know this is because there is a low probability of the embedding containing
an optimizer. Increasing de increases that probability, but also increases the dimensionality of the
embedding and thus reduces the sample efficiency of the BO in the embedding. This trade-off can be
seen clearly in Fig. S8: with de = 2 there is rapid improvement that then flattens out because of the
lack of good solutions in the embedding, whereas for de = 8 the initial iterations are worse but then
it ultimately is able to find much better solutions. Even at de = 8 the average best final value was
better than that of any of the comparison methods in Fig. 5.

The ambient dimension D will not directly impact the GP modeling in ALEBO, which depends
only on de, however it will impact the probability the embedding contains an optimum as shown in
Fig. S6. Consistent with the strong ALEBO performance for the Hartmann6 D=1000 problem, we
see here that even increasing D to 1000 does not significantly alter optimization performance. Even
at D = 1000, ALEBO had better performance than the other benchmark methods had on D = 100.

10

0 10 20 30 40 50

Function evaluations

0

2

4

6

B
es

t
va

lu
e

fo
u
n
d

Branin, D = 100

ALEBO

Ablation: Matern kernel

Ablation: Normal projection

Figure S10: Ablation study results comparing full ALEBO (same trace from Fig. 5) with: (1)
Ablation of the Mahalanobis kernel, replacing it with an ARD Matern 5/2 kernel, and (2) Ablation of
the hypersphere-sampled projection matrix, replacing it with an i.i.d. normal random matrix. Both
components are necessary for the good HDBO performance of ALEBO, with the Mahalanobis kernel
the most important factor.

S8.4 Ablation Study

We use an ablation study to better understand the impact of two of the new developments incorporated
into ALEBO: the Mahalanobis kernel for improved modeling in the embedding, and the hypersphere
sampling for increasing the probability that the embedding contains an optimum. We used the Branin
D = 100 problem for this study, with de = 4 as in Fig. 5. For the ablation of the kernel, we replaced
the Mahalanobis kernel with an ARD Matern 5/2 kernel. For the ablation of the sampling, we
replaced hypersphere sampling with the random normal samples used by REMBO. Results are given
in Fig. S10. Removing either component significantly decreased BO performance, and removing the
Mahalanobis kernel was especially detrimental.

S9 Constrained Neural Architecture Search Problem

NAS-Bench-101[53] is a dataset of convolutional neural network (CNN) performance on the CIFAR-
10 problem, produced for the purpose of reproducible research in neural architecture search. The
search space is to design the cell for a CNN using a DAG with 7 nodes and up to 9 edges. The
first node is input and the last node is output; the remaining five can be selected to be any one of
the operations 3× 3 convolution, 1× 1 convolution, or 3× 3 max-pool. The edges connect these
operations to each other, and to the input and output. This space includes more than 400,000 unique
models, each of which was evaluated on CIFAR-10 by training for 108 epochs on a TPU, and then
testing on the test set. For each model, several metrics were computed, including the number of
seconds required for training and the final test-set accuracy.

We parameterized this as a continuous HDBO problem by separately parameterizing the operations
and edges. The operations were parameterized using one-hot encoding, which, with five selectable
nodes and 3 options for each, produced 15 parameters. These were optimized in the continuous [0, 1]
space, and then the max for each set was taken as the “hot" feature that specified which operation
to use in the corresponding node. NAS-Bench-101 represents the edges using the upper-triangular
7× 7 adjacency matrix, which has (7·6)

2 = 21 binary entries. These entries were similarly optimized
in the continuous [0, 1] space, and the adjacency matrix was created iteratively by adding entries in
the rank order of their corresponding continuous-valued parameters, and finding the largest number
of non-zero entries that can be added to still have no more than 9 edges after pruning portions not
connected to input or output. The combination of the adjacency matrix parameters (21) and the
one-hot-encoded operation parameters (15) produced a 36-dimensional optimization space.

11

0 100 200 300 400 500

Function evaluations

−60

−50

−40

−30

−20

−10

0

10

20
B

es
t

va
lu

e
fo

u
n
d

ALEBO

REMBO

HeSBO

EBO

SMAC

CMA-ES

TuRBO

Sobol

A
L

E
B

O

R
E

M
B

O

H
e
S
B

O

E
B

O

S
M

A
C

C
M

A
-E

S

T
u
R

B
O

S
o
b

o
l

−40

−30

−20

−10

0

10

20

30

40

V
a
lu

e
a
t

fi
n
a
l

it
er

a
ti

o
n

Figure S11: Optimization performance on the hexapod locomotion task from Fig. 7. (Left) Each trace
shows the best value by each iteration, averaged across repeated runs with error bars showing two
standard errors. (Right) The distribution of values at the final iteration. ALEBO performed best of
the HDBO methods, but CMA-ES outperformed them all.

The objective for the optimization was to maximize test-set accuracy, subject to a constraint on
training time being less than 30 minutes. A large portion of the models in the NAS-Bench-101
modeling space have training times above 30 minutes, with the longest around 90 minutes. While
test-set accuracy is proportional to training time [53], our results in Fig. 6 show that with HDBO
it is possible to find well-performing models with short training times. TuRBO and CMA-ES were
adapted to this constrained problem by return a poor objective value for infeasible points.

In the results of Fig. 6, HeSBO showed strong performance in early iterations, but quickly flattened out
and ended up worse than random on average. By the final iteration, ALEBO performed significantly
better than Sobol, CMA-ES, HeSBO, and REMBO. TuRBO performed worse on early iterations, but
in later iterations had performance that was not significantly different from ALEBO.

S10 Locomotion Optimization Problem

The task for the final set of experiments was to learn a gait policy for a simulated robot. As a
controller, we use the Central Pattern Generator (CPG) from [9]. The goal in this task is for the robot
to walk to a target location in a given amount of time, while reducing joint velocities, and average
deviation from a desired height

f(p) = C − ||xfinal − xgoal|| −
T∑

t=0

(w1||q̇t|| − w2|hrobot,t − htarget|) , (S2)

where C = 10, w1 = 0.005, and w2 = 0.01 are constants. xfinal is the location of the robot on a
plane at the end of the episode, xgoal is the target location, q̇t are the joint velocities at time t during
the trajectory, hrobot,t is the height of the robot at time t, and htarget is a target height. T = 3000 is the
total length of the trajectory, leading to 30s of experiment. The objective function is evaluated at the
end of the trajectory.

Fig. S11 shows the optimization performance over 50 repeated runs, which are the same results of
Fig. 7 but including errors bars and the distribution of final best values. All of the methods have high
variance in their final best value across runs. ALEBO has the lowest variance and thus the most robust
performance. SMAC was able to find a good value in one run, but on average performed slightly
worse than ALEBO. TuRBO performed better, but CMA-ES was the clear best-performing method
on this problem.

12

